卡尔曼滤波讲解
- 格式:ppt
- 大小:833.50 KB
- 文档页数:32
一句话讲明白卡尔曼滤波卡尔曼滤波是一种基于状态空间模型的估计算法,通过对系统状态进行预测和更新,从而提高对系统状态的估计精度。
它是一种递归滤波算法,能够有效地处理含有噪声的测量数据,广泛应用于航空航天、导航定位、无线通信等领域。
以下是对卡尔曼滤波的十个要点的介绍:1. 状态空间模型:卡尔曼滤波基于状态空间模型,将系统的状态表示为一个向量,通过状态转移矩阵描述系统状态的演化规律。
2. 预测步骤:卡尔曼滤波首先通过状态转移矩阵和控制输入预测系统的下一时刻状态,得到预测状态向量和预测误差协方差矩阵。
3. 更新步骤:卡尔曼滤波利用测量数据对预测状态进行修正,得到更新后的状态估计向量和更新后的误差协方差矩阵。
4. 估计误差:卡尔曼滤波通过误差协方差矩阵描述状态估计的精度,该矩阵可以通过预测和更新步骤进行递推计算。
5. 测量模型:卡尔曼滤波通过测量模型将系统状态和测量结果联系起来,测量模型可以是线性或非线性的。
6. 噪声模型:卡尔曼滤波假设系统和测量中存在随机噪声,通过噪声协方差矩阵描述噪声的统计特性。
7. 最小均方误差准则:卡尔曼滤波通过最小化均方误差准则,优化状态估计的精度,使得估计结果尽可能接近真实值。
8. 递归计算:卡尔曼滤波是一种递归算法,通过不断迭代更新状态估计,实现对系统状态的连续估计。
9. 初始条件:卡尔曼滤波需要给定初始状态估计和初始误差协方差矩阵,通常通过历史数据或先验知识进行初始化。
10. 优势和应用:卡尔曼滤波具有高效、精确、鲁棒的特点,被广泛应用于导航定位、目标跟踪、机器人定位与导航等领域,在实时性和稳定性要求较高的系统中得到了广泛应用和研究。
卡尔曼滤波是一种基于状态空间模型的递归滤波算法,通过预测和更新步骤对系统状态进行估计,以提高状态估计的精度。
它通过最小化均方误差准则和递归计算的方式,能够有效地处理含有噪声的测量数据,在航空航天、导航定位等领域得到了广泛应用。
卡尔曼滤波通俗理解
卡尔曼滤波通俗理解
卡尔曼滤波(Kalman Filter)是一种用来估计系统状态的算法。
它是一种有效的滤波算法,被用于许多模式拟合场合,如智能位置跟踪或自动控制系统。
卡尔曼滤波的核心思想是,通过先验概率分布来估计状态,而这种先验概率分布是基于观察到的测量值,以及我们对变化过程的知识,形成的。
也就是说,卡尔曼滤波给出了一种融合当前观测值和之前观测值的知识技术,用之来估计状态变量,而不仅仅是根据当前观测值来估计。
它的工作原理是,从先前状态估计,然后反馈新观测的量,根据测量值更新估计状态。
这样就可以得到一个更准确的估计。
简而言之,卡尔曼滤波使得我们可以使用当前测量值和先前观测值的组合,以估计一个可能的状态,而不仅仅是根据当前测量值来估计。
这就是卡尔曼滤波的优势所在。
卡尔曼滤波算法基本原理一、概述卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,主要用于估计含有噪声的测量数据,并能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章将详细介绍卡尔曼滤波算法的基本原理。
二、基本原理1.状态方程:卡尔曼滤波算法基于线性系统状态空间模型,该模型可以用状态方程来表示。
状态方程通常包含系统的内部状态、输入和输出,可以用数学公式表示为:x(t+1)=Ax(t)+Bu(t)+w(t)。
其中,x(t)表示系统内部状态,u(t)表示输入,w(t)表示测量噪声。
2.测量方程:测量数据通常受到噪声的影响,卡尔曼滤波算法通过建立测量方程来处理噪声数据。
测量方程通常表示为:z(t)=h(x(t))+v(t),其中z(t)表示测量数据,h(x(t))表示系统输出,v(t)表示测量噪声。
3.卡尔曼滤波算法:卡尔曼滤波算法通过递归的方式,根据历史状态和测量数据来估计当前系统的内部状态。
算法的核心是利用过去的估计误差和测量误差来预测当前的状态,并不断更新估计值,以达到最优估计的效果。
卡尔曼滤波算法主要包括预测和更新两个步骤。
预测步骤根据状态方程和上一步的估计值,预测当前的状态;更新步骤则根据当前的测量数据和预测值,以及系统协方差矩阵,来更新当前状态的估计值和系统协方差矩阵。
4.滤波器的选择:在实际应用中,需要根据系统的特性和噪声的性质来选择合适的卡尔曼滤波器。
常见的滤波器有标准卡尔曼滤波器、扩展卡尔曼滤波器等。
选择合适的滤波器可以提高估计精度,降低误差。
三、应用场景卡尔曼滤波算法在许多领域都有应用,如航空航天、自动驾驶、机器人控制等。
在上述领域中,由于系统复杂、噪声干扰大,使用卡尔曼滤波算法可以有效地提高系统的估计精度和控制效果。
四、总结卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,通过预测和更新的方式,能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章详细介绍了卡尔曼滤波算法的基本原理和应用场景,希望能对大家有所帮助。
卡尔曼滤波原理详解及系统模型建立卡尔曼滤波是一种常见的信号处理方法,它通过利用测量数据和预测模型,在存在不确定性的情况下对系统状态进行估计和修正。
本文将详细介绍卡尔曼滤波的原理,并讨论系统模型的建立。
一、卡尔曼滤波原理卡尔曼滤波是一种递归滤波算法,其基本思想是通过利用当前时刻的测量值和上一时刻的状态估计值,结合系统的动力学模型,对当前时刻的状态进行估计和修正。
卡尔曼滤波的核心是在状态估计过程中考虑了测量误差和系统动态误差,从而有效地抑制了噪声的影响。
卡尔曼滤波的基本过程可以分为两个步骤:预测和修正。
首先,根据系统的动力学模型和上一时刻的状态估计值,通过状态方程对当前时刻的状态进行预测。
然后,根据当前时刻的测量值和预测的状态值,利用观测方程对状态进行修正。
通过不断地迭代这两个步骤,可以逐步逼近真实的系统状态。
在卡尔曼滤波中,状态估计值由两部分组成:先验估计和后验估计。
先验估计是在没有测量信息的情况下,根据系统的动力学模型对状态进行预测得到的估计值。
后验估计是在有测量信息的情况下,根据测量值对状态进行修正得到的估计值。
卡尔曼滤波通过融合这两个估计值,得到最优的状态估计。
二、系统模型建立在进行卡尔曼滤波之前,需要建立系统的数学模型。
系统模型包括状态方程和观测方程两部分。
1. 状态方程:描述系统状态的动态演化规律。
一般形式为:x(k) = A * x(k-1) + B * u(k) + w(k)其中,x(k)表示系统的状态向量,A表示状态转移矩阵,B表示输入控制矩阵,u(k)表示外部输入,w(k)表示系统的过程噪声。
2. 观测方程:描述系统状态与测量值之间的关系。
一般形式为:z(k) = H * x(k) + v(k)其中,z(k)表示测量向量,H表示观测矩阵,v(k)表示测量噪声。
在建立系统模型时,需要考虑系统的特性和实际应用场景。
对于线性系统,状态方程和观测方程可以直接通过物理方程或系统特性方程建立。
卡尔曼滤波原理及应用
一、卡尔曼滤波原理
卡尔曼滤波(Kalman filter)是一种后验最优估计方法。
它以四个步骤:预测、更新、测量、改善,不断地调整估计量来达到观测的最优估计的目的。
卡尔曼滤波的基本思想,是每次观测到某一位置来更新位置的参数,并用更新结果来预测下一次的位置参数,再由预测时产生的误差来改善当前位置参数。
从而可以达到滤波的效果,提高估计精度。
二、卡尔曼滤波应用
1、导航系统。
卡尔曼滤波可以提供准确的位置信息,把最近获得的各种定位信息和测量信息,如GPS、ISL利用卡尔曼滤波进行定位信息融合,可以提供较准确的空中、地面导航服务。
2、智能机器人跟踪。
在编队技术的应用中,智能机器人往往面临着各种复杂环境,很难提供精确的定位信息,而卡尔曼滤波正是能解决这一问题,将持续不断的测量信息放在卡尔曼滤波器中,使机器人能够在范围内定位,跟踪更新准确可靠。
3、移动机器人自主避障。
对于移动机器人来说,很多时候在前传感器检测不到
人或障碍物的时候,一般将使用卡尔曼滤波来进行自主避障。
卡尔曼滤波的定位精度很高,相对于静止定位而言,移动定位有更多的参数要考虑,所以能提供更准确的定位数据来辅助自主避障,准确的定位信息就可以让我们很好的实现自主避障。
4、安防监控。
与其他传统的安防场景比,安防场景如果需要运动物体位置估计或物体检测,就必须使用卡尔曼滤波技术来实现,这是一种行为检测和行为识别的先进技术。
(注:安防监控可用于感知移动物体的位置,并在设定的范围内监测到超出范围的物体,以达到安全防护的目的。
)。
控制系统卡尔曼滤波卡尔曼滤波(Kalman filter)是一种经典的状态估计技术,在控制系统中拥有广泛应用。
本文将介绍控制系统中卡尔曼滤波的基本原理、算法流程以及应用实例。
一、卡尔曼滤波的基本原理卡尔曼滤波是基于系统状态和测量数据之间的线性关系,通过递推的方式对系统的状态进行估计。
其基本原理包括两个方面:状态预测和测量更新。
1. 状态预测状态预测是指根据系统的状态方程和上一时刻的状态估计值,通过数学模型预测当前时刻的系统状态。
状态方程通常用线性动力学方程表示,可以描述系统在无外界干扰下的状态演化规律。
2. 测量更新测量更新是指根据系统的测量方程和当前时刻的测量数据,对系统的状态进行修正和更新。
测量方程通常用线性观测方程表示,可以将系统的状态转化为可观测的输出。
二、卡尔曼滤波的算法流程卡尔曼滤波的算法流程主要包括两个步骤:预测步骤和更新步骤。
1. 预测步骤在预测步骤中,通过系统状态方程和控制输入预测系统的状态。
预测的过程包括两个关键的计算:(1)状态预测:根据上一时刻的状态估计值和状态方程,计算当前时刻的状态预测值。
(2)状态协方差预测:根据上一时刻的状态协方差估计值、过程噪声协方差以及状态转移矩阵,计算当前时刻的状态协方差预测值。
2. 更新步骤在更新步骤中,通过测量方程和测量数据来修正和更新系统的状态。
更新的过程包括两个关键的计算:(1)卡尔曼增益计算:根据状态协方差预测值、测量噪声协方差以及测量矩阵,计算卡尔曼增益。
(2)状态估计更新:根据卡尔曼增益、状态预测值和测量残差,计算当前时刻的状态估计值和状态协方差估计值。
三、卡尔曼滤波的应用实例卡尔曼滤波在控制系统中具有广泛的应用,下面将通过一个实际的应用实例来说明其效果。
假设有一个飞行器,通过激光雷达测量距离来估计飞行器与目标之间的距离。
然而,由于环境噪声和测量误差的存在,测量数据会受到一定程度的扰动。
在这个实例中,我们可以使用卡尔曼滤波来对飞行器与目标之间的距离进行估计。
卡尔曼滤波器原理详解卡尔曼滤波器是一种用于估计系统状态的滤波算法,其原理基于状态空间模型和观测模型,并结合最小均方误差准则。
它通过使用系统动态方程和观测值,对系统的状态进行估计和预测,实现对噪声和偏差的最优抑制,从而提高状态估计的精度和稳定性。
1.预测步骤:预测步骤是基于系统的动态方程,利用上一时刻的状态估计和控制输入,预测系统的状态。
预测步骤中,通过状态转移矩阵A将上一时刻的状态估计值x(k-1)预测到当前时刻的状态估计值的先验估计值x'(k):x'(k)=A*x(k-1)+B*u(k-1)其中,x(k-1)为上一时刻的状态估计值,u(k-1)为控制输入。
预测步骤还要对状态估计值的协方差矩阵P(k-1)进行更新,通过状态转移矩阵A和系统的过程噪声协方差矩阵Q的关系:P'(k)=A*P(k-1)*A'+Q2.更新步骤:更新步骤是基于观测模型,利用当前时刻的观测值和预测的状态估计值,对状态进行校正和更新。
更新步骤中,首先计算观测残差z(k):z(k)=y(k)-H*x'(k)其中,y(k)为当前时刻的观测值,H为观测模型矩阵。
然后基于观测模型矩阵H、预测的状态估计值x'(k)和状态估计值的协方差矩阵P'(k),计算卡尔曼增益K(k):K(k)=P'(k)*H'*(H*P'(k)*H'+R)^(-1)其中,R为观测噪声协方差矩阵。
最后,利用卡尔曼增益对状态估计值进行校正和更新:x(k)=x'(k)+K(k)*z(k)更新步骤还要对状态估计值的协方差矩阵P'(k)进行更新,通过卡尔曼增益K(k)和观测噪声协方差矩阵R的关系:P(k)=(I-K(k)*H)*P'(k)其中,I为单位矩阵。
卡尔曼滤波器的主要优点在于可以根据系统的动态方程和观测模型进行状态估计,对于动态系统和噪声的建模具有一定的灵活性。
卡尔曼滤波5个重要公式讲解卡尔曼滤波是一种基于状态空间模型的最优估计方法,被广泛应用于控制、机器人、信号处理等领域。
以下是卡尔曼滤波常用的5个重要公式的讲解。
1. 状态方程状态方程是卡尔曼滤波中最基本的公式,它描述了系统的状态如何随时间变化。
状态方程通常采用随机微分方程的形式,表示为:x(k+1) = F(k)x(k) + G(k)u(k) + w(k)其中,x(k)表示系统在时刻k的状态向量,F(k)是状态转移矩阵,描述了系统状态如何从时刻k到时刻k+1进行转移,u(k)是外部输入向量,G(k)是输入矩阵,描述了外部输入向量对系统状态的影响,w(k)是过程噪声向量,描述了系统状态在转移过程中的随机扰动。
2. 观测方程观测方程是卡尔曼滤波中用来描述测量过程的公式,它将系统状态向量映射到观测向量空间中。
观测方程通常采用线性模型的形式,表示为:z(k) = H(k)x(k) + v(k)其中,z(k)表示在时刻k的观测向量,H(k)是观测矩阵,描述了状态向量如何映射到观测向量空间中,v(k)是观测噪声向量,描述了观测过程中的随机扰动。
3. 卡尔曼增益卡尔曼增益是卡尔曼滤波中用来调整状态估计值和观测值之间权重的系数,它使得卡尔曼滤波能够在有噪声的观测值和模型之间进行权衡。
卡尔曼增益的计算公式为:K(k) = P(k|k-1)H(k)T[HP(k|k-1)H(k)T + R(k)]^-1其中,P(k|k-1)是预测误差协方差矩阵,描述了系统状态估计值与真实状态值之间的差异,R(k)是观测噪声协方差矩阵,描述了观测值的噪声水平。
4. 状态估计状态估计是卡尔曼滤波中用来确定系统状态的过程,它基于状态方程和观测方程,通过卡尔曼增益计算得到最优估计值。
状态估计的公式为:x(k|k) = x(k|k-1) + K(k)[z(k) - H(k)x(k|k-1)]其中,x(k|k-1)是状态预测值,K(k)是卡尔曼增益,z(k)是观测值。
卡尔曼滤波详解卡尔曼滤波(Kalman Filter)是一种用于估计系统状态的算法,广泛应用于控制系统、信号处理、机器人导航等领域。
卡尔曼滤波的核心思想是利用系统的动态模型和测量数据的信息来对系统状态进行估计,同时最小化估计误差的方差。
在实际应用中,卡尔曼滤波能够对系统状态进行高效、准确的估计,并具有良好的鲁棒性和适应性。
卡尔曼滤波的核心思想可以简单概括为“测量并补偿”,即先通过传感器测量得到当前的状态信息,然后利用系统动态模型来预测下一时刻的状态,再将测量值与预测值进行比较,通过加权平均的方式得到最终的估计值。
要实现这个过程,需要建立卡尔曼滤波的基本模型,包括状态转移方程、观测方程、协方差矩阵和初始状态。
卡尔曼滤波的核心步骤包括预测阶段和更新阶段。
预测阶段主要利用系统动态模型对状态进行预测,以及计算预测误差的方差。
预测阶段包括以下几个步骤:1. 状态预测:根据系统动态模型和当前状态估计值,预测下一时刻的状态估计值。
2. 协方差预测:根据系统动态模型和当前状态协方差矩阵,预测下一时刻的协方差矩阵。
3. 估计误差的量化:计算预测值与真实值之间的估计误差,以及预测误差的方差。
更新阶段主要利用测量数据对状态进行修正,以及更新协方差矩阵。
更新阶段包括以下几个步骤:1. 估计增益:根据协方差矩阵和观测噪声方差,计算估计值与观测值之间的加权比例。
2. 状态修正:利用估计增益和测量值对状态进行修正。
3. 协方差修正:利用估计增益对协方差矩阵进行修正。
卡尔曼滤波的应用非常广泛,包括导航系统、车辆控制、信号处理、自动驾驶、机器人导航等领域。
卡尔曼滤波能够对系统状态进行高效、准确的估计,并且具有良好的鲁棒性和适应性,对噪声和误差具有较好的鲁棒性。
此外,卡尔曼滤波具有良好的数学基础和理论支撑,能够直接应用于许多复杂的系统中。
卡尔曼滤波一、卡尔曼滤波的起源谈到信号的分析与处理,就离不开滤波两个字。
通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以把FIR滤波器或者IIR滤波器设计成合适的频带滤波器,进行频域滤波。
但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。
虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的.人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”.为了“估计",要事先确定某种准则以评定估计的好坏程度.最小均方误差是一种常用的比较简单的经典准则。
对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的.当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作,这项研究是用于防空火力控制系统的.维纳滤波器是基于最小均方误差准则的估计器。
为了寻求维纳滤波器的冲激响应,需要求解著名的维纳–霍夫方程。
这种滤波理论所求的是使均方误差最小的系统最佳冲激响应的明确表达式。
从维纳–霍夫方程来看,维纳滤波算法是十分低效的。
这种算法要求设置大量的存储器来保存过去的测量数据,一个新的数据到来后,要进行刷新,重新计算自相关和互相关序列。
再者,求解这个方程需要耗费大量时间对高阶矩阵求逆。
因此,维纳滤波算法难以运用于实时处理中,尤其是无法用于军事、航空航天等领域。
为此,许多科技工作者进行了多方探索,但在解决非平稳过程的滤波问题时,能给出的方法很少。
到20世纪50年代中期,随着空间技术的发展,要求对卫星轨道进行精确地测量,这种方法越来越不能满足实际应用的需要。
为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精炼算法。
1960年和1961年,卡尔曼(R. E. Kalman)和布西(R. S。
Bucy)提出了递推滤波算法,成功的将状态变量引入到滤波理论中来,用消息与干扰的状态空间模型代替了通常用来描述它们的协方差函数,将状态空间描述与离散数间刷新联系起来,适于计算机直接进行计算,而不是去寻求滤波器冲激响应的明确公式。
本文将对卡尔曼滤波算法进行示例解析与公式推导,帮助读者更好地理解该算法的原理和应用。
文章将从以下几个方面展开:一、卡尔曼滤波算法的概念卡尔曼滤波算法是一种用于估计动态系统状态的线性无偏最优滤波算法。
它利用系统的动态模型和观测数据,通过迭代更新状态估计值,实现对系统状态的精确估计。
卡尔曼滤波算法最初是由美国工程师鲁道夫·卡尔曼在20世纪60年代提出,随后得到了广泛的应用和研究。
二、卡尔曼滤波算法的原理1. 状态空间模型在卡尔曼滤波算法中,系统的动态模型通常用状态空间模型表示。
状态空间模型由状态方程和观测方程组成,其中状态方程描述系统的演化规律,观测方程描述观测数据与状态之间的关系。
通过状态空间模型,可以对系统的状态进行预测,并与观测数据进行融合,从而估计系统的状态。
2. 卡尔曼滤波的预测与更新卡尔曼滤波算法以预测-更新的方式进行状态估计。
在预测阶段,利用系统的动态模型和之前时刻的状态估计值,对当前时刻的状态进行预测;在更新阶段,将预测值与观测数据进行融合,得到最优的状态估计值。
通过迭代更新,可以不断优化对系统状态的估计,实现对系统状态的精确跟踪。
三、卡尔曼滤波算法的示例解析以下通过一个简单的例子,对卡尔曼滤波算法进行具体的示例解析,帮助读者更好地理解该算法的应用过程。
假设有一个匀速直线运动的物体,其位置由x和y坐标表示,观测到的位置数据带有高斯噪声。
我们希望利用卡尔曼滤波算法对该物体的位置进行估计。
1. 状态空间模型的建立我们建立物体位置的状态空间模型。
假设物体在x和y方向上的位置分别由状态变量x和y表示,动态模型可以用如下状态方程描述:x(k+1) = x(k) + vx(k) * dty(k+1) = y(k) + vy(k) * dt其中,vx和vy分别为x和y方向的速度,dt表示时间间隔。
观测方程可以用如下形式表示:z(k) = H * x(k) + w(k)其中,z(k)为观测到的位置数据,H为观测矩阵,w(k)为观测噪声。
卡尔曼滤波详解卡尔曼滤波是一种常用的状态估计方法,它可以根据系统的动态模型和观测数据,对系统的状态进行估计。
卡尔曼滤波广泛应用于机器人导航、飞行控制、信号处理等领域。
本文将详细介绍卡尔曼滤波的原理、算法及应用。
一、卡尔曼滤波原理卡尔曼滤波的基本思想是利用系统的动态模型和观测数据,对系统的状态进行估计。
在卡尔曼滤波中,系统的状态被表示为一个向量,每个元素表示系统的某个特定状态量。
例如,一个机器人的状态向量可能包括机器人的位置、速度、方向等信息。
卡尔曼滤波的基本假设是系统的动态模型和观测数据都是线性的,而且存在噪声。
系统的动态模型可以表示为:x(t+1) = Ax(t) + Bu(t) + w(t)其中,x(t)表示系统在时刻t的状态向量,A是状态转移矩阵,B是控制矩阵,u(t)表示外部控制输入,w(t)表示系统的过程噪声。
观测数据可以表示为:z(t) = Hx(t) + v(t)其中,z(t)表示系统在时刻t的观测向量,H是观测矩阵,v(t)表示观测噪声。
卡尔曼滤波的目标是根据系统的动态模型和观测数据,估计系统的状态向量x(t)。
为了达到这个目标,卡尔曼滤波将状态估计分为两个阶段:预测和更新。
预测阶段:根据系统的动态模型,预测系统在下一个时刻的状态向量x(t+1)。
预测的过程可以表示为:x^(t+1|t) = Ax^(t|t) + Bu(t)其中,x^(t|t)表示在时刻t的状态向量的估计值,x^(t+1|t)表示在时刻t+1的状态向量的预测值。
卡尔曼滤波还需要对状态的不确定性进行估计,这个不确定性通常用协方差矩阵P(t)表示。
协方差矩阵P(t)表示状态向量估计值和真实值之间的差异程度。
预测阶段中,协方差矩阵也需要进行更新,更新的过程可以表示为:P(t+1|t) = AP(t|t)A' + Q其中,Q表示过程噪声的协方差矩阵。
更新阶段:根据观测数据,更新状态向量的估计值和协方差矩阵。
更新的过程可以表示为:K(t+1) = P(t+1|t)H'(HP(t+1|t)H' + R)^-1x^(t+1|t+1) = x^(t+1|t) + K(t+1)[z(t+1) - Hx^(t+1|t)]P(t+1|t+1) = (I - K(t+1)H)P(t+1|t)其中,K(t+1)表示卡尔曼增益,R表示观测噪声的协方差矩阵,I是单位矩阵。
自动控制原理卡尔曼滤波知识点总结自动控制原理是探讨如何自动地控制各种系统行为的学科。
而卡尔曼滤波则是自动控制领域中一种重要的估计算法,被广泛应用于信号处理、导航、机器人等领域。
本文将对卡尔曼滤波的基本原理、算法以及应用进行总结。
一、卡尔曼滤波的基本原理卡尔曼滤波是一种最优估计算法,通过融合系统的状态量和测量信息,对系统的状态进行估计。
其基本原理可以归纳为以下几个关键点:1. 观测模型卡尔曼滤波基于线性观测模型,即系统的测量值是系统状态的线性组合,再加上随机噪声。
观测模型可以用数学表达式表示为:z = Hx + v其中,z为测量值,H为观测矩阵,x为系统的状态量,v为观测噪声。
2. 状态预测卡尔曼滤波通过系统的动态模型对状态进行预测,预测值用数学表达式表示为:x^ = Fx + Bu其中,x^为状态的预测值,F为系统的状态转移矩阵,B为输入矩阵,u为输入量。
3. 误差协方差预测卡尔曼滤波还对状态的误差协方差进行预测,预测的误差协方差用数学表达式表示为:P^ = FPF^T + Q其中,P^为误差协方差的预测值,P为当前时刻的误差协方差,Q 为系统的过程噪声协方差。
4. 更新步骤根据观测值z和观测模型,通过状态预测和误差协方差预测,可以得到最优估计值和最优估计误差协方差。
利用这些信息,卡尔曼滤波进行状态的更新,更新的过程可以归纳为以下几个步骤:1) 计算卡尔曼增益K;2) 计算当前状态的估计值x;3) 计算当前误差协方差P。
二、卡尔曼滤波的算法卡尔曼滤波的具体算法分为两个步骤:预测步骤和更新步骤。
其算法流程如下:1. 预测步骤1) 计算状态预测值:x^ = Fx + Bu;2) 计算误差协方差预测值:P^ = FPF^T + Q。
2. 更新步骤1) 计算卡尔曼增益:K = P^H^T(HP^H^T + R)^-1;2) 计算当前状态的估计值:x = x^ + Ky;3) 计算当前误差协方差:P = (I - KH)P^。
卡尔曼滤波详解这篇主要介绍卡尔曼滤波公式详细推导,使用示例参考卡尔曼滤波示例。
Kalman Filter简单介绍主要讲解基本的卡尔曼滤波算法,有时候也说是离散或者线性卡尔曼滤波。
首先来看一个数学公式,这部分仅仅是给定一个思路,和最后实际算法无关。
目前考虑到要估计当前系统的状态,而且有两个已知量,一个上一个状态的估计值以及当前状态的测量值,这两个都有一定的噪声,需要做的就是把这两个结合起来,很简单的思路就是按照比例相加得到当前状态的估计值:X ^ k = K k ⋅ Z k + ( 1 − K k ) ⋅ X ^ k − 1 \hat{X}_k = K_k \cdot Z_k + (1 - K_k) \cdot \hat{X}_{k-1} X^k=Kk⋅Zk+(1−Kk)⋅X^k−1k k k 表示离散的状态量,可以把它简单的理解为离散的时间间隔。
k=1 表示1ms,k=2 表示2ms;X ^ k \hat{X}_k X^k 是对当前状态的估计值,希望利用上面的公式对每一个 k 都能得到一个较为准确的 X 的值;Z k Z_k Zk 是对当前状态的测量值,当然这个值并不是绝对准确的,会有一定的误差噪声(如果绝对准确,直接用就可以了,也就没必要搞这个卡尔曼滤波算法了);X ^ k − 1 \hat{X}_{k-1} X^k−1 是对上一状态的估计值,利用这个以及测量值对当前状态进行估计;K k K_k Kk 是卡尔曼增益(kalman gain),在这里唯一未知的就是这个值,也是需要去求的值。
当然可以直接设置值为0.5,但是这样比较暴力。
最好的方式就是根据每一时刻的状态求一个当前状态最好的增益值,这样的话更好利用以前状态的估计值以及当前测量值来估计一个最优的当前值。
后面卡尔曼滤波算法就是按照上面思路利用上一状态以及测量值去估计当前状态,只不过模型要更加复杂。
基本模型卡尔曼滤波的状态方程,利用线性随机差分方程(Linear Stochastic Difference equation)利用上一个系统状态估计当前系统状态(这里假设上一状态与下一一状态有某种线性关系,比如恒温环境的温度,匀速运动的速度等,但是因为现实环境的复杂,这种线性关系不是完全平滑的,也就是会有一些扰动):x k = A x k − 1 + B u k − 1 + w x_k = Ax_{k-1} + Bu_{k-1}+w xk=Axk−1+Buk−1+w使用时一般忽略 u u u 控制输入,得到:x k = A x k − 1 + w ( 1.1 ) x_k = Ax_{k-1} + w \qquad {(1.1)} xk=Axk−1+w(1.1)加上对于当前状态的测量方程(简单来说就是测量值和状态值的线性函数):z k = H x k + v ( 1.2 ) z_k = Hx_k + v \qquad {(1.2)} zk=Hxk +v(1.2)k − 1 k-1 k−1 和 k k k 分别表示上一状态和当前状态;x ∈ R n x \in R^n x∈Rn 表示要估计的状态;A ∈ R n × n A \in R^{n \times n}A∈Rn×n 表示上一状态到当前状态的转换矩阵;u ∈ R l u \in R^l u∈Rl 表示可选的控制输入,一般在实际使用中忽略;B ∈ R n × l B \in R^{n \times l}B∈Rn×l 表示控制输入到当前状态的转换矩阵;z ∈ R m z \in R^m z∈Rm 表示测量值;H ∈ R m × n H \in R^{m \times n}H∈Rm×n 表示当前状态到测量的转换矩阵;w ∈ R n w \in R^n w∈Rn 表示过程噪声,主要是从上一状态进入到当前状态时,会有许多外界因素的干扰;v ∈ R m v \in R^m v∈Rm 表示测量噪声,主要是任何测量仪器都会有一定的误差;在上面转换矩阵 A A A B B B H H H w ww v v v 是随着状态变化的,在这里没有添加下标,假设是不变的。