西洋参中总皂苷的提取工艺研究
- 格式:pdf
- 大小:177.12 KB
- 文档页数:2
人参茎叶总皂苷提取,纯化工艺优化研究人参是一种珍贵的中药材,其主要有效成分之一为人参皂苷。
在人参中,人参皂苷主要存在于人参的茎叶部分。
人参茎叶总皂苷的提取和纯化工艺是非常重要的研究课题。
人参茎叶总皂苷的提取工艺主要包括以下几个步骤:粉碎、提取、浓缩和干燥。
而在提取和纯化的过程中,需要考虑多种因素,包括溶剂的选择、提取温度、提取时间、提取次数以及分离纯化技术等。
这些因素的选择将直接影响到人参茎叶总皂苷的提取率和纯度,因此对提取和纯化工艺的优化研究尤为重要。
粉碎是提取工艺的第一步。
一般来说,粉碎后的颗粒越小,人参茎叶总皂苷的提取率就越高。
选择合适的粉碎设备和粉碎时间非常重要。
为了保证提取物的质量,还需要注意粉碎温度和粉碎过程中的防潮处理。
提取是人参茎叶总皂苷提取工艺中最为关键的一步。
在进行提取前,需要选择合适的溶剂。
常用的溶剂有乙醇、丙酮、乙酸乙酯等。
不同的溶剂对人参茎叶总皂苷的提取效果有所差异,因此需要进行实验比较,选择最适合的溶剂。
在提取过程中,提取温度和提取时间也是需要考虑的重要因素。
一般来说,较高的提取温度和较长的提取时间会提高人参茎叶总皂苷的提取率,但是过高的温度和过长的时间又会导致人参皂苷的降解,因此需要在提取过程中进行温度和时间的控制。
提取次数也会影响人参茎叶总皂苷的提取率。
通常情况下,多次提取可以提高提取率,但是次数过多又会增加生产成本。
需要在提取次数和提取率之间进行平衡。
是提取物的浓缩和干燥。
在这一步骤中,通常会使用浓缩设备将提取液浓缩,然后进行干燥得到人参茎叶总皂苷的粉末。
在这一步骤中,需要注意控制温度和湿度,以防止人参茎叶总皂苷的变性和降解。
总的来看,人参茎叶总皂苷的提取和纯化工艺是一个复杂的过程,涉及到多种因素的选择和控制。
在进行工艺优化研究时,需要综合考虑提取率、纯度、产率以及生产成本等因素,以找到最适合的提取工艺。
只有在提取工艺得到优化和改进后,才能更好地发挥人参茎叶总皂苷的药用价值。
1.人参皂苷提取人参为五加科植物人参(Panax ginseng C.A.Mey.)的干燥根,是传统名贵中药,始载于我国第一部本草专著《神农本草经》。
其栽培者称为“园参”,野生者称为“山参”。
人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、心力衰竭、心源性休克等的治疗。
人参皂甙和稀HCl在醇液中进行温和酸水解,可得到三种皂甙元,齐墩果酸、人参二醇和人参三醇。
而不能得到原人参二醇和原人参三醇,这是因为在酸水解过程中侧链的20-位碳原子上的羟基(-OH)与该链上的双键(C=C)易闭环,而形成带有三甲基四氢吡喃环的人参二醇和人参三醇。
水解后,除去醇、氯仿萃取物经硅胶柱层析分离即可得到三种单体皂甙元,经重结晶获得纯品,分别与已知皂甙的红外光谱相一致。
2.人参皂甙提取和甙元分离工艺流程①人参皂甙提取工艺:人参茎叶粗粉20g热水提取1小时,粗滤,(棉花)提取液药渣加0.6g是会乳沉淀,并调至PH9-10,放置10分钟,抽滤沉淀物滤液浓硫酸调PH7,放置10分钟。
中性提取液回收后,上大孔树脂柱,先用水洗至无色,再用70%氨性醇洗至绿色。
乙醇洗脱液回收乙醇人参总皂甙(黄白色)a)人参皂甙元的水解和甙元的分离流程人参总皂甙加含5%HCl的50%乙醇液,加热回流2小时沉淀水解液(酸性皂甙元部分)加水稀释,水浴蒸去醇,氯仿萃取3次(10,5,5ml)水层氯仿层干燥,无水NaSO4回收氯仿总皂甙元少量苯溶解,硅胶柱层析,用苯-乙酸乙脂(8:2)洗脱组分Ⅰ组分Ⅱ组分Ⅲ95%乙醇重95%乙醇重丙酮结晶结晶3次结晶3次2次齐墩果酸人参二醇人参三醇mp299-301℃mp245-250℃mp244-246℃1.操作方法人参总皂甙的提取:取人参茎叶粗粉20g,放入烧杯用热水(80℃-90℃)提取1小时,然后用棉花粗滤,在所得滤液中加入0.6g水石灰乳除杂并调PH9-10放置10分钟左右,过滤,再将滤液用浓硫酸(少量)调PH7,放置10分钟左右,回收提取液至少量(5-10ml),再上大孔树脂柱(注:此柱应提前洗好,清洗办法略)先用蒸馏水洗至无色,再用70%的乙醇洗至无色,分别用小瓶接收。
长春师范学院硕士学位论文五加科人参属中药皂苷类化合物的分离提取及抗氧化活性研究姓名:王晶申请学位级别:硕士专业:分析化学指导教师:刘春明2010-06-03摘要人参、西洋参和三七系五加科人参属药材中的三种重要代表,其主要有效成分均为达玛烷型人参皂苷。
大量研究结果表明:皂苷类化合物具有较强的生物活性,因此,对于人参皂苷的研究和开发具有重要的理论意义和实际应用价值。
(1)分别采用回流、超声和温浸提取法对人参、西洋参和三七中的皂苷类化合物进行了分离提取对比研究,并应用高效液相色谱法(HPLC)对皂苷类化合物进行定量分析,对比研究表明超声提取法快速、安全、简便、成本低且不破坏成分,在此基础上,采用超声提取法对三种药材中的皂苷类化合物进行大量的分离提取,总皂苷粗提物应用高速逆流色谱技术进行分离纯化研究。
(2)本文采用高速逆流色谱技术(HPCPC)和蒸发光检测器(ELSD)的联用技术对皂苷类化合物进行分离纯化,建立了HPCPC-ELSD法分离五加科人参属中药的皂苷类化合物的新方法。
采用乙酸乙酯-正丁醇-水(1:1:2,v/v/v) 为溶剂体系,经一次分离从三七总皂苷粗提物中分离纯化得到三七皂苷R1,人参皂苷Rg1、Re和Rb1;采用乙酸乙酯-正丁醇-水(1:1:2,v/v/v) 为溶剂体系,从西洋参总皂苷粗提物中分离得到了Re、Rb1和Rc;采用乙酸乙酯-正丁醇-水(0.8:1.2:2,v/v/v) 为溶剂体系,从人参总皂苷粗提物中分离得到了人参皂苷Rb1和Rb2两种单体皂苷。
应用HPLC-ELSD技术对分离得到的皂苷类化合物进行分析,通过与已知化合物的保留时间相对比,进行定性分析;根据其峰面积百分比,确定其纯度均在95%以上。
应用电喷雾串联质谱(ESI-MS n)进一步确定化合物的结构。
结果表明,应用HPCPC-ELSD从中草药粗提物中分离无紫外吸收或者紫外末端吸收的活性物质是一种高效可行的分离技术,HPLC-ELSD和MS n为皂苷类化合物纯度检验和鉴定分析提供了较好的分析方法。
学术探讨Academic study西洋参中有效成分及其抗肿瘤关系的研究进展王炜明1赵东娇21.吉林省蛟河市卫生防疫站,吉林蛟河132500;2.吉林省蛟河市中医院,吉林蛟河132500【摘要】西洋参中含有多种有效成分,其中最主要活性成分为皂苷类,目前已从西洋参皂苷类成分已分离鉴定出49种,其中达玛烷型皂苷32种(新近发现的人参皂苷F1),齐墩果酸型皂苷3种,奥克梯隆醇型皂苷2种,其它类皂苷成分12种(新近发现的人参皂苷Rg6和Rg8)。
西洋参除传统的生理活性外,多年来研究证明,西洋参中所含人参皂苷在抑制肿瘤细胞生长或转移、诱导肿瘤细胞凋亡和分化、逆转肿瘤多药耐药等生理活性方面具有很高价值和发展前景。
本文对西洋参中所含的有效成分及其在抗肿瘤的研究进展中做简要综述。
【关键词】西洋参;有效成分;抗肿瘤【中图分类号】R284【文献标识码】A【文章编号】1007-8517(2013)10-0043-02西洋参(Panax quinquefolium L.)为五加科人参属植物,其味苦,性凉,主入心、肺、肾经,又名美国人参、花旗参,西洋人参、洋参、广东人参等。
为综合利用西洋参资源,国内外学者从西洋参地上部分(茎、叶)提取出主要活性成份—西洋参茎叶皂苷(Panax quinquefolium sapo-nins from steams and leaves,PQS),并已证明其茎叶部总皂苷的含量明显高于根,而且茎叶部和根部总皂苷中单体皂苷的种类与含量也不相同[1]。
随着西洋参在国内外的研究越来越广泛,人们对西洋参中含有人参皂苷的结构修饰方法和生物活性作用的研究也越来越深入,尤其对人参皂苷在防治肿瘤的应用开发方面显示了良好前景。
本文现对西洋参中有效的成分以及其在抗肿瘤关系的研究进展中做简要综述。
1西洋参中有效成分的研究进展1.1皂苷类成分西洋参皂苷因其结构类型与人参皂苷基本一致,故以下文献中将其均称为人参皂苷。
人参皂苷的提取与分离学生姓名专业班级学院摘要首先认识人参和人参皂苷,了解人参皂苷的详细作用和功效,接着研究了人参茎叶总皂苷含量提取方法,用详细的工艺提取人参皂苷,并且用对显色反应和薄层层析对提取物进行鉴定,为以后的人参茎叶的开发利用奠定基础。
关键词:皂苷;人参茎叶;鉴定。
Abstract.The first ginseng and ginseng saponin, understanding the role and efficacy of ginseng saponin in detail, then study the effect of ginseng stem leaf total saponin extraction method, with the detailed process ofextraction of ginseng saponin, and used for color reaction and thin-layer chromatography to extract were identified, for the future of ginseng stem and leaf development lays a foundation.key words: saponin; ginseng stems and leaves; appraisal;目录摘要 (1)Abstract ................................................................................................ 错误!未定义书签。
1绪论 (3)1.1人参概述 .............................................................................. 错误!未定义书签。
HPLC-PAD法测定西洋参类保健食品中10种皂苷的含量吴晓云ꎬ刁飞燕ꎬ李秀慧ꎬ刘春霖ꎬ李启艳(山东省食品药品检验研究院ꎬ山东济南250101)摘要:目的㊀建立同时测定西洋参类保健食品中人参皂苷Rg1㊁Rg2㊁Rg3㊁Rb1㊁Rb2㊁Rb3㊁Rc㊁Rd㊁Re㊁Rf含量的高效液相色谱-二极管阵列检测法(HPLC-PAD)ꎮ方法㊀采用KromasilC18(4.6mmˑ250mmꎬ5μm)色谱柱ꎻ以乙腈(A)-水(B)为流动相进行梯度洗脱ꎻ流速1.0mL min-1ꎻ检测波长203nmꎻ柱温35ħꎮ结果㊀10种人参皂苷的浓度在其各自线性范围内ꎬ与峰面积呈良好的线性关系ꎬr值均ȡ0.99ꎮ该方法平均回收率为93.0%~101.8%ꎬRSD均小于4.0%(n=6)ꎮ结论㊀本法准确可靠㊁灵敏度高㊁重现性好ꎬ可作为西洋参类保健食品的质量控制方法ꎮ关键词:高效液相色谱-二极管阵列检测法ꎻ保健食品ꎻ西洋参ꎻ人参皂苷中图分类号:R927.2㊀文献标识码:A㊀文章编号:2095-5375(2020)06-0336-005doi:10.13506/j.cnki.jpr.2020.06.006Simultaneousdeterminationof10ginsenosidesinhealthfoodofPanaxQuinquefoliumbyHPLC-PADWUXiaoyunꎬDIAOFeiyanꎬLIXiuhuiꎬLIUChunlinꎬLIQiyan(ShandongInstituteforFoodandDrugControlꎬJinan250101ꎬChina)Abstract:Objective㊀ToestablishanHPLC-PADmethodforthedeterminationof10ginsenosides(ginsenosideRg1ꎬRg2ꎬRg3ꎬRb1ꎬRb2ꎬRb3ꎬRcꎬRdꎬReandRf)inhealthfoodofPanaxquinquefolium.Methods㊀TheanalysiswascarriedoutonananalyticalcolumnKromasilC18(4.6mmˑ250mmꎬ5μm)withgradientelutionbyacetonitrile(A)-water(B)ꎬatthedetectionwavelengthof203nmandaflowrateof1.0mL min-1.Thecolumntemperaturewas35ħ.Results㊀Allcali ̄brationcurvesshowedgoodlinearitywithintheirlinearranges(rȡ0.99).Theaveragerecoverieswerebetween93.0%~101.8%ꎬRSD<4.0%(n=6).Conclution㊀ThismethodwasaccurateꎬhighlysensitiveandreproducibleꎬandcanbeusedtocontrolthequalityofhealthfoodofPanaxQuinquefolium.Keywords:HPLC-PADꎻHealthfoodꎻPanaxQuinquefoliumꎻGinsenoside㊀㊀西洋参为五加科人参属植物ꎬ是名贵的中药材ꎬ人参皂苷是其主要活性成分ꎬ主要有人参皂苷Rg1㊁Rb1㊁Rb2㊁Rc㊁Rd和Re等ꎮ以西洋参为原料的保健食品具有缓解体力疲劳ꎬ增强免疫力㊁抗氧化和抗肿瘤等作用[1]ꎮ目前ꎬ西洋参类保健食品的剂型有硬胶囊㊁软胶囊㊁片剂和口服溶液等ꎬ主要以总皂苷作为标志性成分ꎬ总皂苷的测定主要采用香草醛-高氯酸或硫酸显色后用紫外分光光度法测定[2]ꎬ该方法存在专属性差ꎬ操作复杂和干扰因素多等缺点ꎮ为此ꎬ徐灿辉等[3]改进了西洋参类保健食品中人参皂苷测定方法ꎬ建立了西洋参类保健食品中7种参皂苷含量高效液相色谱(HPLC)测定的方法ꎮ此外ꎬ人参皂苷测定方法还有超高效液相色谱(UP ̄LC)[4]㊁高效液相色谱-质谱联用法(HPLC-MS)[5-6]等ꎮ在众多资料中ꎬ主要研究西洋参根茎叶提取物中人参皂苷含量ꎬ但对西洋参类保健食品中10种人参皂苷含量测定的报道较少ꎮ本试验通过参考西洋参药材中皂苷测定的有关文献[7-9]ꎬ建立高效液相色谱法同时测定多种剂型西洋参类保健食品中10种人参皂苷ꎬ为质量标准的提升提供依据ꎮ1㊀试验部分1.1㊀仪器㊀液相色谱仪(Agilent1260高效液相色谱仪ꎬ美国安捷伦公司)ꎬ配二极管阵列检测器㊀作者简介:吴晓云ꎬ女ꎬ主管药师ꎬ研究方向:保健食品化妆品检验ꎬE-mail:wuxiaoyun823@126.com㊀通信作者:李启艳ꎬ女ꎬ博士研究生ꎬ副主任药师ꎬ研究方向:保健食品化妆品检验ꎬTel:0531-81216708ꎬE-mail:152****8118@163.com(PAD)ꎻ电子天平(MettlerToledoMSꎬ梅特勒-托利多)ꎻ数控超声波清洗器(KQ-500DE型ꎬ昆山市超声仪器有限公司)ꎻ恒温水浴锅(北京永光明)ꎮ1.2㊀试药与供试品㊀乙腈(色谱纯ꎬHoneywell)ꎻ甲醇(色谱纯ꎬHoneywell)ꎻ超纯水ꎻ正丁醇(分析纯ꎬ国药集团)ꎻ氨水(分析纯ꎬ国药集团)ꎮ标准品:人参皂苷Rb1㊁Rb2㊁Rb3㊁Rg1㊁Rg3㊁Rd㊁Re由中国食品药品检定研究院提供ꎬ含量分别为95.9%㊁93.8%㊁97.0%㊁96.3%㊁100%㊁94.4%㊁97.4%ꎬ人参皂苷Rg2㊁Rc㊁Rf由上海甄准生物科技有限公司提供ꎬ含量分别为98.02%㊁99.11%㊁99.62%ꎮ供试品均由市场购得ꎬ名称与剂型见表1ꎮ表1㊀12种供试品的名称和剂型名称剂型S01康富来牌西洋参口服液口服溶液S02金日牌西洋参口服液口服溶液S03新光牌西洋参口服液口服溶液S04日圣牌西洋参氨基酸口服液口服溶液S05无限能牌西洋参胶囊硬胶囊S06雪佳牌西洋参珍珠胶囊硬胶囊S07康富丽牌洋参淫羊藿软胶囊软胶囊S08福来了牌西洋参含片片剂S09喜之源牌西洋参含片片剂S10金日牌西洋参含片片剂S11康富来牌洋参含片片剂S12百合康牌螺旋藻洋参片片剂2 方法与结果2.1㊀色谱条件㊀色谱柱:KromasilC18(4.6mmˑ250mmꎬ5μm)ꎻ流动相:乙腈(A)-水(B)ꎬ梯度洗脱(0~40minꎬ17%Aң19%Aꎻ40~60minꎬ19%Aң29%Aꎻ60~75minꎬ29%Aꎻ75~100minꎬ29%Aң40%Aꎻ100~105minꎬ40%Aң17%A)ꎻ流速1.0mL min-1ꎻ检测波长203nmꎻ柱温35ħꎻ进样量:10μLꎮ2.2㊀对照品储备液及对照品混合工作液配制㊀分别精密称定人参皂苷Rg1㊁Rg2㊁Rg3㊁Rb1㊁Rb2㊁Rb3㊁Rc㊁Rd㊁Re㊁Rf对照品适量ꎬ置于25mL量瓶中ꎬ用甲醇溶解并定容ꎬ制成人参皂苷单体浓度分别为2.409㊁2.141㊁0.04712㊁1.947㊁1.758㊁2.138㊁2.250㊁2.062㊁2.077㊁2.008mg mL-1的对照品储备液ꎮ分别取10种人参皂苷对照品储备液适量ꎬ加甲醇稀释制成6个浓度的混合对照品工作液ꎮ2.3㊀供试品溶液的制备2.3.1㊀片剂㊁胶囊剂供试品溶液的制备㊀片剂㊁胶囊剂ꎬ取内容物研磨混匀后ꎬ片剂2gꎬ胶囊剂1gꎬ精密称定ꎬ置于100mL锥形瓶中ꎬ精密加水饱和正丁醇50mLꎬ密塞ꎬ放置过夜ꎬ超声处理(功率250Wꎬ频率50kHz)30minꎬ滤过ꎬ弃去初滤液ꎬ精密量取续滤液20mLꎬ用氨试液洗涤两次ꎬ每次20mLꎬ正丁醇提取液蒸干后ꎬ残渣加甲醇适量使溶解ꎬ作为供试品溶液ꎮ2.3.2㊀口服溶液供试品溶液的制备㊀口服溶液ꎬ精密量取8.0mL供试品至分液漏斗中ꎬ用水饱和正丁醇振摇提取3次ꎬ每次10mLꎬ合并正丁醇提取液ꎬ用氨试液洗涤2次ꎬ每次10mLꎬ正丁醇提取液蒸干后ꎬ残渣加甲醇适量使溶解ꎬ作为供试品溶液ꎮ2.4㊀线性关系考察㊀分别取6个浓度的混合对照品工作液ꎬ进样10μLꎬ记录峰面积ꎬ以对照品浓度X(μg mL-1)为横坐标ꎬ对照品的峰面积Y为纵坐标ꎬ绘制标准曲线ꎬ求得回归方程ꎮ得到10种人参皂苷在相应线性范围内均具有良好的线性ꎬ相关系数都在0.99以上ꎬ结果见表2ꎮ表2㊀标准曲线方程的结果成分标准曲线方程相关系数(r)线性范围/μg mL-1Rg1Rg2Rg3Rb1Rb2Rb3RcRdReRfY=1.770X+4.613Y=3.084X+2.021Y=2.381X-0.3584Y=2.377X+29.67Y=2.433X+1.319Y=2.520X+2.210Y=2.806X+3.629Y=2.303X-12.93Y=2.856X+6.063Y=3.982X+2.2570.99990.99990.99990.99980.99990.99990.99990.99980.99990.99994.818~240.94.282~214.11.178~47.123.894~194.73.516~175.84.276~213.84.500~225.04.124~206.24.154~207.74.016~200.82.5㊀试样重复性试验㊀准确量取6份口服溶液供试品(S01)8.0mL至分液漏斗中ꎬ以下按 2.3.2 项下方法操作ꎬ制备供试品溶液ꎮ准确称取6份胶囊剂供试品(S05)1gꎬ6份片剂供试品(S08)2gꎬ置于100mL锥形瓶中ꎬ以下按 2.3.1 项下方法操作ꎬ制备供试品溶液ꎮ分别取3种剂型供试品溶液10μL注入液相色谱仪ꎬ以保留时间定性ꎬ测定峰面积ꎬ计算供试品中10种人参皂苷的含量ꎮ3种剂型供试品中人参皂苷含量RSD(n=6)均小于3%ꎬ结果表明方法重复性良好ꎬ结果见表3ꎮ2.6㊀系统适应性考察㊀取10种人参皂苷混合对照品工作液10μL进样ꎬ计算10种人参皂苷的理论板数ꎮ得到人参皂苷Rg3㊁Rg1㊁Re㊁Rf㊁Rg2㊁Rb1㊁Rc㊁Rb2㊁Rb3㊁Rd的理论板数分别为103427㊁50732㊁104490㊁157284㊁120457㊁82876㊁253440㊁260991㊁410628㊁239554ꎬ分离度分别为5.4㊁1.6㊁32.6㊁15.1㊁2.2㊁4.0㊁4.8㊁1.6㊁8.0ꎮ对于供试品ꎬ虽然存在基质干扰影响分离度ꎬ但是3种剂型供试品中10种人参皂苷均能达到基线分离ꎬ分离度均能达到1.5以上ꎮ表3㊀重复性试验结果剂型口服溶液(S01)胶囊剂(S05)片剂(S08)含量平均值/mg mL-1RSD(%)含量平均值/mg g-1RSD(%)含量平均值/mg g-1RSD(%)Rg30.0202.60.9352.40.2112.3Rg10.0402.04.6731.90.1222.5Re0.0511.719.3252.10.2341.7Rf0.0212.9----Rg20.2960.62.6521.30.2171.4Rb10.4350.648.6260.70.4241.2Rc0.1591.011.8421.11.7461.7Rb20.1201.22.1611.61.4711.5Rb30.0542.63.6542.33.0302.5Rd0.4810.821.5001.30.8291.8㊀注: - 表示未检出或低于定量限2.7㊀精密度试验㊀取10种人参皂苷混合对照品工作液10μL连续进样5次ꎬ以测得的峰面积响应值作评价标准ꎬ得到10种人参皂苷的RSD(n=5)均小于3.0%ꎬ表明在本方法仪器条件下ꎬ仪器精密度良好ꎮ2.8㊀稳定性试验㊀分别取供试品S01㊁S05㊁S08ꎬ按 2.3 项下方法操作ꎬ得到供试品溶液ꎬ室温下放置24hꎬ分别在0㊁2㊁4㊁8㊁12㊁24h取10μL进样ꎬ得到10种人参皂苷峰面积RSD(n=6)都在3.0%以内ꎬ表明供试品溶液在24h内稳定ꎮ2.9㊀回收率试验㊀准确量取6份已知含量的供试品(S01)4.0mL至分液漏斗中ꎬ分别精密加入人参皂苷对照品储备液适量(对照品加入量与供试品中各人参皂苷含量之比为1ʒ1)ꎬ以下按 2.3.2 项下方法操作ꎬ即可得到加标溶液ꎮ准确称取已知含量的供试品(S05)0.5gꎬ供试品(S08)1gꎬ各6份ꎬ分别精密加入人参皂苷对照品储备液适量(对照品加入量与供试品中各人参皂苷含量之比为1ʒ1)ꎬ置于100mL锥形瓶中ꎬ以下按 2.3.1 项下方法操作ꎬ即可得到加标溶液ꎮ取10μL注入液相色谱仪ꎬ以保留时间定性ꎬ测定峰面积ꎬ得到10种人参皂苷的平均加样回收率(n=6)ꎬRSD均小于4.0%ꎬ结果见表4ꎮ表4㊀回收率结果剂型成分口服溶液(S01)胶囊剂(S05)片剂(S08)试样平均含量/mg平均回收率(%)RSD(%)试样平均含量/mg平均回收率(%)RSD(%)试样平均含量/mg平均回收率(%)RSD(%)Rg30.08096.32.10.46893.31.90.21197.92.5Rg10.16098.23.32.33799.12.80.12295.02.6Re0.20496.63.29.666100.33.10.234101.83.6Rf0.08498.81.0-101.21.5-101.33.4Rg21.18494.41.01.32793.71.70.217100.42.1Rb11.74096.41.524.32396.51.40.42595.52.4Rc0.63694.41.35.92398.22.51.75096.22.6Rb20.48096.02.31.08193.92.41.47497.52.8Rb30.21693.02.51.828100.12.63.036101.23.2Rd1.92493.31.510.75498.62.20.83194.02.4㊀注: - 表示未检出或低于定量限2.10㊀检出限与定量限㊀S/N=3时ꎬ得到检出限LODꎬ人参皂苷Rg1㊁Rg2㊁Rg3㊁Rb1㊁Rb2㊁Rb3㊁Rc㊁Rd㊁Re㊁Rf检出限分别为0.0024㊁0.0021㊁0.0029㊁0.0019㊁0.0018㊁0.0021㊁0.0022㊁0.0021㊁0.0021㊁0.0020μgꎻS/N=10时ꎬ得到定量限LOQꎬ定量限分别为0.0060㊁0.0054㊁0.0074㊁0.0050㊁0.0044㊁0.0053㊁0.0056㊁0.0052㊁0.0052㊁0.0050μgꎮ2.11㊀供试品的测定㊀取12批供试品ꎬ按照按 2.3 制备供试品溶液ꎬ每批平行处理2份ꎬ按上述色谱条件进行测定ꎬ将峰面积代入 2.4 线性回归方程计算含量ꎬ结果见图1~2及表5ꎮ表5㊀供试品中10种成分含量测定结果含量/mg mL-1或mg g-1编号S01S02S03S04S05S06S07S08S09S10S11S12Rg30.0200.0090.0100.0780.9350.1690.4940.2110.2120.2750.4170.489Rg10.0400.0710.015-4.6730.7671.7220.1220.2090.6740.8930.436Re0.0510.2400.066-19.3251.4184.1270.2340.7093.0853.8091.350Rf0.021--0.019-0.025----0.016-Rg20.2960.0620.147-2.6520.5451.0240.2170.1130.0840.2390.261Rb10.4350.6650.631-48.6261.3540.4070.4240.1026.7778.633-Rc0.1590.1200.083-11.8420.6560.6751.7460.6372.0662.7660.093Rb20.1200.0390.019-2.1610.3611.9871.4710.3820.3390.4870.536Rb30.0540.0950.023-3.6540.3696.7583.0301.5650.5900.8342.229Rd0.4810.2730.238-21.5001.4986.0160.8290.9763.2033.7523.154合计1.681.571.230.10115.377.1623.218.284.9117.0921.858.55㊀注: - 表示未检出或低于定量限㊀1.Rg3(20.0min)ꎻ2.Rg1(45.0min)ꎻ3.Re(45.8min)ꎻ4.Rf(65.9min)ꎻ5.Rg2(77.6min)ꎻ6.Rb1(80.0min)ꎻ7.Rc(83.6min)ꎻ8.Rb2(86.9min)ꎻ9.Rb3(87.8min)ꎻ10.Rd(93.0min)图1㊀10种人参皂苷对照品图谱㊀1.Rg3(20.0min)ꎻ2.Rg1(45.0min)ꎻ3.Re(45.8min)ꎻ4.Rf(65.9min)ꎻ5.Rg2(77.6min)ꎻ6.Rb1(80.0min)ꎻ7.Rc(83.6min)ꎻ8.Rb2(86.9min)ꎻ9.Rb3(87.8min)ꎻ10.Rd(93.0min)图2㊀供试品S01中10种人参皂苷图谱3 讨论3.1㊀前处理考察㊀由于保健食品剂型种类多ꎬ而每种剂型的基质比较复杂ꎬ导致10种人参皂苷更难同时分离ꎮ首先ꎬ通过比较3种不同的提取试剂ꎬ水饱和正丁醇㊁甲醇和乙醇ꎬ最终得到水饱和正丁醇提取效率最高ꎮ其次ꎬ选用水饱和正丁醇分别采用回流提取㊁液-液萃取㊁浸泡放置过夜超声提取和直接超声提取4种提取方式进行比较ꎬ结果表明:对于片剂和胶囊剂ꎬ浸泡过夜超声提取与回流提取得到皂苷含量最高ꎬ又因为前者操作简单ꎬ且提取的多糖等杂质较少ꎬ最终采用浸泡过夜超声提取ꎻ对于口服溶液ꎬ回流提取与液-液萃取都能得到较高总皂苷含量ꎬ优先选取重现性好且操作较简单的处理方法ꎬ因此采用水饱和正丁醇振摇多次萃取ꎮ3.2㊀流动相及梯度的选择㊀本文对甲醇-水ꎬ乙腈-水和乙腈-0.1%磷酸溶液3种不同流动相进行比较ꎬ结果表明ꎬ人参皂苷在低波长范围内检测时ꎬ乙腈比甲醇背景噪音低ꎬ可获得较好的分离效果ꎬ并且乙腈与水混合黏度小ꎬ可以有效降低系统压力ꎬ而加入磷酸对整体分离情况没有明显改善且磷酸盐对色谱柱损耗大ꎬ最终选择乙腈-水作为最佳流动相ꎮ10种人参皂苷中Rg1和ReꎬRb2和Rb3较难分离ꎮ人参皂苷Rg1和Re极性非常相似ꎬ较难分离ꎬ且供试品在人参皂苷Rg1和Re附近有杂质干扰ꎬ最终选择合适梯度ꎬ在45min左右达到基线分离ꎮRb2和Rb3是同分异构体ꎬ并且两者含量很低ꎬ容易包裹在杂质峰中ꎬ本试验在保证峰形和柱效的前提下完成了两种皂苷的基线分离ꎮ故最终采用梯度洗脱使每种皂苷达到较好分离效果ꎮ3.3㊀样品测定结果分析㊀由表5可见ꎬ12批供试品10种皂苷含量之和差异很大ꎬ含量最高的为硬胶囊ꎬ片剂和软胶囊次之ꎬ口服溶液最低ꎮ每批供试品中ꎬ单种人参皂苷占10种皂苷比例各不相同ꎬ经过分析发现ꎬRb1㊁Rc㊁Rd㊁Re4种所占比例最大ꎬ7批供试品含这4种皂苷比例为67.0%~88.5%ꎬ4批供试品的比例为39.0%~53.8%ꎬ1种供试品(S04)比例为0ꎮ对于供试品(S04)ꎬ根据«保健食品检验与评价技术规范»(2003年版)中规定的紫外分光光度法进行总皂苷检测ꎬ得到总皂苷含量为80mg 100mL-1ꎮ本文建立的HPLC-PAD法可对西洋参类保健食品中皂苷成分进行初步鉴定ꎬ最终用紫外分光光度法进行总皂苷检测ꎮ4 结论本文共收集口服溶液㊁片剂和胶囊剂12批西洋参类保健食品ꎬ通过测定其线性范围㊁系统适用性㊁重复性㊁精密度㊁稳定性㊁检出限㊁定量限和回收率试验ꎬ结果令人满意ꎮ试验表明ꎬ在本文供试品制备方法和色谱条件下ꎬ人参皂苷Rg3㊁Rg1㊁Re㊁Rf㊁Rg2㊁Rb1㊁Rc㊁Rb2㊁Rb3㊁Rd能够达到完全分离ꎬ所建立的方法操作简便ꎬ重复性好ꎬ可以用来对以西洋参为原料的保健食品进行质量控制ꎮ参考文献:[1]㊀尚金燕ꎬ李桂荣ꎬ邵明辉ꎬ等.西洋参的药理作用研究进展[J].人参研究ꎬ2016ꎬ28(6):49-51.[2]杜金凤ꎬ宋鉴达ꎬ朱传翔ꎬ等.比色法测定人参保健饮料中人参总皂苷含量[J].现代食品ꎬ2017ꎬ6(11):79-80. [3]徐灿辉ꎬ何维为.西洋参保健食品中7种人参皂苷的高效液相色谱法测定[J].食品与药品ꎬ2015ꎬ17(4):273-277.[4]崔勇ꎬ李青ꎬ刘思洁ꎬ等.固相萃取-超高效液相色谱法同时测定人参中11种人参皂苷的含量[J].中国卫生检验杂志ꎬ2012ꎬ22(3):475-477.[5]黄艳菲ꎬ刘永恒ꎬ李艳丹ꎬ等.HPLC-MSn法测定加拿大原产地西洋参不同入药部位的人参皂苷含量[J].中国实验方剂学杂志ꎬ2013ꎬ19(11):86-91.[6]张海江ꎬ蔡小军ꎬ程翼宇.高效液相色谱-电喷雾质谱法鉴别人参㊁西洋参和三七的皂苷提取物[J].中国药学杂志ꎬ2006ꎬ41(5):391-394.[7]毕福钧ꎬ钟顺好ꎬ顾利红.RRLC法与HPLC法在红参和西洋参人参皂苷含量测定中的分析比较[J].药物分析杂志ꎬ2010ꎬ30(9):1720-1724.[8]张崇禧ꎬ鲍建才ꎬ李向高ꎬ等.HPLC法测定人参㊁西洋参和三七不同部位中人参皂苷的含量[J].药物分析杂志ꎬ2005ꎬ25(10):1190-1194.[9]薛燕ꎬ闻莉.西洋参根及茎叶皂苷提取物中12种主要皂苷成分的分析研究[J].药物分析杂志ꎬ2009ꎬ29(1):79-81.(上接第335页)参考文献:[1]㊀DUMORTIERGꎬGROSSIORDJLꎬAGNELYFꎬetal.AReviewofPoloxamer407PharmaceuticalandPharmaco ̄logicalCharacteristics[J].PharmResꎬ2006ꎬ23(12):2709-2728.[2]国家药典委员会.中华人民共和国药典2015年版(四部)[S].北京:中国医药科技出版社ꎬ2015:530. [3]JIAOJ.Polyoxyethylatednonionicsurfactantsandtheirapplicationintopicaloculardrugdelivery[J].AdvDrugDelivRevꎬ2008ꎬ60(15):1663-1673.[4]SMITHCMꎬHEBBELRPꎬTUKEYDPꎬetal.PluronicF-68reducestheendothelialadherenceandimprovestherheologyofligandedsickleerythrocytes[J].Bloodꎬ1987ꎬ69(6):1631-1636.[5]ARMSTRONGJ.Inhibitionofredbloodcell-inducedplateletaggregationinwholebloodbyanonionicsurfac ̄tantꎬpoloxamer188(RheothRxinjection)[J].ThrombResꎬ1995ꎬ79(5-6):437-450.[6]HOPPENSTEADTDꎬEMANUELEMꎬMOLNARJꎬetal.Effectofpurifiedpoloxamer188andvariousdextransonerythrocytesedimentationrateinhealthysubjectsandpa ̄tientswithsicklecelldisease(1139.6)[J].FasebJꎬ2013ꎬ122(21):4764.[7]WANGTꎬCHENXꎬWANGZꎬetal.Poloxamer-188CanAttenuateBlood–BrainBarrierDamagetoExertNeuro ̄protectiveEffectinMiceIntracerebralHemorrhageModel[J].JMolNeurosciꎬ2015ꎬ55(1):240-250.[8]GUJHꎬGEJBꎬLIMꎬetal.Poloxamer188ProtectsNeu ̄ronsagainstIschemia/ReperfusionInjurythroughPreser ̄vingIntegrityofCellMembranesandBloodBrainBarrier[J].PLoSOneꎬ2013ꎬ8(4):e61641.[9]MOGHIMISMꎬHUNTERAC.Poloxamersandpoloxam ̄inesinnanoparticleengineeringandexperimentalmedicine[J].TrendsBiotechnolꎬ2000ꎬ18(10):412-420.[10]陆伟ꎬ朱友ꎬ别振英ꎬ等.顶空-气相色谱-质谱联用法同时测定食品包装纸中的环氧乙烷㊁环氧丙烷㊁环氧氯丙烷和二氧六环[J].食品安全质量检测学报ꎬ2016ꎬ7(10):4174-4178.。
西洋参提取物西洋参提取物是什么?西洋参提取物主要成分:西洋参总皂苷;功效:补气养阴,清热生津,抗惊厥、镇痛,抗疲劳等。
现代科学研究发现,西洋参提取物含有多种人参皂甙、洋参多糖及少量挥发油、维生素及微量元素等成分。
具有抗疲劳、抗缺氧、增强机体抗病能力及促进蛋白质合成等作用。
还有提高红细胞内超氧化物歧化酶活性,具有养胃生津、抗衰老、延年益寿的功效。
植物来源五加科植物西洋参Panax quinque folium L.的干燥根提取部位:根有效成分西洋参总皂苷提取溶剂乙醇规格:10%-80%检测方法 HPLC (Rg1、Re、Rb1、Rc和Rd总含量)性状黄色或棕黄色粉末,味苦溶解性溶于水,易溶于乙醇网筛孔径:100目性味归经:凉;甘、微苦;归心、肺、肾经功能主治:补气养阴,清热生津。
用于气虚阴亏,内热,咳喘痰血,虚热烦倦,消渴,口燥咽干。
用法用量:内服:煎汤(另煎汁和服),3~6g;或入丸、散。
禁忌:不宜与藜芦同用。
脾阳虚,寒湿中阻及湿热内蕴者禁服。
功效1.补气养阴2.清热生津3.抗惊厥、镇痛、解热4.抗心率失常、抗心肌缺血5.抗溶血、降低血糖6.抗疲劳7.增强机体免疫功能8.促进脂肪代谢和糖代谢9.抗利尿相关介绍西洋参又叫花旗参、美国人参,与石斛、鹿茸一起列为中国三大滋补佳品。
选择西洋参时应首先辨别是国产的还是进口的。
我国前市场上的西洋参有两类,一是美国和加拿大进口的,一类是引种的,其功效和价格也相去甚远。
药房销售的西洋参大部分均为引种的,价格一般为几块钱一克不等;进口的西洋参一克在十几到二十几块不等,在国内仅有像福临门西洋参、同仁堂等少数大型品牌能够买到,价格以同仁堂最贵,福临门西洋参较为实惠。
辨别方法为:进口西洋参的皱纹不规则,显得粗而深,国产西洋参表面较光滑,皱纹细而浅;其次,进口产品手感较沉,国产的较轻;进口西洋参往往香气更浓,国产的则淡很多。
1.进口西洋参:①主根呈圆形或纺锤形,芦头残存或已除去,残存者,略偏向一侧。
西洋参提取物的功效与作用西洋参提取物有效成分为西洋参总皂苷,属于补益药,那么西洋参提取物的功效与作用有哪些?功能主治:补气养阴,清热生津。
用于气虚阴亏,内热,咳喘痰血,虚热烦倦,消渴,口燥咽干等。
本文将为你介绍西洋参提取物的功效与作用等相关内容。
西洋参提取物英文名称 American Ginseng Extract 类别:补益药拼音:XI YANG SHEN 拉丁:Radix Quinquefolii 别名:西洋人参、洋参、西参、花旗参、广东人参。
西洋参提取物五加科植物西洋参Panax quinque folium L.的干燥根,提取部位:根有效成分西洋参总皂苷提取溶剂乙醇。
西洋参的地下及地上部分含有多种生理活性成分,其中有西洋参皂苷,主要是三萜类化合物,与人参皂苷结构相似。
其他成分有挥发油、多糖、蛋白质、核酸、肽类、氨基酸、甾醇类、黄酮类、维生素、微量元素等。
西洋参皂苷是西洋参中主要的有效成分,也是生理活性最显著的物质。
西洋参皂苷可分为三大类群,Rb组包括RaO、Ral、RaZ、Ra3、Rbl、Rb2、Rb3、Rc、Rd,Rg组包括Re、Rgl、Rg2、Rg3、RhI、Rh2和RO组。
其中皂苷元分别为人参二醇、人参三醇与齐墩果酸,Rb组和Rg组生理活性较强,RO组活性较弱。
不同部位各种成分及含量有所不同,根中总皂苷含量5%~10%,茎含量为2. 18%,叶含量为10%~16%,花蕾含量为12%~15%,果肉含量为10%~12%;各种单体皂苷含量也有差异。
选择西洋参时应首先辨别是国产的还是进口的。
我国前市场上的西洋参有两类,一是美国和加拿大进口的,一类是引种的,其功效和价格也相去甚远。
药房销售的西洋参大部分均为引种的,价格一般为几块钱一克不等;进口的西洋参一克在十几到二十几块不等,在国内仅有像福临门西洋参、同仁堂等少数大型品牌能够买到,价格以同仁堂最贵,福临门西洋参较为实惠。
西洋参提取物的功效一、提高免疫力西洋参作为补气保健首选药材,可以促进血清蛋白合成、骨髓蛋白合成、器官蛋白合成等,提高机体免疫力,抑制癌细胞生长,有效抵抗癌症。
西洋参皂苷的作用与功效西洋参皂苷是一种从西洋参中提取的有效成分,被广泛应用于药物、保健品以及化妆品等领域。
它具有多种作用与功效,对人体的健康有着积极的影响。
本文将详细介绍西洋参皂苷的作用与功效,帮助读者更好地了解这一有效成分。
第一部分:西洋参的概述西洋参(Panax ginseng C. A. Meyer)是中国传统药材中的代表之一,也是世界上最著名的中药材之一。
它因生长在北半球的温带和寒带地区而得名。
西洋参被用作中药材已有数千年的历史,具有抗疲劳、提神、改善免疫力等多种作用。
西洋参中的有效成分主要有皂苷类化合物,其中包括西洋参皂苷Rb1、Rb2、Rc、Rd、Re、Rf、Rg1、Rg2等。
其中西洋参皂苷Rb1和Rg1含量较高,具有较好的药理活性。
西洋参皂苷具有多方面的作用与功效,被广泛应用于医药、保健品以及化妆品等领域。
第二部分:西洋参皂苷的药理作用与功效2.1 抗疲劳作用西洋参皂苷具有明显的抗疲劳作用,可以改善人体的体力和精力。
研究表明,西洋参皂苷可以促进蛋白质合成和糖原储存,提高肌肉的耐力和适应能力。
同时,它还可以增加肾上腺素和去甲肾上腺素的分泌,提高机体的反应能力。
因此,西洋参皂苷被广泛使用于提高体育运动员的体力和竞技能力。
2.2 提高免疫力西洋参皂苷具有调节免疫系统的功能,可以增强机体的免疫力,提高抗病能力。
研究发现,西洋参皂苷可以增加淋巴细胞的活性和数量,促进巨噬细胞的功能,提高机体的抗感染能力。
同时,它还可以增加血清中的免疫球蛋白,提高机体的抗体水平。
因此,西洋参皂苷被广泛应用于免疫调节和提高免疫力的药物和保健品中。
2.3 抗肿瘤作用西洋参皂苷具有一定的抗肿瘤作用,可以抑制肿瘤细胞的生长和扩散。
研究表明,西洋参皂苷可以诱导肿瘤细胞凋亡,阻断肿瘤细胞的增殖,促进肿瘤细胞的凋亡。
同时,它还可以抑制肿瘤的血管生成,阻止肿瘤的营养供应,限制肿瘤的生长和扩散。
因此,西洋参皂苷被广泛应用于抗肿瘤药物的研究和开发中。
人参皂苷提取方法的研究进展王秋颖; 赵幻希; 吴冬雪; 刘淑莹; 修洋【期刊名称】《《人参研究》》【年(卷),期】2019(031)005【总页数】4页(P50-53)【关键词】人参皂苷; 提取方法; 提取温度; 研究进展【作者】王秋颖; 赵幻希; 吴冬雪; 刘淑莹; 修洋【作者单位】长春中医药大学吉林省人参科学研究院长春130117; 中国科学院长春应用化学研究所长春130022【正文语种】中文人参为五加科人参属多年生草本植物(Panax ginseng C.A.Mey)人参的干燥根和根茎,是我国传统的名贵中药,因其有助于缓解病理症状,促进健康和预防潜在疾病的药物特性而闻名。
它的主要产地在亚洲东部区域的中国、朝鲜、韩国、日本、俄罗斯东部等近中国的部分地区。
在我国人参主产于东北三省,所以,在东北它又被称为“东北三宝”之一。
现代研究表明,人参中含有皂苷、多糖、黄酮、蛋白、氨基酸等多种有效成分,其中最主要的活性成分为人参皂苷,药理学研究表明人参皂苷具有抗氧化、抗衰老、降血糖、抗肿瘤等多种药理作用[1,2],进而如何高效与科学的提取人参皂苷成为现在广泛的研究课题。
有很多文献记载了提取人参皂苷的方法,例如传统的浸渍法、煎煮法等,本文旨在对提取人参皂苷的提取方法进行综述,为开发更高效的人参皂苷提取方法提供参考和依据。
1 加热提取人参皂苷的方法人参皂苷的提取过程既是将人参皂苷从人参(粉末)转移至提取的介质中,通常为固-液提取过程。
固体为待提取的人参,液体为水或有机溶剂。
提取方法的差异主要表现在促使人参皂苷从固相转移到液相的方法和途径不同。
热能是促进分子运动最简单直接的方法,加热也是提取人参皂苷最常见的方法。
加热提取,根据提取溶剂的种类可以分为煎煮法、回流提取法和仿生提取法。
1.1 煎煮法煎煮法是最传统的中药提取方式,利用水作为提取溶剂,将药材用水加热煮沸到一定的时间进而得到该药材的煎煮液,需要重复进行多次,一般提取中药在水中的极性较大时的那部分采用此方法。
西洋参的药理作用研究及临床应用辽宁省大连市铁路医院中药房(116001) 黄玲西洋参为五加科植物西洋参的干燥根,原产美国、加拿大、法国。
近年来我国东北地区及河北、江西、湖南等省均有栽培。
别名洋参、花旗参、广东人参。
西洋参性凉,味甘微苦,人心肺、肾三经。
有补肺降火,养胃生津止渴作用,用于治疗肺虚久咳、失血、咽干、口渴、虚热、烦倦等,还可用于各种肿瘤的治疗。
使用注意事项:反黎芦、实证火郁之证忌服。
1 化学成分根经含苷类,主要是人参皂苷,又含挥发油,树脂等。
总皂苷水解后分离得人参二醇、人参三醇和齐墩果酸。
2 药理作用(1)抗癌和增强机体免疫功能作用:本品能增强T细胞产生淋巴因子能力,能明显增强小鼠脾NKC的活性,有抗癌作用。
(2)总皂苷和人参皂苷有显著抗疲劳作用,抗利尿,抗缺氧作用。
(3)总皂苷影响蛋白质,脂肪代谢,能降低血糖(4)皂苷有抗心律失常作用,并能降低小白鼠因注射中枢兴奋药戊四氮与士的宁所引起的惊厥死亡率。
(5)对大脑有镇静作用,其镇静作用强于中国人参。
对生命中枢有中度兴奋作用。
3 临床效方(1)滋阴润肺降火,养胃生津,烦倦止渴:西洋参10g,麦冬10g,枸杞子10g,代茶饮。
(2)治疗胃癌气阴两虚:西洋参6g,银耳15g,冰糖15g,文火浓煎,取汁当茶。
(《抗癌中草药大辞典》)(3)治疗肺癌:西洋参15g,天南星、蛇胆粉、白及、陈皮、瓜蒌各30g,北沙参60g,炙鳖甲45g,制乳香,没药20g,辰砂12g,共研细末,1g/次,3次/d。
(《抗癌中草药大辞典》)。
(收稿日期2O04—06—30】维普资讯。
湖南农业大学课程论文学院:班级:姓名:学号:课程论文题目:人参皂苷提取和分离纯化方法的研究进展课程名称:评阅成绩:成绩评定教师签名:日期:年月日人参皂苷提取和分离纯化方法的研究进展学生:(湖南农业大学园艺园林学院,长沙)摘要:人参皂苷是人参的主要活性成分之一,具有提高免疫力,抗氧化,抗疲劳,抗肿瘤等多种药理活性作用,如何提高效率得到高质量的人参皂苷现已成为研究热点。
因此,本文综述了人参皂苷提取、分离纯化方法,旨在为人参皂苷开发和利用提供一定的科学依据。
关键词:人参皂苷提取工艺分离纯化1前言人参为五加科植物人参(Panax ginseng C.A.Mey)的干燥根,主产于我国吉林长白山脉、辽宁、黑龙江、河北、山西等地,是我国传统名贵的中药材。
现代研究表明,人参中已经分离鉴定40余种人参皂苷单体,其次还含有人参多糖、氨基酸、蛋白质、人参二醇、人参三醇等有效成分,其中人参皂苷为人参中的主要活性成分之一,具有保护心功能,降血糖,抗氧化,抗疲劳,抗肿瘤等药理活性作用[1-2],选用合理的提取分离方法得到高质量的人参皂苷已成为研究热点。
据文献报道[3-4],传统提取分离方法,如煎煮法、渗漉法、索氏提取法、柱层析法等均在中药制药业发展过程中发挥了重大作用。
但是,这些方法均不同程度的存在提取周期长,有效成分流失多,提取效率低等问题。
随着现代科学技术的不断发展,出现了许多新型的提取分离技术,如超临界二氧化碳萃取技术等,运用这些技术不仅降低了生产成本,又能提高其得率,对人参产业化、确化、自动化提供了技术指导。
2提取工艺研究2.1微波提取法微波提取具有设备简单,节省时间,萃取率高,投资少,节省溶剂,污染小等优点。
刘永练[5]等采用微波提取法对西洋参干燥根中的人参皂苷进行提取,结果发现人参皂苷得率高达5.53%,比乙醇回流提取率提高29%,提取时间是乙醇回流的2%。
另有实验证实了微波提取人参皂苷的提取率为8%,是常规回流法的2.67倍。
人参茎叶总皂苷的提取方法研究一、引言。
大家好呀!今天咱就来好好聊聊人参茎叶总皂苷的提取方法。
人参这东西,大家肯定都不陌生吧,那可是个好宝贝,而人参茎叶总皂苷呢,也有着不少厉害的功效。
咱就一起来研究研究怎么把它给提取出来哈。
二、人参茎叶总皂苷的简介。
人参茎叶总皂苷啊,它是从人参的茎叶中提取出来的一类成分。
它有好多作用呢,比如说能增强免疫力,让咱的身体更有抵抗力,就像给身体穿上了一层坚固的铠甲一样;还对心血管系统有一定的保护作用,能让咱的心脏和血管都健健康康的。
总之呢,它是个对咱身体很有益处的成分啦。
三、常见的提取方法。
1. 溶剂提取法。
原理:这个方法的原理就是利用人参茎叶总皂苷在不同溶剂中的溶解度不一样,把它从茎叶里溶解出来。
就好比不同的东西在不同的液体里溶解的情况不一样,咱就找个合适的溶剂把总皂苷给“揪”出来。
具体操作:咱先把人参茎叶给粉碎成细粉,这样能让它和溶剂更好地接触。
然后呢,选择合适的溶剂,像乙醇、甲醇这些都可以。
把溶剂加到粉碎好的茎叶粉里,充分搅拌或者浸泡一段时间,让总皂苷充分溶解到溶剂里。
之后呢,再通过过滤、浓缩等步骤,把溶剂去掉,就得到含有总皂苷的提取物啦。
不过要注意哦,溶剂的选择和使用量、提取的时间和温度这些条件都得控制好,不然提取效果可能就不太理想呢。
2. 超声提取法。
原理:超声提取法就像是给提取过程加了个“小助手”。
超声的作用能让溶剂更容易渗透到人参茎叶的细胞里面,把总皂苷给“赶”出来。
就好像有人在后面推了一把,让总皂苷更快地跑到溶剂里去。
具体操作:先把人参茎叶处理好,放到提取容器里,再加入合适的溶剂。
然后把容器放到超声设备里,设定好超声的功率、时间等参数,让超声开始工作。
超声结束后,再按照溶剂提取法后面的步骤进行过滤、浓缩等操作,就能得到提取物啦。
这个方法的优点就是提取速度快,效率高,能节省不少时间呢。
3. 微波提取法。
原理:微波提取法呢,是利用微波的能量让人参茎叶里面的细胞快速升温,细胞里面的压力增大,然后细胞就会破裂,总皂苷就更容易释放出来啦。