化工高盐废水零排放处理技术
- 格式:doc
- 大小:13.00 KB
- 文档页数:1
废水零排放分质分盐结晶技术详解煤化工等高盐废水中分盐结晶过程的分离对象主要是氯化钠和硫酸钠。
这是因为废水中的阴离子通常以氯离子和硫酸根离子占绝大多数,一价阳离子则以钠离子为主,二价阳离子经过一系列处理后,也已经在化学软化或离子交换等过程置换成了钠离子。
分盐结晶工艺主要有2种思路:一是直接利用废水中不同无机盐的浓度差异和溶解度差异,通过在结晶过程中控制合适的运行温度和浓缩倍数等来实现盐的分离,即通常所说的热法分盐结晶工艺;二是利用氯离子和硫酸根离子的离子半径或电荷特性等的差异,通过膜分离过程在结晶之前实现不同盐之间的分离或富集,再用热法结晶过程得到固体,即膜法分盐结晶工艺。
一、分盐结晶工艺1、热法分盐结晶工艺高盐废水的热法分盐结晶工艺主要包括直接蒸发结晶工艺、盐硝联产分盐结晶工艺和低温结晶工艺。
(1)直接蒸发结晶工艺当高盐废水中某一种盐含量占比具有较大优势时,可以考虑采用直接蒸发结晶的方式,分离回收该优势盐组分,而其余成分最终以混盐形式结晶析出。
经过预处理的高盐废水首先通过蒸发器进一步浓缩减量,使优势盐组分接近饱和,之后进入纯盐结晶器( 结晶器Ⅰ) ,提取大部分的氯化钠或硫酸钠。
纯盐结晶器的浓缩倍率控制在次优势盐组分接近饱和,纯盐结晶器排出的母液进入混盐结晶器( 结晶器Ⅱ) 获取杂盐。
直接蒸发结晶工艺流程简单,系统控制难度小,但无机盐回收率和杂盐产量对原水无机盐组分特征依赖度高。
此外,在蒸发浓缩过程中,废水中的有机物和杂质盐组分被浓缩并残留在母液中,可能导致粗盐产品纯度低、白度差。
通过洗盐等方式,可以在一定程度上提高产品盐的纯度和白度。
(2)盐硝联产分盐结晶工艺当废水中不存在占比较大的优势盐组分时,采用直接蒸发结晶工艺最终得到的纯盐回收率较低,杂盐产量大,固废处置费用高。
为了解决这一问题,可采用硫酸钠和氯化钠分步结晶的方式,分别在较高温度下结晶得到硫酸钠,在较低温度下结晶得到氯化钠,此工艺称为盐硝联产工艺。
煤化工高盐废水处理工艺设计原则1、零排放工艺技术目前煤化工废水主要由高有机物与复杂的水盐体系组成,其中废水中以氯化钠、硫酸钠为主体、混盐杂盐为辅,目前典型的零排放工艺基本是“前端预处理+双膜浓缩+蒸发结晶”工艺。
1.1 预处理单元一般包括化学软化沉淀系统、过滤系统、离子交换系统、COD氧化脱除系统等。
化学软化主要是利用高密度沉淀池,投加碳酸钠或石灰、氢氧化钠、镁剂等去除原水中的硬度、碱度、二氧化硅。
原水与药剂在混凝区经过快速搅拌后,与回流污泥一起进入絮凝反应区。
在絮凝反应区内,通过投加PFS、PAM等药剂对水中的沉淀产生絮凝作用,结成较大的矾花,进去斜管沉淀区进行分离。
根据调研情况看,采用法国得利满专利技术的高密度沉淀池运行稳定,出水水质好,其他公司的“高效沉淀池”基本都是得利满高密度沉淀池的“高仿货”,运行一般。
高密度沉淀池出水经加酸调节pH值后,利用多介质过滤器或超滤,进一步降低SS、胶体,使得SDI≤3,为反渗透系统创造条件。
离子交换系统一般选用弱酸性钠床或者螯合型阳离子树脂,通过树脂的选择交换作用,将浓盐水中的钙镁离子进一步去除至1mg/L以下,从而保证后续蒸发系统不存在结垢的风险。
1.2 膜法提浓单元利用双膜法,两级RO将废水TDS提至5%以上,实现废水减量化,大幅降低后续蒸发结晶设备规模和蒸汽消耗量。
目前提浓设备有:高效反渗透膜、碟管式反渗透膜、电渗析提浓均在零排放废水提浓有了应用。
1.3 蒸发结晶总体上分为热法和冷法,主要区别在于利用硫酸钠的溶解度特征,控制其结晶温度。
热法分盐工艺依据原理是“高温析硝、低温析盐、热母液循环”,依据氯化钠和硫酸钠溶解度随温度变化的不同而进行分盐。
冷法分盐工艺原理是“高温析盐、低温析硝、冷母液循环”,主要是利用低温下的十水硫酸钠的溶解度较小的特点在低温下分离硫酸根,在高温下蒸发获得氯化钠。
膜法纳滤分盐主要利用纳滤原理将浓盐水中的一价离子与二价离子分开。
煤化工废水零排放技术要点及问题的处理摘要:水是生命之源,水质量的高低与人们的身体健康有着紧密的联系。
煤化工建设不断加快,其中煤化工废水处理是煤化工建设最重要的环节和组成部分。
煤化工废水处理在环境保护中扮演着重要角色,占据着关键位置。
为了进一步提升环境质量,我国提高了对于煤化工废水的处理力度。
人们应加强对其的关注与重视,对煤化工废水处理在环境保护工程中的重要性进行分析,以促进我国环境保护工程的有序发展。
1 煤化工废水处理技术设计以某煤化工企业为例,企业建立了当地煤化工废水零排放项目。
水处理单位考察了该煤化工企业,并根据企业的实际情况选择了膜分盐浓缩技术以及分质结晶技术完成对废水的处理。
在试验阶段,水处理单位将企业的部分生产车间用于改造中,将废水采用膜浓缩处理技术后,对剩余的浓水利用分盐结晶单元加以处理,使产出水可以达到生产回收的要求,并且分离出来的硫酸钠晶体以及氯化钠晶体等,均可以达到煤化工副产工业盐的基本要求,促使资源得到高效回收与利用。
同时在处理过程中可将纯净水收集起来用于其他项目的使用。
若将该处理技术用于该煤化工企业的全套废水处理中,可以有效解决当地的废水问题,同时还可以为当地提供更多的水资源,为保护当地生态提供一份力量,并且该项目具有良好的发展前景,将会成为企业的特色,最终为企业经济效益的提高发挥作用。
2 零排放技术在煤化工废水处理中的应用思考2.1 煤化行业废水零排放应用思路1)通过节水来提高对水资源的利用。
通过减少水资源的使用以及将废水和废水加工处理后进行重复利用未达到节约水资源的目的。
2)采用废水处理技术。
将浓度超标的废水采用不同的工艺处理后加工为浓缩液并存放在固定的区域,避免排放到周边居民生活区或者生态环境中。
例如高盐废水,经过浓缩处理后成为固体或者浓缩液,不再以废水的形式进行排放。
2.2 零排放技术在煤化工废水处理中的强化措施2.2.1 水质受影响企业经营者都想用较低的成本换取更大的效益,为了实现高效低能生产,需要根据废水处理要求进行多方面的调整,从而达到理想效果。
高盐废水零排放蒸发处理技术的分析及应用研究
高盐废水是指含有高浓度盐类物质的废水,通常来自于化工、电镀、制革等工业生产
过程中的废水排放。
由于高盐废水具有较高的污染浓度和难以降解的特点,传统的处理方
法往往难以达到零排放的要求。
针对高盐废水的处理技术一直备受关注。
蒸发处理技术是一种通过将废水蒸发,使得水分蒸发掉而盐类物质得以降解的处理方法。
它具有对废水中盐类物质进行有效处理的优势,并且可以实现零排放的目标。
在高盐
废水处理中,蒸发技术被广泛应用,并且在不断进行技术革新和改进,以满足不同工业生
产中的高盐废水处理需求。
一、高盐废水蒸发处理技术分析
1. 多效蒸发技术
多效蒸发技术是指通过多级的蒸发器进行蒸发,从而提高蒸发效率的技术。
在高盐废
水处理中,多效蒸发技术可以有效地降低能耗和减少体积,将废水中的盐类物质蒸发浓缩,最终实现零排放。
多效蒸发技术还可以根据废水的盐浓度和性质进行调节,适用于不同规
模和不同盐浓度的废水处理项目。
2. 蒸发结晶技术
蒸发结晶技术是一种将废水中的盐类物质溶解后,通过蒸发浓缩至饱和状态,使得盐
类物质结晶析出的技术。
蒸发结晶技术适用于处理高浓度盐类废水,并且可以将废水中的
盐类物质稀释处理,降低对环境的影响。
蒸发结晶技术还可以实现对盐类物质的回收利用,减少资源浪费。
1. 电镀工业废水处理
电镀工业是高盐废水的主要产生行业之一,废水中含有大量的金属盐类物质和酸碱性
物质。
采用蒸发处理技术可以将废水中的金属盐类物质蒸发浓缩,同时对酸碱性物质进行
中和,实现对废水的处理和资源回收。
煤化工高盐水“零排放”技术应用探讨煤化工是一种利用煤炭作为原料进行化学加工的技术,其产品广泛应用于能源、化工、冶金等领域。
然而,煤化工过程中产生的高盐废水一直是一个难题,其处理和排放对环境保护具有重要意义。
为了解决高盐废水的排放问题,煤化工高盐水“零排放”技术应运而生。
煤化工高盐水“零排放”技术的核心是采用膜分离技术对高盐废水进行处理。
膜分离技术主要包括反渗透、纳滤和超滤等方法,通过膜的选择性透过性,将废水中的盐类、重金属和有机物等有毒有害物质分离出来,达到净化和回用的目的。
同时,膜分离技术具有能耗低、操作简便、自动化程度高等优点。
在煤化工高盐水“零排放”技术的应用过程中,还需要解决一系列问题。
首先,由于高盐废水中盐类的浓度较高,容易造成膜污染和结垢,降低膜的分离效果。
因此,需要采取适当的预处理措施,如适量稀释、添加抑垢剂、调节pH值等,以降低盐类的浓度和防止膜的污染。
其次,对膜的选择和设计也是关键。
不同的膜对盐类、有机物和重金属的分离效果不同,需要选择适当的膜材料和膜孔径来实现高效分离。
此外,膜模块的排列和操作条件的控制也对技术的应用效果有重要影响。
煤化工高盐水“零排放”技术的应用不仅可以解决高盐废水的处理和排放问题,还可以实现废水资源化利用,减少对淡水资源的需求,提高水资源的利用效率。
此外,该技术还可以避免由于盐类排放引发的土壤盐碱化、地下水和水环境污染等问题,对煤化工行业的可持续发展具有重要意义。
综上所述,煤化工高盐水“零排放”技术的应用是解决高盐废水处理和排放问题的关键措施。
该技术通过膜分离方法对高盐废水进行处理,实现了高效的盐类、有机物和重金属的分离,达到了废水净化和回用的目的。
通过技术的应用,可以有效解决高盐废水对环境的危害,实现废水资源化利用,促进煤化工行业的可持续发展。
未来,我们应该进一步完善和推广煤化工高盐水“零排放”技术,为煤化工行业的发展提供更好的支持。
科技成果——高盐废水“零排放”处理及资源化利用技术开发单位中电环保股份有限公司适用行业适用于化工,石化,煤化工,电力行业等领域高盐废水“零排放”处理及资源化利用。
适用范围含有较多难生化有机物、高含盐、高硬度、高悬浮物的情况的废水能做到有效去除盐分、降低膜污染风险、保证系统稳定运行成果简介本工艺中浓水预处理及提浓装置采用国家科技重大水专项:“重点流域石化废水资源化与零排放关键技术产业化”中研究技术和成果,废水经调节池均质调节后,采用一些列具有自主专利技术的预处理装置处理,保证水质符合双膜法(UF+RO)净化处理进水的要求,净化产水回收利用,高盐浓水经进一步预处理(管式超滤),采用先进的膜技术(浓水反渗透+DTRO)进一步浓缩,小流量浓盐水采用蒸发工艺实现盐的回收利用。
技术效果采用国家科技重大水专项:“重点流域石化废水资源化与零排放关键技术产业化的提浓装置及零排放”技术,废水排放量(工艺自身所需)小于总水量的2%,实现90%的废水回用。
每年可实现约400万立方高含盐废回收利用,减少6820吨溶解性固体的排放,并且实现资源化回收利用。
根据可靠计算,每吨水可节约排污费用3元,节约取水费用0.9元。
以示范工程为例,每年大约节约费用1600万元。
应用情况示范工程名称:中盐昆山迁建年产60万吨纯碱项目污水回用及废水零排放项目,所在地江苏昆山,设计回用水量550m3/h,高盐浓水约8m3/h,该工艺废水排放量小于总处理量的2%,实现90%的废水回用。
市场前景高盐废水的“零排放”及资源化利用会提上更加新的高度,相比于生物处理(低于5000mg/L含盐量)的局限性,以及单纯蒸发工艺的高投资,采用膜法工艺可解决上述难题的同时,也可降低占地面积,在节约投资成本的同时更好的实现废水的循环利用。
高盐废水零排放处理设备及工艺!废水能够全部回用就是零排放五硫化二磷法工艺五硫化二磷法是以五硫化二磷与无水酒精为原料,经过硫化阶段、氯化阶段、水解阶段及精馏阶段最终生成高纯度产品(图1 五硫化二磷法工艺流程图)。
(1)硫化阶段:将五硫化二磷与无水乙醇在催化剂的作用下,生成乙基硫化物及硫化氢,再通过氢氧化钠将硫化氢制备为硫化钠。
(2)氯化阶段:将硫化阶段生成的乙基硫化物与氯气反应,制取粗乙基氯化物产品。
(3)水解工段:通过加入硫化阶段生成的硫化钠去除氯化阶段产生的二氯二硫杂质的过程。
(4)蒸馏工段:将上述工段的产品进行蒸馏提纯,获得高纯度的乙基硫化物产品。
图1-五硫化二磷法工艺流程图3.三废处理从图1 五硫化二磷法工艺流程图可以看出,三废主要包括:氯化氢气体、二氧化硫气体、硫磺、氯化钠溶液,除此之外,还有乙基氯化物精馏后残余在废水中含硫、磷的有机物。
三废中,氯化氢气体使用二级吸收罐进行吸收,生成工业副产物盐酸,二氧化硫废气及氯化氢未被吸收的废气使用碱液吸收中和,生成无机盐溶解于废水中,硫磺单质通过过滤机进行过滤分离,剩余废水内包含氯化钠、亚硫酸钠以及含硫、磷的有机物,经过后续的处理达到零排放的目标(图2 三废处理流程图)。
图2 三废处理流程图二、废水处理再利用系统工艺由于废水组分复杂,处理难度较高,此处理工艺选用“预处理+蒸发结晶+生化处理”的流程形式进行零排放处理(图3 高盐高有机物废水零排放处理工艺流程图)。
1.酸化吹脱乙基氯化物生产线在经蒸馏提纯获得产品后,所产生废水内残留少量未被提取的乙基氯化物,此部分残留物需最先分解,以免对后续处理工艺造成负面影响。
为处理此部分残余乙基氯化物,可利用其在酸性条件下会发生水解反应的性质,其反应如下:通过空气吹脱水解反应生成的硫化氢气体并使用碱液吸收,促进残余的乙基氯化物正向水解反应的进行,将其分解为乙醇、正磷酸及硫化氢。
图3 高盐高有机物废水零排放处理工艺流程图2.催化氧化对经过酸化吹脱的高盐废水使用较为先进的芬顿氧化法进行催化氧化,芬顿氧化作为一种均相氧化技术,其氧化作用是通过二氧化氢作为氧化剂在二价铁离子的催化作用下产生的氢氧根来实现的。
化工清洗废水零排放项目技术部分目录第一章设计说明 (3)1.1处理能力 (3)1.2进水水质 (3)1.3处理要求情况 (3)第二章工艺设计 (4)2.1工艺选择 (4)2.2设计思想 (4)第三章蒸发系统设计 (6)3.1MVR蒸发系统参数设计 (6)3.2MVR蒸发系统流程框图 (7)第四章设备清单 (8)第五章公用工程消耗一览表 (11)第六章稳定性保障 (12)6.1系统设计 (12)6.2防堵设计 (12)6.3防垢除垢 (13)6.4罗茨压缩机 (15)6.5设备保障 (15)6.6安全保证 (16)第七章总体设计 (18)7.1原则 (18)7.2平面布置 (18)7.3竖向设计 (18)1.1处理能力进水量按1吨/小时设计1.2进水水质组成见下表:1.3处理要求情况处理要求:零排放,出杂盐。
2.1工艺选择1)来料盐属于高盐废水,因此选择蒸发结晶工艺来进行处理。
从表MVR和三效蒸发的比较可知,MVR蒸发结晶系统具有较大的运行成本的优势。
因此本系统采用MVR工艺。
2)强制循环工艺具有以下特点:◆传热系数大◆适合粘度较大或含有颗粒的物料◆抗盐析、抗结垢2.2设计思想1)根据所提供的水质情况,本蒸发系统,进水量为1m3/h,TDS 3.9%。
2)整个系统产生的废气排至业主废气处置系统。
3)管道排布优化:a)出料管道设计有冲洗水注入口,如果积攒结晶,可以开自来水进行溶解清洗,无需拆解管道。
b)出料管道采用分段安装,即可以分段拆解,如果结晶堵塞可快速分段进行清理,大大降低了堵塞后的清理工作。
c)出料管道采取出料泵推动流体一直循环流动的设计,避免了物料在管内流速低,温降大,而析出结晶堵塞管道的可能。
6)设备防堵措施:针对易结晶、易堵塞的特性,对出料管道系统做了独特的设计:采用高速循环出料设计,使浓缩液在出料管路内保持高速的流动状态,从而降低浓缩液在管道内的停留时间,并配备优良的保温措施,最大限度的避免浓缩液在管道内冷却结晶,降低了堵管的机率。
化工废水处理化工废水概述纯净的水在经过使用后改变了原来的物理性质或化学性质,成为了含有不同种类杂质的废水。
化工废水就是在化工生产中排放出的工艺废水、冷却水、废弃洗涤水、设备及场地冲洗水等废水。
这些废水如果不经过处理而排放,会造成水体的不同性质和不同程度的污染,从而危害人类的健康,影响工农业的生产。
化工废水基本特征(1) 水质成分复杂,副产物多,反应原料常为溶剂类物质或环状结构的化合物,增加了废水的处理难度;(2) 废水中污染物含量高,这是由于原料反应不完全和原料、或生产中使用的大量溶剂介质进入了废水体系所引起的;(3) 有毒有害物质多,精细化工废水中有许多有机污染物对微生物是有毒有害的。
如卤素化合物、硝基化合物、具有杀菌作用的分散剂或表面活性剂等;(4) 生物难降解物质多,B/C比低,可生化性差;(5) 废水色度高。
化工废水来源1.化工生产的原料和产品在生产、包装、运输、堆放的过场中因一部分物料流失又经雨水或用水冲刷而形成的废水。
2.化学反应不完全而产生的废料。
由于反应条件和原料纯度的影响,任何反应都有一个转化率问题,一般反应的转化率只有70%-80%。
未反应的原料由于累积杂质较多,无法使用,常常以废水形式排放。
3.化学反应中副反应过程生成的废水。
化工生产中,主反应过程中,常伴随副反应,产生了副产物。
某些情况下,副产物数量不大,成分比较复杂,作为废水排放。
4.冷却水。
化工生产常在高温下进行,因此,需要对成品或半成品进行冷却。
采用水冷时,就排放冷却水。
若采用冷却水与反应物料直接接触的直接冷却方式,则不可避免地排出含有物料的废水。
5.一些特定生产过程排放的废水。
如:蒸馏和汽提的排水与高沸残液,酸洗或碱洗过程排放的废水。
6.地面和设备冲洗水和雨水,因常带有某些污染物,最终也形成废水。
化工废水处理方法技术背景化工废水特别是高盐高浓度有机废水处理,一直是国内众多环保工作者及管理部门关注的难题。
随着我国化学工业的快速发展,各种新型的化工产品被应用到各行各业,特别是医药、化工、电镀、印染等重污染工业中,在提高产品质量、品质的同时也带了日益严重的环境污染问题,主要表现在:废水中有机污染物浓度高、结构稳定、生化性差,常规工艺难以实现达标排放,且处理成本高,给企业节能减排带来极大的压力。
工艺方法——高盐废水处理技术工艺简介高盐废水是指含有有机物和至少 3.5%(质量浓度)的总溶解固体物(TDS)的废水。
这种废水来源广泛,一是,在化工、制药、石油、造纸、奶制品加工、食品罐装等多种工业生产过程中,会排放大量废水,水中不但含有很多高浓度的有机污染物,且伴有大量钙、钠、氯、硫酸根等离子;二是,为了充分利用水资源,很多沿海城市直接利用海水作为工业生产用水或是冷却水,一些地方把海水用于消防、冲洗厕所和道路,虽然这部分污水不含有大量的有毒物质,但水量大、含盐量高,也较难处理。
高含盐量有机废水的有机物根据生产过程不同,所含有机物的种类及化学性质差异较大,但所含盐类物质多为Cl-、SO42-、Na+、Ca2+等盐类物质。
虽然这些离子都是微生物生长所必需的营养元素,在微生物的生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用,但是若这些离子浓度过高,会对微生物产生抑制和毒害作用。
高盐废水中盐浓度高、渗透压高、微生物细胞脱水引起细胞原生质分离;盐析作用使脱氢酶活性降低;氯离子高对细菌有毒害作用;盐浓度高,废水的密度增加,活性污泥易上浮流失,从而严重影响生物处理系统的净化效果。
一、常规处理方法(1)电解法高盐废水具有较高的导电性,因此可以通过电解法即在阴、阳两级间产生强电流使有毒有害物质发生氧化还原反应从而去除水中污染物,电解法能有效地降低废水中的COD,对污水适应性强,去除效果好,缺点是运行费用较高。
王宏等采用电解絮凝法处理紫胶合成树脂生产过程中排放出的高盐度有机废水,不但能有效降低废水中的COD,增加透明度,同时对BOD,TP和TN都有较高的去除率。
(2)离子交换法离子交换法的关键在于离子交换树脂,它是一种带有官能团,具有网状结构与不溶性的高分子聚合物,这类聚合物中含有的氨基、羟基基团可以把高盐废水中的金属离子鳌合、置换出来。
离子交换法可以作为预处理工艺脱除各种金属离子,达到有效除盐的目的,它的缺点是废水中的固体悬浮物会堵塞树脂从而使离子交换树脂失去效果。
工业废水零排放中的浓盐水处理技术介绍在工业零排放环节中最为关键的一个环节就是对浓盐水的处理,由于在工业废水脱盐流程中必然会排出大量的浓盐水,因其中含有无机盐、重金属、化学制剂等大量毒害物质,为此必须要对浓盐水进行全面、有效的处理,继而确保工业废水真正地实现零排放。
一、工业废水零排放中浓盐水减量处理法1、浓盐水的软化针对纳滤膜、反渗透膜自身的功能及特性,决定其系统的运行效率、回收率的影响因素主要有三种:胶体、悬浮物、结垢离子。
其中对于胶体、悬浮物的清除只需经过砂滤、超滤等工艺流程便可。
为此必须要对浓盐水中的结垢离子进行着重的处理,才能保证浓盐水能够得到有效的循环利用。
在浓盐水中主要的结垢离子有:Ca2+、Mg2+、Ba2+、Sr2+,为了确保结垢成分被彻底的清除,较为常用的方法有两种:化学软化、树脂软化。
化学软化主要通过石灰- 纯碱软化法进行处理,首先将适量熟石灰放入到浓盐水中可将碳酸盐硬度清除,将碳酸钠加入其中可将非碳酸盐硬度。
石灰- 纯碱软化法可将浓盐水中大部分的Ca2+、Mg2+清除掉,并有效的减少SiO2的含量,同时还可将其中的Ba2+、Sr2+及有机物进行有效的清除。
但是石灰软化处理必须要采用上升流固体接触澄清器促使在高浓度下快速形成沉淀晶体,澄清器出水还要增设多介质过滤器,并对pH值合理调节后才输送至膜单元。
树脂软化可应用的方式有两种:钠离子交换法、氢离子交换法。
其中钠离子交换法通过钠离子置换将结垢阳离子清除掉,然后通过树脂交换饱和后用盐水再生。
此种方式存在的不足就是需要消耗大量盐分,还要对废水排放进行处理。
而弱酸阳离子交换法可对浓盐水进行部分软化,岂可节省再生剂的使用量,且氢离子交换法可将与碳酸氢根硬度相同的Ca2+、Mg2+、Ba2+、Sr2+等进行清除,换而言之就是能够与HCO3- 结合的结垢阳离子都可清除。
采用此方法在碳酸氢根含量较高的原水中获得的处理效果更为显著,若要进行有效的软化处理,就可将强酸阳树脂交换流程设置其中,在条件允许的情况下可设置于弱酸树脂同一交换柱中,如此可大大减低再生剂的耗损量。
高盐废水零排放蒸发处理技术的分析及应用研究高盐废水是指含有高浓度盐分的废水,这类废水的处理比较困难,传统的废水处理技术无法完全解决。
高盐废水的排放不仅对环境造成污染,而且会对人类健康造成危害。
因此,对高盐废水的零排放处理技术进行研究是非常必要的。
目前,许多高盐废水零排放处理技术已经应用于实际生产中,其中包括化学沉淀、离子交换、反渗透和蒸发等技术。
本文将重点介绍高盐废水蒸发处理技术的分析及应用研究。
高盐废水的蒸发处理是利用高温和低压的条件加速水的蒸发,使水分离出来,而废盐则留在处理设备中。
蒸发处理技术主要包括自然蒸发、机械蒸发和多级蒸发等。
其中,多级蒸发是目前应用最广泛的高盐废水蒸发技术。
多级蒸发技术是一种利用多项效应来增强蒸发效果的技术,主要采用机械多级蒸发器,并通过循环蒸发和浓缩的方式,将蒸发器里的水汽和废盐分离出来。
这种技术可以根据不同的盐度情况进行调节,具有高效、安全、稳定等优点。
高盐废水蒸发处理技术在工业生产过程中得到了广泛的应用。
下面介绍几个常见的应用场景:1、海水淡化厂海水淡化厂是利用高盐度的海水经过蒸发处理,将水中盐分分离出来,从而得到淡水的一种技术。
这种技术通常包括多级蒸发器和反渗透设备,能够处理大量的海水,从而解决了人类用水不足的问题。
2、化工生产化工厂中涉及到许多高盐废水,如电镀废水、印染废水等。
这些废水的处理需要用到多级蒸发技术,通过蒸发器蒸发掉水分,再将废盐进行处理,达到零排放的目的。
3、制盐厂制盐厂采用的是海水淡化的技术,可以将海水通过蒸发处理得到钾、氯等盐类。
制盐厂中的高盐废水需要通过多级蒸发技术进行处理,将水汽和盐分分离,可以大幅度提高生产效率。
三、高盐废水蒸发处理技术的优缺点1、高效:多级蒸发器比传统蒸发器更加高效,可以快速分离水和盐分。
2、安全:蒸发处理的过程是封闭的,不会对人体产生影响,从而达到了安全排放的目的。
3、节约能源:通过多级蒸发器,可使蒸汽逐级利用,从而达到了节约能源的目的。
镇江泽润环境科技有限公司高盐废水去除氯离子实现零排放技术方案2020年5月目录1.研究背景 (1)高盐废水来源与处理现状 (1)2.高盐废水零排放处理技术发展回顾 (1)2.1高盐废水处理难点 (1)2.2高盐废水现有工艺及分析 (2)2.3.2化工企业高盐废水处理采用蒸发结晶法 (4)3.泽润环境特种液体树脂处理在高盐废水处理方面的应用 (6)3.1泽润环境树脂处理技术综述 (6)3.2泽润环境科技氯离子树脂处理工艺路线 (10)4、总结 (12)5.1高盐废水除氯装置配置 (13)5.2结论 (13)1.研究背景高盐废水来源与处理现状高盐废水来源途径广泛,一般将含盐量超过1%的废水称为高盐废水,每年高盐废水产生约3亿吨,并按照每年20%的量递增;1、高盐废水通常含有大量的钙镁离子、重金属离子、氯离子、硫酸根离子,钙镁离子,重金属离子和硫酸根离子去除相对容易,氯离子由于离子半径小,很难与其他物质反应形成沉淀,是最难去除的离子;2、废水中氯离子含量高,会对金属材质有极高的腐蚀作用,不锈钢材质耐氯不超过500mg/l,碳钢材质耐氯不超过1000mg/l;3、高盐废水零排放的本质就是对氯离子的去除,即“煮水为盐”,市场上采用最多的蒸发结晶工艺即为将废水水分蒸干,而产出结晶氯化钠;电力行业采用烟道蒸发工艺也是将废水蒸干,留下盐成分进入除尘系统;2.高盐废水零排放处理技术发展回顾2.1高盐废水处理难点由于高盐废水组成复杂,且具有极高污染性。
其中最难处理的成分为氯离子含量过高,一般化工企业高盐废水氯离子浓度为1000-50000mg/l,氯离子浓度高将会对火电厂厂内管道设施造成严重危害,造成腐蚀严重,迄今尚未有低成本处理废水中氯离子的工艺,氯离子去除是高盐废水处理最重要问题,同时也是世界性难题;其他危害较大的物质有悬浮物、COD、重金属等。
2.2高盐废水现有工艺及分析火电厂高盐废水处理采用旁路烟气余热蒸发结晶技术旁路烟气余热蒸发结晶技术,系统流程:高盐废水→预处理→旁路蒸发结晶器。
工业中的高盐废水如何实现零排放
高盐废水作为一种总含盐质量分数至少1%的废水,主要来源于化工业生产中。
这种高浓度的盐类物质对微生物具有抑制作用,还含有不同种类的有机物,属于较难处理的工业废水。
化工行业中这类高盐分的废水通常具有污染物浓度高,含可溶性的无机盐种类多,例如常见的典型钠盐、钙盐、镁盐、硅酸盐等,并且高盐废水的水质成分较为复杂,含有一定的腐蚀性,综合来看处理难度很大,严重危害周边生态环境。
随着技术的不断发展,应对高盐废水的处理技术目前各大企业多是应用零排放系统进行废水处理。
这类总含盐高的废水具有很强的腐蚀性,比较能形成结垢性和较大的溶解性,应用零排放系统可以更好地处理废水不说,还可以达到清洁生产以及废水近零排放。
高盐废水应用的零排放系统可采用的技术主要为Neterfo极限分离技术,这样的出水水质可以达到回用标准。
并且该Neterfo极限分离技术适用于各种高浓度废水处理,系统回收率可达80%以上,对于化工产业高盐废水来说是再适合不过的一门技术。
高盐废水应用零排放系统不仅解决了化工产业中的废水处理问题,更是实现了节水减排的目的。
并且经处理后的废水可直接替代企业30%的原水,实现了废水资源的综合利用率。
综上,零排放系统很适用于处理化工产业中的高盐废水,在各类高浓度废水回用及零排处理中具有广阔的发展前景,对实现环境保护、节能减排等具有重要意义。
标注:零排放:一种近零排放技术。
煤化工废水“零排放”技术及工程应用现状分析一、本文概述本文旨在对煤化工废水“零排放”技术及工程应用现状进行全面深入的分析。
随着煤化工行业的快速发展,废水处理问题日益凸显,实现废水“零排放”已成为行业可持续发展的关键。
本文首先介绍了煤化工废水的来源、特点和危害,然后重点分析了当前国内外在煤化工废水“零排放”技术方面的研究进展和应用现状,包括预处理技术、生化处理技术、深度处理技术和资源化利用技术等。
结合具体工程案例,探讨了这些技术在工程实践中的应用情况、存在的问题以及解决策略。
本文还展望了煤化工废水“零排放”技术的发展趋势和未来研究方向,以期为煤化工行业的绿色可持续发展提供有益参考。
二、煤化工废水特性与处理难点煤化工废水是一种复杂且难以处理的工业废水,主要来源于煤气化、焦化、合成氨等生产过程中。
其特性与处理难点主要表现在以下几个方面:高浓度有机物与无机物:煤化工废水中含有大量酚类、多环芳烃、氨氮、硫化物等有毒有害物质,这些物质的浓度往往超过常规生物处理的承受范围,对微生物产生抑制作用。
高盐度与硬度:废水中含有大量无机盐类,如氯化钠、硫酸钠等,使得废水盐度较高,同时也增加了废水处理的难度。
废水中还含有钙、镁等硬度成分,易形成垢状物,影响处理效果。
难降解有机物:煤化工废水中的部分有机物结构稳定,难以被生物降解,如多环芳烃、杂环化合物等,这些物质的存在使得废水处理更加困难。
毒性与抑制性:废水中的有毒有害物质对微生物具有毒性和抑制性,影响生物处理的正常运行,甚至可能导致生物处理系统崩溃。
水量与水质波动大:煤化工废水的水量和水质受原料种类、生产工艺、操作条件等多种因素影响,波动较大,给废水处理带来挑战。
针对以上特性与难点,现有的煤化工废水处理技术主要包括预处理、生物处理、深度处理及回用等阶段。
预处理阶段主要通过物理和化学方法去除废水中的悬浮物、油类、重金属等杂质,为后续处理创造条件。
生物处理阶段主要利用微生物的代谢作用降解废水中的有机物,是废水处理的核心环节。
高盐废水零排放蒸发处理技术的分析及应用研究随着工业化的进程,废水处理成为了一个日益严峻的问题。
特别是高盐废水的处理更是一个备受关注的焦点。
高盐废水具有浓度大、难降解、对环境污染严重等特点,因此高盐废水的零排放处理成为了一个急需解决的问题。
在这个背景下,零排放蒸发处理技术开始受到了广泛的关注。
本文将对高盐废水零排放蒸发处理技术进行分析及应用研究。
一、高盐废水零排放蒸发处理技术概述高盐废水是指污水中盐类含量较高的一类废水。
一般情况下,高盐废水的处理主要包括物理方法、化学方法和生物方法。
而零排放蒸发技术则是一种物理处理方法,通过蒸发将水分从废水中分离出来,从而实现零排放的目的。
零排放蒸发技术主要包括多效蒸发、气力喷雾蒸发、真空蒸发等多种方式。
多效蒸发是最为常见的蒸发处理方式之一。
该技术通过利用多级蒸发器,将高温蒸汽和污水进行对流传热,从而将污水中的水分逐渐蒸发出来,形成浓缩液和蒸汽两部分。
然后通过冷凝器对蒸汽进行冷却,使其凝结成水,从而实现废水的浓缩和回收。
气力喷雾蒸发则是利用高速流体力学原理,通过高速气流的喷射和污水的喷雾碰撞,实现废水中水分的蒸发,同样可以实现零排放处理。
真空蒸发则是通过降低污水的沸点压力,使其在较低温度下蒸发,降低能耗,实现高效蒸发处理。
二、高盐废水零排放蒸发处理技术的优势相比于传统的化学方法和生物方法,零排放蒸发处理技术具有以下几点优势:1. 高效节能:蒸发是一种高能效的物理处理方法,废水中的水分可以被迅速蒸发出来,大大减少了处理时间和能耗。
2. 无二次污染:蒸发过程中不需要使用化学药剂,不会产生二次污染,对环境友好。
3. 回收利用:蒸发后形成的浓缩液可以进行再处理,将其中的盐类和有价值的物质进行回收利用,达到资源化利用的目的。
4. 处理规模灵活:蒸发设备可以根据废水处理量进行调整,适用于不同规模的工业废水处理。
5. 零排放:最大的优势就是实现了废水的零排放,有效减少了对环境的污染。
精品整理
化工高盐废水零排放处理技术
一、技术概述
本技术以源头控制到过程减量,少量终端处理的全新水系统设计为研究思路。
针对目前煤化工企业废水排放瓶颈问题及特定地区废水“零排放”的具体工程案例进行了详细调研分析,借鉴盐化工、制糖、果汁、海水淡化等方面的工程经验,通过行业间的技术交叉以及大系统集成创新确定了能源化工废水“零排放”初步的技术方案及研究工作,在行业无工程先例的情况下,确定了由五大子系统(颗粒物脱除,结垢性离子脱除,有机污染物脱除,三级分离浓缩、结晶分离)以及十二个运行单元所组成的整个零排放及资源化工程系统工艺方案。
二、技术优势
(1)混凝沉淀技术
通过对混凝沉淀体系反应顺序和速度的研究,开发出强化混凝沉淀工艺,确定了高密混凝沉淀池的加药品类及运行工艺参数,将混凝沉淀脱除硬度的效果效果由行业普遍的30~50mg/L提升至3~5mg/L。
(2)高pH多级反渗透的技术
本技术可使反渗透工艺在高pH条件下连续运行,减小硅和有机物对反渗透膜的污染,虽然其对操作控制的精确性要求高,但其工艺流程短,后端可结合非晶种蒸发结晶装置,单元装置的回收率可保持在90%以上,估算其运行成本(电耗+药剂消耗)为8元/m3。
(3)无反向流停机技术
通过大量的研究试验,在高压泵仍工作的情况下采用产水置换浓水侧浓水的方法,消除渗透压,从根本上解决了反向流及其引发的相应问题。
并通过调整控制各产排阀的时间,浓水侧不断地被稀释,直到两侧的浓度靠近时再停机,从本质上避免了反向流的存在,相比其他化工废水处理行业,膜装置的使用寿命可由1年延长至3年。
(4)分盐技术
纳滤双向分离技术不仅实现了单级纳滤处理双组份无机盐溶液,将氯化钠的纯度提升至98.5%以上,而且在运行成本上较其他行业的分盐方式具有更大的优势,采用分盐工艺将废水盐做成合格的工业产品,大大减轻了当地工业产区的环境问题与社会问题。
三、适用范围
主要适用于西北煤炭资源丰富,但水资源匮乏的地区,其水质具有高盐高有机污染物的特点。
需要开发出一种工业水循环处理的新技术,达到提高转化效率和资源利用率,降低能耗和水耗,实现经济效益和环境效益协同发展的目标,本技术可以作成化工废水深度处理回用的成套装置。