1 1 无损时, e ( ) : E : 2 1 ~ 1 T 1 1~ 受损伤后, e ( , D) : E : : M ( D) : E : M ( D) : 2 2 1 ~ 1 : E : 2 ~ 1 T 1
11 11
1
F
o 当 90 时,令 11
f
( 9011 ) f
,有
f
~ ( 9011 ) f 2 F
由此可确定任意角度下的 11 的计算值,将之与实验结果 比较,如二者吻合很好,则可证明定义的损伤张量可用。
第四节 等价性原理
三维应变等价性原理:Lemaitre & Chaboche
有效弹 性张量
* 1 (E ) * 1 E ( D) M ( D) : E
能量等价性原理:Sidoroff 无耦合的各向异性损伤和应变等价性假设不相容 受损材料的性能可以用无损材料的余弹性能表示,只要把其中的应 力换成有效应力即可。 例如:弹性
E ( D) M ( D) : E : M ( D) 1 T , 1 ~ E ( D) M ( D) : E : M ( D)
损伤张量可以定义为表观面积和实际受载截面积的差与表观面积 之比,即:
* dx G dx
* dy G dy
1 T * 1 D I K (G ) [dA dA ] (dA)
S A DD D
对损伤张量反对称部分引起的面积变化分析:
第二节 有效应力张量
定义 为Cauchy应力张量, T 为作用在PQR上的面力
则:
TdA (v dA)