卡尔曼滤波简介及其实现(附C代码)
- 格式:doc
- 大小:64.50 KB
- 文档页数:14
卡尔曼滤波算法实现代码C++实现代码如下:kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif // !defined(AFX_KALMAN_H ED3D740F_01D2_4616_8B74_8BF57636F2C 0 INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs *//* tester de changer les matrices du noises *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 );measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] ={ 1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2) };const float Q[] ={ pow(T,3)/3, pow(T,2)/2, 0,0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] ={ 1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H)); memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q)); memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) ); /* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y){/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A 鈥k+B 鈥kP'k=A 鈥k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[ 0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv){state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;}c 语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j]; }for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j]; }for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];}}}free(e); free(a); free(b); return(js);}。
卡尔曼滤波(Kalman Filter)简介与Python代码实现1. 引言卡尔曼滤波是一种用于估计系统状态的递归滤波算法,广泛应用于信号处理、机器人导航、控制系统等领域。
它通过对测量值和状态变量之间的关系进行建模,并结合过去的测量值和预测值来优化状态估计。
本文将介绍卡尔曼滤波的原理及其在Python中的实现。
首先,我们将详细解释卡尔曼滤波的数学模型,包括状态方程和观测方程。
然后,我们将给出一个简单的例子来演示如何使用Python编写卡尔曼滤波代码。
最后,我们会讨论一些常见的应用场景和改进方法。
2. 卡尔曼滤波原理2.1 系统模型卡尔曼滤波通过建立系统模型来描述状态变量和观测值之间的关系。
假设我们有一个线性动态系统,可以用以下状态方程表示:x(k) = F * x(k-1) + B * u(k-1) + w(k-1)其中,x(k)是在时间步k时刻的状态向量,F是状态转移矩阵,B是控制输入矩阵,u(k-1)是在时间步k-1时刻的控制向量,w(k-1)是过程噪声。
观测方程可以表示为:z(k) = H * x(k) + v(k)其中,z(k)是在时间步k时刻的观测向量,H是观测矩阵,v(k)是观测噪声。
2.2 状态估计卡尔曼滤波的目标是根据过去的测量值和预测值对系统状态进行估计。
它通过最小化预测误差的协方差来实现。
卡尔曼滤波包括两个主要步骤:预测和更新。
2.2.1 预测在预测步骤中,我们使用状态方程来预测下一个时间步的状态:x_hat(k|k-1) = F * x_hat(k-1|k-1) + B * u(k-1)P(k|k-1) = F * P(k-1|k-1) * F^T + Q其中,x_hat(k|k-1)是在时间步k时刻的状态预测值,P(k|k-1)是状态协方差矩阵(描述状态估计误差的不确定性),Q是过程噪声的协方差矩阵。
2.2.2 更新在更新步骤中,我们使用观测方程来校正预测值:K(k) = P(k|k-1) * H^T * (H * P(k|k-1) * H^T + R)^(-1)x_hat(k|k) = x_hat(k|k-1) + K(k) * (z(k) - H * x_hat(k|k-1))P(k|k) = (I - K(k) * H) * P(k|k-1)其中,K(k)是卡尔曼增益(用于校正预测值),R是观测噪声的协方差矩阵,I是单位矩阵。
自适应卡尔曼滤波c语言实现什么是自适应卡尔曼滤波?自适应卡尔曼滤波是一种用于估计系统状态的算法,它结合了传统的卡尔曼滤波和自适应技术。
卡尔曼滤波器是一种用于优化系统状态估计的线性滤波器,常用于控制系统和信号处理领域。
而自适应技术可以根据系统的特点动态调整滤波器的参数,以适应不同的系统动态。
自适应卡尔曼滤波器的主要思想是通过监测系统的输出和测量值之间的误差来调整滤波器的参数,从而提高状态估计的准确性。
它使用递归方式来更新状态估计,并根据估计误差和测量噪声的大小自适应地调整滤波器的增益矩阵。
自适应卡尔曼滤波的C语言实现步骤如下:1. 初始化滤波器的状态估计和协方差矩阵。
状态估计是系统状态的估计值,协方差矩阵描述了状态估计的不确定性。
2. 根据系统的动态模型,使用预测方程来预测下一时刻的状态估计和协方差矩阵。
预测方程基于系统的状态转移矩阵、状态估计和过程噪声的协方差矩阵。
3. 根据系统的观测模型和测量值,使用更新方程来更新状态估计和协方差矩阵。
更新方程基于系统的观测矩阵、测量噪声的协方差矩阵和测量值与预测值之间的残差。
4. 根据估计误差和测量噪声的大小,调整滤波器的增益矩阵。
增益矩阵用于控制预测值和测量值之间的权重,从而平衡系统模型和观测值的相对重要性。
5. 重复步骤2至步骤4,直到达到滤波器的收敛条件。
收敛条件可以根据系统的动态特性和应用需求来确定。
在实际应用中,自适应卡尔曼滤波可以用于估计动态系统的状态,并根据实时测量值对状态估计进行修正。
它在控制系统、信号处理和导航等领域具有广泛的应用,能够提高系统的性能和鲁棒性。
总结起来,自适应卡尔曼滤波是一种结合了传统的卡尔曼滤波和自适应技术的状态估计算法。
通过动态调整滤波器的参数,它能够适应不同的系统动态,并提高状态估计的准确性。
自适应卡尔曼滤波的C语言实现包括初始化滤波器、用预测方程预测状态估计、用更新方程更新状态估计和调整增益矩阵。
在实际应用中,它可以用于估计动态系统的状态,并根据实时测量值进行修正,从而提高系统的性能和鲁棒性。
自适应卡尔曼滤波C语言实现1. 什么是卡尔曼滤波?卡尔曼滤波是一种用于估计系统状态的算法,它基于线性动态系统模型和高斯噪声假设。
卡尔曼滤波器通过不断地更新状态估计值,将测量结果和系统动态进行融合,提供更准确的状态估计。
在实际应用中,传感器测量值常常包含噪声或者不完全准确。
卡尔曼滤波通过对测量值进行加权平均,同时考虑系统的动态模型和测量噪声的特性,可以有效地抑制噪声并提高状态估计的精度。
2. 卡尔曼滤波的基本原理卡尔曼滤波器由两个步骤组成:预测步骤和更新步骤。
预测步骤预测步骤用于根据当前时刻的状态估计值和系统动态模型,预测下一时刻的状态估计值。
假设我们有一个状态向量x表示系统的状态,在每个时刻t,我们可以使用状态转移矩阵A将当前时刻的状态向量x(t)预测到下一时刻的状态向量x(t+1):x(t+1) = A * x(t)同时,我们还需要考虑过程噪声的影响。
假设过程噪声服从均值为0、协方差矩阵为Q的高斯分布,我们可以使用协方差矩阵Q来描述过程噪声的特性。
预测步骤可以表示为:P(t+1|t) = A * P(t|t) * A' + Q其中,P(t|t)表示当前时刻的状态估计误差协方差矩阵,P(t+1|t)表示预测步骤中的状态估计误差协方差矩阵。
更新步骤更新步骤用于根据当前时刻的测量值和预测步骤得到的状态估计值,更新系统状态的估计。
假设我们有一个观测向量z表示系统的观测值,在每个时刻t,我们可以使用观测模型C将当前时刻的状态向量x(t)映射到观测空间中:z(t) = C * x(t)同时,我们还需要考虑观测噪声的影响。
假设观测噪声服从均值为0、协方差矩阵为R的高斯分布,我们可以使用协方差矩阵R来描述观测噪声的特性。
更新步骤可以表示为:K(t+1) = P(t+1|t) * C' * (C * P(t+1|t) * C' + R)^(-1)x(t+1|t+1) = x(t+1|t) + K(t+1) * (z(t+1) - C * x(t+1|t))P(t+1|t+1) = (I - K(t+1) * C) * P(t+1|t)其中,K(t+1)表示卡尔曼增益,x(t+1|t+1)表示更新步骤中的状态估计值,P(t+1|t+1)表示更新步骤中的状态估计误差协方差矩阵。
卡尔曼滤波简介及其算法实现代码(C++/C/MATLAB)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。
所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。
现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。
因为这里不能写复杂的数学公式,所以也只能形象的描述。
希望如果哪位是这方面的专家,欢迎讨论更正。
卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。
跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。
简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
卡尔曼滤波算法及C 语言实现摘要:本文着重讨论了卡尔曼滤波器的原理,典型算法以及应用领域。
清晰地阐述了kalman filter 在信息估计方面的最优性能。
着重介绍简单kalman filter algorithm 的编程,使用kalman filter 的经典5个体现最优化递归公式来编程。
通过c 语言编写程序实现kalman filter 的最优估计能力。
关键词:kalman filter ;最优估计;C 语言1 引言Kalman Filter 是一个高效的递归滤波器,它可以实现从一系列的噪声测量中,估计动态系统的状态。
起源于Rudolf Emil Kalman 在1960年的博士论文和发表的论文《A New Approach to Linear Eiltering and Prediction Problems 》(《线性滤波与预测问题的新方法》)。
并且最先在阿波罗登月计划轨迹预测上应用成功,此后kalman filter 取得重大发展和完善。
它的广泛应用已经超过30年,包括机器人导航,控制。
传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等,近年来更被广泛应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2 kalman filter 最优化递归估计Kalman filter 是一个“optimal recursive data processing algorithm (最优化递归数据处理方法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的方法。
而kalman filter 最为核心的内容是体现它最优化估计和递归特点的5条公式。
举一个例子来详细说明5条公式的物理意义。
假设我们要研究的对象是某一个房间的温度信号。
对于室温来说,一分钟内或一小段时间内的值是基本上不变的或者变化范围很小。
也就是说时刻的温度和时刻的温度1t 1T 2t 基本不变,即。
在这个过程中,因为毕竟温度还是有所改变的,设有几度的偏差。
卡尔曼滤波算法实现代码C++实现代码如下:============================kalman.h=================//kalman.h:interfaceforthekalmanclass.////////////////////////////////////////////////////////////////////////#if!defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)#defineAFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_#if_MSC_VER>1000#pragmaonce#endif//_MSC_VER>1000#include<math.h>#include"cv.h"classkalman{public:voidinit_kalman(intx,intxv,inty,intyv);CvKalman*cvkalman;CvMat*state;CvMat*process_noise;CvMat*measurement;constCvMat*prediction;CvPoint2D32fget_predict(floatx,floaty);kalman(intx=0,intxv=0,inty=0,intyv=0);//virtual~kalman(););#endif//!defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp===============#include"kalman.h"#include<stdio.h>/*testerdeprintertouteslesvaleursdesvecteurs「*//*testerdechangerlesmatricesdunoises*//*replacestatebycvkalman->state_post???*/CvRandStaterng;constdoubleT=0.1;kalman::kalman(intx,intxv,inty,intyv)(cvkalman=cvCreateKalman(4,4,0);state=cvCreateMat(4,1,CV_32FC1);process_noise=cvCreateMat(4,1,CV_32FC1);measurement=cvCreateMat(4,1,CV_32FC1);intcode=-1;/*creatematrixdata*/constfloatA[]={ 1,T,0,0,0,1,0,0,0,0,1,T,0,0,0,1};constfloatH口={1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0};constfloatP[]={pow(320,2),pow(320,2)/T,0,0,pow(320,2)/T,pow(320,2)/pow(T,2),0,0, 0,0,pow(240,2),pow(240,2)/T,0,0,pow(240,2)/T,pow(240,2)/pow(T,2) };constfloatQ口={pow(T,3)/3,pow(T,2)/2,0,0,pow(T,2)/2,T,0,0,0,0,pow(T,3)/3,pow(T,2)/2,0,0,pow(T,2)/2,T};constfloatR[]={1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0);cvRandInit(&rng,0,1,-1,CV_RAND_UNI); cvZero(measurement); cvRandSetRange(&rng,0,0.1,0);rng.disttype=CV_RAND_NORMAL;cvRand(&rng,state);memcpy(cvkalman->transition_matrix->data.fl,A,sizeof(A));memcpy(cvkalman->measurement_matrix->data.fl,H,sizeof(H)); memcpy(cvkalman->process_noise_cov->data.fl,Q,sizeof(Q)); memcpy(cvkalman->error_cov_post->data.fl,P,sizeof(P));memcpy(cvkalman->measurement_noise_cov->data.fl,R,sizeof(R));//cvSetIdentity(cvkalman->process_noise_cov,cvRealScalar(1e-5));//cvSetIdentity(cvkalman->error_cov_post,cvRealScalar(1));//cvSetIdentity(cvkalman->measurement_noise_cov,cvRealScalar(1e-1));/*chooseinitialstate*/state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange(&rng,0,sqrt(cvkalman->process_noise_cov->data.fl[0]),0);cvRand(&rng,process_noise);}CvPoint2D32fkalman::get_predict(floatx,floaty){/*updatestatewithcurrentposition*/state->data.fl[0]=x;state->data.fl[2]=y;/*predictpointposition*//*x'k=A敏k+B敏kP'k=A敏k-1*AT+Q*/cvRandSetRange(&rng,0,sqrt(cvkalman->measurement_noise_cov->data.fl[0]),0);cvRand(&rng,measurement);/*xk=A?xk-1+B?uk+wk*/cvMatMulAdd(cvkalman->transition_matrix,state,process_noise,cvkalman->state_post);/*zk=H?xk+vk*/cvMatMulAdd(cvkalman->measurement_matrix,cvkalman->state_post,measurement,measurement);cvKalmanCorrect(cvkalman,measurement);floatmeasured_value_x=measurement->data.fl[0];floatmeasured_value_y=measurement->data.fl[2];constCvMat*prediction=cvKalmanPredict(cvkalman,0);floatpredict_value_x=prediction->data.fl[0];floatpredict_value_y=prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));)voidkalman::init_kalman(intx,intxv,inty,intyv)(state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;)c语言实现代码如下#include"stdlib.h"#include"rinv.c"intlman(n,m,k,f,q,r,h,y,x,p,g)intn,m,k;doublef[],q口,r[],h[],y口刈,p[],g口;日日{inti,j,kk,ii,l,jj,js;double*e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if(l<n)l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for(i=0;i<=n-1;i++)for(j=0;j<=n-1;j++)颠{ii=i*l+j;a[ii]=0.0;for(kk=0;kk<=n-1;kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];for(i=0;i<=n-1;i++)for(j=0;j<=n-1;j++){ii=i*n+j;p[ii]=q[ii];for(kk=0;kk<=n-1;kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];for(ii=2;ii<=k;ii++){for(i=0;i<=n-1;i++)for(j=0;j<=m-1;j++){jj=i*l+j;a皿=0.0;for(kk=0;kk<=n-1;kk++)I a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];)for(i=0;i<=m-1;i++)I for(j=0;j<=m-1;j++)yl{jj=i*m+j;e[jj]=r[jj];I for(kk=0;kk<=n-1;kk++)I e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];)js=rinv(e,m);{free(e);free(a);free(b);return(js);}for(i=0;i<=n-1;i++)for(j=0;j<=m-1;j++){jj=i*m+j;g[jj]=0.0;for(kk=0;kk<=m-1;kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for(i=0;i<=n-1;i++){jj=(ii-1)*n+i;x[jj]=0.0;for(j=0;j<=n-1;j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for(i=0;i<=m-1;i++){jj=i*l;b[jj]=y[(ii-1)*m+i];for(j=0;j<=n-1;j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for(i=0;i<=n-1;i++){jj=(ii-1)*n+i;for(j=0;j<=m-1;j++)I x[jj]=x[jj]+g[i*m+j]*b[j*l];)I if(ii<k)5¥{for(i=0;i<=n-1;i++)I for(j=0;j<=n-1;j++)有己{jj=i*l+j;a皿=0.0;I for(kk=0;kk<=m-1;kk++)I a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];I if(i==j)a[jj]=1.0+a[jj];□)I for(i=0;i<=n-1;i++)I for(j=0;j<=n-1;j++){jj=i*l+j;b[jj]=0.0;I for(kk=0;kk<=n-1;kk++)I b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];)I for(i=0;i<=n-1;i++)I for(j=0;j<=n-1;j++)▼I{jj=i*l+j;a[jj]=0.0;I for(kk=0;kk<=n-1;kk++)I a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];)I for(i=0;i<=n-1;i++)for(j=0;j<=n-1;j++){jj=i*n+j;p[jj]=q[jj];I for(kk=0;kk<=n-1;kk++)I P[jj]=P[jj]+f[i*n+kk]*a[j*l+kk];}}free(e);free(a);free(b);return(js);。
卡尔曼滤波算法实现代码C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000#include <math.h> #include "cv.h"class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h" #include <stdio.h>/* tester de printer toutes les valeurs des vecteurs */ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) {cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;/* create matrix data */ const float A[] = { 1, T, 0, 0, 0, 1, 0, 0, 0, 0, 1, T, 0, 0, 0, 1 };const float H[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 };const float P[] = { pow(320,2), pow(320,2)/T, 0, 0, pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T, 0, 0, pow(240,2)/T, pow(240,2)/pow(T,2) };const float Q[] = { pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T, 0, 0, 0, 0, pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T };const float R[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }; cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 ); rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A)); memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H)); memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q)); memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P)); memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R)); //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1)); //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x; state->data.fl[1]=xv; state->data.fl[2]=y;state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise ); }CvPoint2D32f kalman::get_predict(float x, float y) {/* update state with current position */ state->data.fl[0]=x; state->data.fl[2]=y;/* predict point position */ /* x'k=A 鈥 k+B 鈥 kP'k=A 鈥 k-1*AT + Q */ cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl [0]), 0 ); cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */ cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );cvKalmanCorrect( cvkalman, measurement ); float measured_value_x = measurement->data.fl[0]; float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 ); float predict_value_x = prediction->data.fl[0]; float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y)); }void kalman::init_kalman(int x,int xv,int y,int yv) { state->data.fl[0]=x;state->data.fl[1]=xv; state->data.fl[2]=y; state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }c 语言实现代码如下:#include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m; if (l<n) l=n; a=malloc(l*l*sizeof(double)); b=malloc(l*l*sizeof(double)); for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*l+j; a[ii]=0.0; for (kk=0; kk<=n-1; kk++) a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*n+j; p[ii]=q[ii]; for (kk=0; kk<=n-1; kk++) p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j]; } for (ii=2; ii<=k; ii++) { for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++) { jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];} for (i=0; i<=m-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj]; for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j]; } js=rinv(e,m); if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0; for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk]; } for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0; for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j]; } for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i]; for (j=0; j<=n-1; j++) b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j]; } for (i=0; i<=n-1; i++) { jj=(ii-1)*n+i;for (j=0; j<=m-1; j++) x[jj]=x[jj]+g[i*m+j]*b[j*l];} if (ii<k){ for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j]; if (i==j) a[jj]=1.0+a[jj]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; b[jj]=0.0; for (kk=0; kk<=n-1; kk++) b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*n+j; p[jj]=q[jj]; for (kk=0; kk<=n-1; kk++) p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk]; } }} free(e); free(a); free(b); return(js);}。
卡尔曼滤波 c语言卡尔曼滤波(KalmanFiltering)是一种具有广泛应用的状态估计技术。
它是各种应用程序中最流行的状态估计算法之一,被不同领域的研究者用于准确预测和估计状态变量。
它能够处理噪音和线性过程,用于不断更新系统的状态。
与最小二乘估计和梯度下降法相比,卡尔曼滤波在预测和估计状态值方面大大减少了误差。
使用卡尔曼滤波的一个重要原因是,它能够在迭代的状态估计问题中求解最优结果。
它使用期望(理论值)和实际值之间的差异(误差)来调节公式参数,以达到最佳状态估计。
在C语言中实现卡尔曼滤波算法很容易,只需按照特定的步骤和计算方法实现即可。
首先,根据需求,定义一个卡尔曼滤波的结构体,用于存储滤波器的参数。
其次,实现滤波器初始化函数,通过此函数可以设置滤波器的初始参数。
第三步,实现输入数据跟踪函数,使用新输入数据更新滤波器的输出状态。
最后,实现滤波器输出函数,以输出滤波器最新计算出来的状态值。
卡尔曼滤波技术能够预测未来状态,从而帮助系统稳定运行,减少因环境及历史性变化等因素影响系统状态的可能性。
它的优点是可以实现这种状态估计,而不需要考虑系统的大小或者模型的复杂程度。
此外,其计算速度很快,只需预先将初始参数设置,然后再实现三个函数,即可实现卡尔曼滤波。
在生物医学、重力探测、室内定位、自动控制和机器人等方面,卡尔曼滤波在数据处理和系统估计中应用越来越广泛。
此外,卡尔曼滤波技术在新兴行业,如神经网络和机器学习,以及无人驾驶中也得到了广泛应用。
总而言之,卡尔曼滤波是一种重要的状态估计算法,在不同领域都得到了广泛的应用,它的优点在于可以解决复杂的估计问题,而且在C语言中实现起来也十分容易。
卡尔曼滤波能够为系统提供准确的控制和跟踪,使其运行稳定。
本文档如对你有帮助,请帮忙下载支持!卡尔曼滤波算法实现代码C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000#include <math.h> #include "cv.h"class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);本文档如对你有帮助,请帮忙下载支持! kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h" #include <stdio.h>/* tester de printer toutes les valeurs des vecteurs */ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) {cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;/* create matrix data */ const float A[] = { 1, T, 0, 0, 0, 1, 0, 0, 0, 0, 1, T, 0, 0, 0, 1 };const float H[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 };本文档如对你有帮助,请帮忙下载支持!const float P[] = { pow(320,2), pow(320,2)/T, 0, 0, pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T, 0, 0, pow(240,2)/T, pow(240,2)/pow(T,2) };const float Q[] = { pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T, 0, 0, 0, 0, pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T };本文档如对你有帮助,请帮忙下载支持! const float R[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }; cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 ); rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A)); memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H)); memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q)); memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P)); memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R)); //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1)); //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x; state->data.fl[1]=xv; state->data.fl[2]=y;本文档如对你有帮助,请帮忙下载支持! state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise ); }CvPoint2D32f kalman::get_predict(float x, float y) {/* update state with current position */ state->data.fl[0]=x; state->data.fl[2]=y;/* predict point position */ /* x'k=A 鈥 k+B 鈥 kP'k=A 鈥 k-1*AT + Q */ cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl [0]), 0 ); cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */ cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */本文档如对你有帮助,请帮忙下载支持! cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );cvKalmanCorrect( cvkalman, measurement ); float measured_value_x = measurement->data.fl[0]; float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 ); float predict_value_x = prediction->data.fl[0]; float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y)); }void kalman::init_kalman(int x,int xv,int y,int yv) { state->data.fl[0]=x;state->data.fl[1]=xv; state->data.fl[2]=y; state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }c 语言实现代码如下:#include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m; if (l<n) l=n; a=malloc(l*l*sizeof(double)); b=malloc(l*l*sizeof(double)); for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*l+j; a[ii]=0.0; for (kk=0; kk<=n-1; kk++) a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*n+j; p[ii]=q[ii]; for (kk=0; kk<=n-1; kk++) p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j]; } for (ii=2; ii<=k; ii++) { for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++) { jj=i*l+j; a[jj]=0.0;本文档如对你有帮助,请帮忙下载支持!for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];} for (i=0; i<=m-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj]; for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j]; } js=rinv(e,m); if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0; for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk]; } for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0; for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j]; } for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i]; for (j=0; j<=n-1; j++) b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j]; } for (i=0; i<=n-1; i++) { jj=(ii-1)*n+i;本文档如对你有帮助,请帮忙下载支持!for (j=0; j<=m-1; j++) x[jj]=x[jj]+g[i*m+j]*b[j*l];} if (ii<k){ for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j]; if (i==j) a[jj]=1.0+a[jj]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; b[jj]=0.0; for (kk=0; kk<=n-1; kk++) b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*n+j; p[jj]=q[jj]; for (kk=0; kk<=n-1; kk++) p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk]; } }本文档如对你有帮助,请帮忙下载支持!} free(e); free(a); free(b); return(js);}本文档如对你有帮助,请帮忙下载支持!。
卡尔曼滤波原理卡尔曼滤波最早可以追溯到Wiener滤波,不同的是卡尔曼采用状态空间来描述它的滤波器,卡尔曼滤波器同时具有模糊/平滑与预测功能,特别是后者在视频分析与对象跟踪应用场景中被发扬光大,在离散空间(图像或者视频帧)使用卡尔曼滤波器相对简单。
假设我们根据一个处理想知道一个变量值如下:最终卡尔曼滤波完整的评估与空间预测模型工作流程如下:OpenCV APIcv::KalmanFilter::KalmanFilter(int dynamParams,int measureParams,int controlParams = 0,int type = CV_32F)# dynamParams表示state的维度# measureParams表示测量维度# controlParams表示控制向量# type表示创建的matrices代码演示import cv2from math import cos, sin, sqrtimport numpy as npif __name__ == "__main__":img_height = 500img_width = 500kalman = cv2.KalmanFilter(2, 1, 0)dWindow("Kalman", cv2.WINDOW_AUTOSIZE)while True:state = 0.1 * np.random.randn(2, 1)# 初始化kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])kalman.measurementMatrix = 1. * np.ones((1, 2))kalman.processNoiseCov = 1e-5 * np.eye(2)kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))kalman.errorCovPost = 1. * np.ones((2, 2))kalman.statePost = 0.1 * np.random.randn(2, 1)while True:def calc_point(angle):return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int), np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int)) state_angle = state[0, 0]state_pt = calc_point(state_angle)# 预测prediction = kalman.predict()predict_angle = prediction[0, 0]predict_pt = calc_point(predict_angle)measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)# 生成测量measurement = np.dot(kalman.measurementMatrix, state) + measurementmeasurement_angle = measurement[0, 0]measurement_pt = calc_point(measurement_angle)# plot pointsdef draw_cross(center, color, d):cv2.line(img,(center[0] - d, center[1] - d), (center[0] + d, center[1] + d),color, 1, cv2.LINE_AA, 0)cv2.line(img,(center[0] + d, center[1] - d), (center[0] - d, center[1] + d),color, 1, cv2.LINE_AA, 0)img = np.zeros((img_height, img_width, 3), np.uint8)cv2.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv2.LINE_AA, 0)cv2.line(img, state_pt, predict_pt, (255, 0, 0), 3, cv2.LINE_AA, 0)# 校正预测与测量值差异kalman.correct(measurement)# 更新noise矩阵与状态process_noise = sqrt(kalman.processNoiseCov[0,0]) * np.random.randn(2, 1) state = np.dot(kalman.transitionMatrix, state) + process_noisecv2.imshow("Kalman", img)code = cv2.waitKey(100)if code != -1:breakif code in [27, ord('q'), ord('Q')]:breakcv2.destroyWindow("Kalman")。
c语言卡尔曼滤波
卡尔曼滤波(Kalman Filtering)是一种递归滤波算法,用于估计动态系统的状态。
它是由卡尔曼(Rudolf E. Kalman)于1960年提出的。
卡尔曼滤波的核心思想是将系统的状态表示为一个高斯分布,并通过不断地观测和更新状态的均值和协方差来最优估计系统的状态。
卡尔曼滤波的过程可以概括为以下几个步骤:
1. 初始化:设定系统的初始状态,包括状态的均值和协方差。
2. 预测:基于系统的动力学模型,预测系统下一时刻的状态。
3. 更新:通过观测数据对预测的状态进行修正,得到更新后的状态。
4. 循环:不断地进行预测和更新步骤,持续估计系统的状态。
在C语言中实现卡尔曼滤波算法,可以按照以下步骤进行:1. 定义状态变量:包括状态的均值和协方差,以及观测变量的噪声方差等。
2. 初始化状态变量:设定初始状态的均值和协方差。
3. 实现预测过程:基于系统的动力学模型,更新状态的均值和协方差的预测值。
4. 实现更新过程:基于观测数据,更新状态的均值和协方差的修正值。
5. 循环进行预测和更新步骤,即可持续估计系统的状态。
具体实现过程中,需要根据实际问题来确定系统的动力学模型
和观测模型,以及状态和观测变量的维度。
同时,还需要注意处理矩阵运算和矩阵的逆等操作。
总结来说,C语言实现卡尔曼滤波可以通过定义状态变量、初
始化状态、实现预测和更新过程来完成。
在实际应用中,还需要根据具体问题进行参数调整和优化,以获得更好的滤波效果。
卡尔曼滤波c语言,经纬度-回复卡尔曼滤波(Kalman Filtering)是一个广泛应用于导航和位置估计等领域的信号处理技术。
在这篇文章中,我们将重点讨论使用C语言实现卡尔曼滤波来处理经纬度数据。
第一步:了解卡尔曼滤波的原理和应用卡尔曼滤波是一种概率估计方法,通过从多个测量中提取和融合信息,来估计一个对象在时间上的状态。
它通过先验估计和测量更新,不断调整状态估计值。
在处理经纬度数据时,卡尔曼滤波可以用于减少噪声和提高定位精度。
它结合了历史观测值和传感器测量值,利用统计学原理进行动态调整,从而提供更准确的位置估计。
第二步:理解经纬度数据的特点和问题经纬度是用于描述地球表面位置的坐标系统,由纬度和经度两个值组成。
然而,由于测量误差、信号衰减和多路径干扰等因素的存在,经纬度数据会受到很多噪声的影响。
因此,在处理经纬度数据时,我们需要考虑如何降低这些噪声的影响。
第三步:实现卡尔曼滤波算法卡尔曼滤波算法主要由两个步骤组成:预测和更新。
在预测步骤中,根据系统的动态模型和先验信息,估计下一个状态的预测值和协方差。
在更新步骤中,将测量值与预测值进行比较,计算卡尔曼增益和更新后的估计值和协方差。
在C语言中实现卡尔曼滤波算法,需要定义一些变量和函数。
首先,我们需要定义状态向量、状态协方差矩阵、系统的动态模型和测量矩阵。
然后,我们可以编写预测和更新的函数来执行卡尔曼滤波算法。
例如,我们可以定义状态向量为:float state[2]; 经度和纬度状态协方差矩阵为:float covariance[2][2]; 协方差矩阵系统动态模型可以由加速度和速度模型来确定:float acceleration; 加速度float velocity; 速度测量矩阵可以由GPS测量值来确定:float gpsMeasurement[2]; GPS测量值然后,我们可以编写预测函数来计算下一个状态的预测值和协方差:void predict(){state[0] += velocity * deltaT + 0.5 * acceleration * deltaT * deltaT;state[1] += velocity * deltaT + 0.5 * acceleration * deltaT * deltaT;covariance[0][0] += deltaT * deltaT;covariance[1][1] += deltaT * deltaT;}接下来,我们可以编写更新函数来计算卡尔曼增益并更新估计值和协方差:void update(){float innovation[2];innovation[0] = gpsMeasurement[0] - state[0];innovation[1] = gpsMeasurement[1] - state[1];float innovationCovariance[2][2];innovationCovariance[0][0] = covariance[0][0] + gpsAccuracy[0];innovationCovariance[1][1] = covariance[1][1] + gpsAccuracy[1];float kalmanGain[2][2];kalmanGain[0][0] = covariance[0][0] / innovationCovariance[0][0];kalmanGain[1][1] = covariance[1][1] / innovationCovariance[1][1];state[0] += kalmanGain[0][0] * innovation[0];state[1] += kalmanGain[1][1] * innovation[1];covariance[0][0] *= (1 - kalmanGain[0][0]);covariance[1][1] *= (1 - kalmanGain[1][1]);}最后,我们可以在主函数中循环调用预测和更新函数,以实现连续的经纬度数据处理。
卡尔曼滤波算法实现代码C++实现代码如下:============================kalman.h========================== ======// kalman.h: interface for the kalman class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED 3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_#if _MSC_VER > 1000#pragma once#endif// _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman {public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* measurement;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED _)============================kalman.cpp======================== ========#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*//* tester de changer les matrices du nois es *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 );measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)};const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI ); cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y)/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥k+B鈥k P'k=A鈥k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, meas urement );cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv)state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }c语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];} js=rinv(e,m);if (js==0) { free(e); free(a); free(b); return(js);}for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];} }}free(e); free(a); free(b);return(js);。
卡尔曼滤波入门:卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。
卡尔曼滤波也可进行系统辨识。
卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。
用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。
信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。
这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。
维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。
(1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波;(2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插;因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。
这里所谓“最佳”与“最优”是以最小均方误差为准则的。
维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。
因此在平稳条件下,它们所得到的稳态结果是一致的。
然而,它们解决的方法有很大区别。
维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。
而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。
最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。
从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。
为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。
现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k时刻观测矩阵N(k)为k时刻观测噪声则卡尔曼滤波的算法流程为:1.预估计X(k)^= F(k,k-1)·X(k-1)2.计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'Q(k) = U(k)×U(k)'3.计算卡尔曼增益矩阵K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)R(k) = N(k)×N(k)'4.更新估计X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]5.计算更新后估计协防差矩阵C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'6. X(k+1) = X(k)~C(k+1) = C(k)~重复以上步骤其c语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j]; }for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j]; }for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j]; if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j]; }for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk]; }for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk]; }}}free(e); free(a); free(b);return(js);}C++实现代码如下:============================kalman.h================================// kalman.h: interface for the kalman class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_#if _MSC_VER > 1000#pragma once#endif // _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman{public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* measurement;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_) ============================kalman.cpp================================#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 );measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)};const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y){/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥 k+B鈥 kP'k=A鈥 k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, measurement );/* adjust Kalman filter state *//* Kk=P'k鈥 T鈥?H鈥 'k鈥 T+R)-1xk=x'k+Kk鈥?zk-H鈥 'k)Pk=(I-Kk鈥 )鈥 'k */cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv) {state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;}。
卡尔曼滤波简介及其算法实现代码(C++/C/MATLAB)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。
所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。
现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。
因为这里不能写复杂的数学公式,所以也只能形象的描述。
希望如果哪位是这方面的专家,欢迎讨论更正。
卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。
跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。
简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。
假设我们要研究的对象是一个房间的温度。
根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。
假设你对你的经验不是100%的相信,可能会有上下偏差几度。
我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。
另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。
我们也把这些偏差看成是高斯白噪声。
好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。
下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的是实际温度值。
首先你要根据k-1时刻的温度值,来预测k时刻的温度。
因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟 k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。
然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。
由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。
究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的 covariance来判断。
因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78* (25-23)=24.56度。
可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。
到现在为止,好像还没看到什么自回归的东西出现。
对了,在进入 k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。
算法如下:((1-Kg)*5^2)^0.5=2.35。
这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。
他运行的很快,而且它只保留了上一时刻的covariance。
上面的Kg,就是卡尔曼增益(Kalman Gain)。
他可以随不同的时刻而改变他自己的值,是不是很神奇!下面就要言归正传,讨论真正工程系统上的卡尔曼。
3.卡尔曼滤波器算法(The Kalman Filter Algorithm)在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。
下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model 等等。
但对于卡尔曼滤波器的详细证明,这里不能一一描述。
首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B 是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H 是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance 还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式 (2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的 covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。
结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。
但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:P(k|k)=(I-Kg(k) H)P(k|k-1) (5)其中I 为1的矩阵,对于单模型单测量,I=1。
当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。
这样,算法就可以自回归的运算下去。
卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。
根据这5个公式,可以很容易的实现计算机的程序。
下面,我会用程序举一个实际运行的例子。
4.简单例子(A Simple Example)这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。
所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。
根据第二节的描述,把房间看成一个系统,然后对这个系统建模。
当然,我们见的模型不需要非常地精确。
我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。
没有控制量,所以U(k)=0。
因此得出:X(k|k-1)=X(k-1|k-1) (6)式子(2)可以改成:P(k|k-1)=P(k-1|k-1) +Q (7)因为测量的值是温度计的,跟温度直接对应,所以H=1。
式子3,4,5可以改成以下:X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) (8)Kg(k)= P(k|k-1) / (P(k|k-1) + R) (9)P(k|k)=(1-Kg(k))P(k|k-1) (10)现在我们模拟一组测量值作为输入。
假设房间的真实温度为25度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。
为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。
他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。
但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。
我选了X(0|0)=1度,P(0|0)=10。
该系统的真实温度为25度,图中用黑线表示。
图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。
最佳线性滤波理论起源于 40 年代美国科学家 Wiener 和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。
从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。