2016年全国统一高考数学试卷文科新课标ⅱ【备战高考】
- 格式:doc
- 大小:313.02 KB
- 文档页数:25
2016年高考数学(文科)全国2卷(精校版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016年高考数学(文科)全国2卷(精校版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016年高考数学(文科)全国2卷(精校版)(word版可编辑修改)的全部内容。
2016年高考数学(文科)全国2卷(精校版)一、选择题1.已知集合2{1,2,3},{9}A B x x ==<,则A B =( )A.{2,1,0,1,2,3}-- B 。
{2,1,0,1,2}--C.{1,2,3} D 。
{1,2}2.设复数z 满足3z i i +=-,则z =( )A.12i -+ B 。
12i - C.32i + D 。
32i -3.函数sin()y A x ωϕ=+的部分图像如图所示,则( )A 。
2sin(2)6y x π=- B 。
2sin(2)3y x π=-C.2sin()6y x π=+ D 。
2sin()3y x π=+4。
体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A 。
12π B.323π C.8π D.4π5。
设F 为抛物线2:4C y x =的焦点,曲线(0)ky k x =>与C 交于点P ,PF x ⊥轴,则k =()A 。
12B 。
1 C.32 D 。
26。
圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A 。
43- B.34- C 3 D 。
27.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24π C 。
一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1. 已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =I ,故选D. 2. 设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C【解析】由3z i i +=-得,32z i =-,故选C.3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=【答案】A4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以正方体的体对角线长为,所以球面的表面积为2412ππ⋅=,故选A.5. 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12 (B )1 (C )32(D )2【答案】D【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D.6. 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43 (B )−34(C (D )2 【答案】A【解析】圆心为(1,4),半径2r =1=,解得43a =-,故选A.7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为 (A )710 (B )58 (C )38 (D )310【答案】B【解析】至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17(D )34【答案】C【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n; 第二次运算,a=2,s=2226⨯+=,k=2,不满足k>n; 第三次运算,a=5,s=62517⨯+=,k=3,满足k>n ,输出s=17,故选C .10. 下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是(A )y =x (B )y =lg x (C )y =2x (D )y x= 【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .11. 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5(C )6(D )7【答案】B【解析】因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B.12. 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数 y =|x 2-2x -3| 与 y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 【答案】B【解析】因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 二.填空题:共4小题,每小题5分.13. 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.14. 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________.【答案】5-15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin(C)sin cos cos sin 65B A AC A C =+=+=,又因为sin sin a b A B =,所以sin 21sin 13a B b A ==. 16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+= (I )求{n a }的通项公式;(II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【试题分析】(I )先设{}n a 的首项和公差,再利用已知条件可得1a 和d ,进而可得{}n a 的通项公式;(II )根据{}n b 的通项公式的特点,采用分组求和法,即可得数列{}n b 的前10项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
2016 年一般高等学校招生全国一致考试( II卷)文科数学2016.6一、选择题:此题共12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
,B = { x | x 2 < 9} 则 A ∩B =1. 已知会合 A = {1,2,3}A. {-2,-1,0,1,2,3}B. {-2,-1,0,1,2}C. {1,2,3}D. {1,2}2. 设复数 z 知足 z + i = 3 - i ,则 zA. -1 + 2iB. 1 - 2iC. 3 + 2iD. 3 - 2i3. 函数 yAsin( x ) 的部分图象以下图,则A. y2 sin(2x )6 B. y2 sin(2 x )3 C. y2 sin(x)6D. y2sin( x)34. 体积为 8 的正方体的极点都在同一球面上,则该球的表面积为A. 1232C. 8D. 4B.3k(k 0) 与 C 交于点 P , PF ⊥ x 轴,则 k =5. 设 F 为抛物线 C : y 2 = 4x 的焦点,曲线yx1B. 13D. 2A.C.226. 22的圆心到直线 ax + y - 1 = 0 的距离为1,则 a =圆 x + y - 2x - 8y + 13 = 0A.4B.334C. 3D. 27. 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A. 20B. 24C. 28D. 328. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯连续时间为40 秒,若一名行人到达该路口碰到红灯,则起码需要等候15 秒才出现绿灯的概率为7 5 A.B.108 3 3 C.D.8109. 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图。
履行该程序框图,若输入的 x = 2 , n = 2,挨次输入的 a 为 2、 2、 5,则输出的 s =A. 710. 以下函数中,其定义域和值域分别与函数y = 10lg x的定义域和值域同样的是A. y = xB. y = lg xC. y = 2x1 D. yx11.函数 f (x) cos2x 6 cos(x) 的最大值为2A. 4B. 5C. 6D. 712.已知函数 f (x)( x R )知足f ( x) f ( 2 x) ,若函数 y| x22x 3 |与 y f ( x) 图象的交点为(x1,y1),m(x2,y2),, (x m,y m),则x ii1A. 0B. mC. 2mD. 4m二、填空题:此题共 4 小题,每题 5 分,共 20 分。
2016年辽宁省高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求.1.(5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{﹣2,﹣1,0,1,2,3}B.{﹣2,﹣1,0,1,2}C.{1,2,3}D.{1,2}2.(5分)设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i3.(5分)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+)D.y=2sin (x+)4.(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8πD.4π5.(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF ⊥x轴,则k=()A.B.1 C.D.26.(5分)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣ B.﹣ C.D.27.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π8.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.9.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.3410.(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=x B.y=lgx C.y=2x D.y=11.(5分)函数f(x)=cos2x+6cos (﹣x)的最大值为()A.4 B.5 C.6 D.712.(5分)已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则x i=()A.0 B.m C.2m D.4m二、填空题:本题共4小题,每小题5分.13.(5分)已知向量=(m,4),=(3,﹣2),且∥,则m=.14.(5分)若x,y 满足约束条件,则z=x﹣2y的最小值为.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.16.(5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.18.(12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度的平均保费估计值.19.(12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(Ⅰ)证明:AC⊥HD′;(Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积.20.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.21.(12分)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E与A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.[选项4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年辽宁省高考数学试卷(文科)(全国新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求.1.(5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{﹣2,﹣1,0,1,2,3}B.{﹣2,﹣1,0,1,2}C.{1,2,3}D.{1,2}【解答】解:∵集合A={1,2,3},B={x|x2<9}={x|﹣3<x<3},∴A∩B={1,2}.故选:D.2.(5分)设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i【解答】解:∵复数z满足z+i=3﹣i,∴z=3﹣2i,∴=3+2i,故选:C3.(5分)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+)D.y=2sin(x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.4.(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8πD.4π【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故选:A.5.(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF ⊥x轴,则k=()A.B.1 C.D.2【解答】解:抛物线C:y2=4x的焦点F为(1,0),曲线y=(k>0)与C交于点P在第一象限,由PF⊥x轴得:P点横坐标为1,代入C得:P点纵坐标为2,故k=2,故选:D6.(5分)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣ B.﹣ C.D.2【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.7.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.8.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.【解答】解:∵红灯持续时间为40秒,至少需要等待15秒才出现绿灯,∴一名行人前25秒来到该路口遇到红灯,∴至少需要等待15秒才出现绿灯的概率为=.故选:B.9.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.34【解答】解:∵输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C10.(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=x B.y=lgx C.y=2x D.y=【解答】解:函数y=10lgx的定义域和值域均为(0,+∞),函数y=x的定义域和值域均为R,不满足要求;函数y=lgx的定义域为(0,+∞),值域为R,不满足要求;函数y=2x的定义域为R,值域为(0,+∞),不满足要求;函数y=的定义域和值域均为(0,+∞),满足要求;故选:D11.(5分)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.12.(5分)已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则x i=()A.0 B.m C.2m D.4m【解答】解:∵函数f(x)(x∈R)满足f(x)=f(2﹣x),故函数f(x)的图象关于直线x=1对称,函数y=|x2﹣2x﹣3|的图象也关于直线x=1对称,故函数y=|x2﹣2x﹣3|与y=f(x)图象的交点也关于直线x=1对称,故x i=×2=m,故选:B二、填空题:本题共4小题,每小题5分.13.(5分)已知向量=(m,4),=(3,﹣2),且∥,则m=﹣6.【解答】解:向量=(m,4),=(3,﹣2),且∥,可得12=﹣2m,解得m=﹣6.故答案为:﹣6.14.(5分)若x,y满足约束条件,则z=x﹣2y的最小值为﹣5.【解答】解:由约束条件作出可行域如图,联立,解得B(3,4).化目标函数z=x﹣2y为y=x﹣z,由图可知,当直线y=x﹣z过B(3,4)时,直线在y轴上的截距最大,z有最小值为:3﹣2×4=﹣5.故答案为:﹣5.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.【解答】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.16.(5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是1和3.【解答】解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a3+a4=4,a5+a7=6.∴,解得:,∴a n=;(Ⅱ)∵b n=[a n],∴b1=b2=b3=1,b4=b5=2,b6=b7=b8=3,b9=b10=4.故数列{b n}的前10项和S10=3×1+2×2+3×3+2×4=24.18.(12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度的平均保费估计值.【解答】解:(I)记A为事件:“一续保人本年度的保费不高于基本保费”.事件A的人数为:60+50=110,该险种的200名续保,P(A)的估计值为:=;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.事件B的人数为:30+30=60,P(B)的估计值为:=;(Ⅲ)续保人本年度的平均保费估计值为==1.1925a.19.(12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(Ⅰ)证明:AC⊥HD′;(Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积.【解答】(Ⅰ)证明:∵菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,∴EF∥AC,且EF⊥BD将△DEF沿EF折到△D′EF的位置,则D′H⊥EF,∵EF∥AC,∴AC⊥HD′;(Ⅱ)若AB=5,AC=6,则AO=3,B0=OD=4,∵AE=,AD=AB=5,∴DE=5﹣=,∵EF∥AC,∴====,∴EH=,EF=2EH=,DH=3,OH=4﹣3=1,∵HD′=DH=3,OD′=2,∴满足HD′2=OD′2+OH2,则△OHD′为直角三角形,且OD′⊥OH,又O D′⊥AC,AC∩OH=O,即OD′⊥底面ABCD,即OD′是五棱锥D′﹣ABCFE的高.底面五边形的面积S=+=+=12+=,则五棱锥D′﹣ABCFE体积V=S•OD′=××2=.20.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.21.(12分)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E与A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.【解答】解:(I)由椭圆E的方程:+=1知,其左顶点A(﹣2,0),∵|AM|=|AN|,且MA⊥NA,∴△AMN为等腰直角三角形,∴MN⊥x轴,设M的纵坐标为a,则M(a﹣2,a),∵点M在E上,∴3(a﹣2)2+4a2=12,整理得:7a2﹣12a=0,∴a=或a=0(舍),∴S=a×2a=a2=;△AMN(II)设直线l AM的方程为:y=k(x+2),直线l AN的方程为:y=﹣(x+2),由消去y得:(3+4k2)x2+16k2x+16k2﹣12=0,∴x M﹣2=﹣,∴x M=2﹣=,∴|AM|=|x M﹣(﹣2)|=•=∵k>0,∴|AN|==,又∵2|AM|=|AN|,∴=,整理得:4k3﹣6k2+3k﹣8=0,设f(k)=4k3﹣6k2+3k﹣8,则f′(k)=12k2﹣12k+3=3(2k﹣1)2≥0,∴f(k)=4k3﹣6k2+3k﹣8为(0,+∞)的增函数,又f()=4×3﹣6×3+3﹣8=15﹣26=﹣<0,f(2)=4×8﹣6×4+3×2﹣8=6>0,∴<k<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.【解答】(Ⅰ)证明:∵DF⊥CE,∴Rt△DFC∽Rt△EDC,∴=,∵DE=DG,CD=BC,∴=,又∵∠GDF=∠DEF=∠BCF,∴△GDF∽△BCF,∴∠CFB=∠DFG,∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=180°,∴B,C,G,F四点共圆.(Ⅱ)∵E为AD中点,AB=1,∴DG=CG=DE=,∴在Rt△DFC中,GF=CD=GC,连接GB,Rt△BCG≌Rt△BFG,=2S△BCG=2××1×=.∴S四边形BCGF[选项4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.【解答】解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴t=,代入y=tsinα,得:直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(﹣6,0),半径r=5,圆心到直线的距离d=.∴圆心C(﹣6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.【解答】解:(I)当x<时,不等式f(x)<2可化为:﹣x﹣x﹣<2,解得:x>﹣1,∴﹣1<x<,当≤x≤时,不等式f(x)<2可化为:﹣x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:﹣+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(﹣1,1);证明:(Ⅱ)当a,b∈M时,(a2﹣1)(b2﹣1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的、号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},(2)设复数z 满足i 3i z +=-,则z =(A )12i -+(B )12i -(C )32i +(D )32i - (3) 函数=sin()y A x ωϕ+的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=(4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π(B )323π(C )8π(D )4π (5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12(B )1 (C )32(D )2 (6) 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a = (A )−43(B )−34(C )3(D )2(7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A )710(B )58(C )38(D )310(9)中国古代有计算多项式值得九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34(10) 下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x (D )y x=(11) 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4(B )5(C )6 (D )7(12) 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 二.填空题:共4小题,每小题5分.(13) 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.(14) 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________(15)△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________.(16)有三卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+=(I )求{n a }的通项公式; (II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2(18)(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
2016 年一般高等学校招生全国一致考试(卷 2)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务势必自己的姓名、准考据号填写在本试卷和答题卡相应地点上。
2.回答第Ⅰ卷时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号框。
写在本试卷上无效。
3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12 小题。
每题 5 分,在每个小题给出的四个选项中,只有一项为哪一项切合要求的。
(1)已知会合 A {1,2,3},B { x | x 2B9} ,则 AI D(A ) { 2, 1,0,1,2,3}(B) {2, 1,0,1,2}( C) {1 ,2,3}(D) {1,2}( 2)设复数 z 知足z i 3 i ,则z =( A ) 1 2i(B )12i (C) 3 2i (D) 3 2i(3) 函数 y=Asin( x) 的部分图像以下图,则A( A )y2sin(2 x)6( B )y2sin(2x)3(C)y 2sin(2x+ )6( D )y2sin(2+ )3(4) 体积为 8 的正方体的极点都在同一球面上,则该球面的表面积为(A )12 (B )32(C ) (D )3(5) 设 F 为抛物线: 2k C y =4 x 的焦点,曲线 y=x( k>0)与 C 交于点 P ,PF ⊥x 轴,则 k=(A ) 1(B )1(C ) 3(D )22 2(6) 圆 x 2 +y 2- 2x- 8y+13=0 的圆心到直线 ax+y- 1=0 的距离为 1,则 a= (A )- 4 (B )- 3(C ) 3(D )23 4(7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( A )20π( B ) 24π(C ) 28π( D )32π(8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯连续时间为40 秒 .若一名行人到达该路口碰到红灯,则起码需要等候 15 秒才出现绿灯的概率为学 .科网(A ) 7 (B ) 5 (C ) 3 (D )310 8 8 10(9) 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.履行该程序框图,若输入的 a 为 2, 2, 5,则输出的 s=( A )7( B )12( C )17( D )34(10) 以下函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域同样的是( A )y=x ( B )y=lgx ( C )y=2 x( D ) y1x(11) 函数 f ( x)cos 2x 6cos(πx) 的最大值为2(A )4(B )5(C )6( D ) 7(12)已知函数 f(x)( x∈ R)足 f(x)=f(2-x),若函数 y=|x2-2x-3|与 y=f(x)像的交点( x1,y1),(x2,y2) ,⋯,m( x m m x i =,y ),i 1(A)0(B) m(C) 2m(D)4m二.填空:共 4小,每小 5 分 .(13)已知向量 a=(m,4), b=(3,-2) ,且 a∥ b, m=___________.x y10(14)若 x, y 足束条件x y30 ,z=x-2y的最小__________x30( 15)△ ABC 的内角 A,B,C 的分a,b,c,若cos A 45,cosC,a=1 , b=____________. 513(16)有三卡片,分写有 1 和 2, 1 和 3, 2 和 3. 学 . 科网甲,乙,丙三人各取走一卡片,甲看了乙的卡片后:“我与乙的卡片上同样的数字不是2”,乙看了丙的卡片后:“我与丙的卡片上同样的数字不是 1”,丙:“我的卡片上的数字之和不是5”,甲的卡片上的数字是________________.三、解答:解答写出文字明,明程或演算步.( 17) (本小分12 分 )等差数列 { a n } 中,a3 a 44, a5 a 76( I )求 { a n } 的通公式;(II)bn =[an ],求数列 {bn } 的前 10 和,此中 [x] 表示不超x 的最大整数,如[0.9]=0,[2.6]=2( 18) (本小分12 分 )某种的基本保 a(位:元),种的投保人称保人,保人今年度的保与其上年度出次数的关以下:学科 .网随机了种的200 名保人在一年内的出状况,获得以下表:( I ) A 事件:“一保人今年度的保不高于基本保”。
2016年普通高等学校招生全统一考试文科数学本试卷分第Ⅰ卷〔选择题〕和第Ⅱ卷〔非选择题〕两部分,共24题,共150分第Ⅰ卷一、选择题:此题共12小题,每题5分,在每题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合{}3,2,1=A ,{}92<=x x B ,则=B A 〔A 〕{}3,2,1,0,1,2-- 〔B 〕{}2,1,0,1- 〔C 〕{}3,2,1 〔D 〕{}2,1(2) 设复数z 满足i i z -=+3,则=z〔A 〕i 21+- 〔B 〕i 21- 〔C 〕i 23+ 〔D 〕i 23- (3) 函数)sin(ϕω+=x A y 的部分图像如下图,则〔A 〕)62sin(2π-=x y 〔B 〕)32sin(2π-=x y 〔C 〕)62sin(2π+=x y 〔D 〕)32sin(2π+=x y (4) 体积为8的正方体的顶点都在同一球面上,则该球面的外表积为〔A 〕π12 〔B 〕π332〔C 〕π8 〔D 〕π4 (5) 设F 为抛物线C :x y 42=的焦点,曲线)0(>=k xky 与C 交于点P ,x PF ⊥轴,则=k 〔A 〕21 〔B 〕1 〔C 〕23〔D 〕2 (6) 圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a〔A 〕3 〔B 〕43〔C 〕3 〔D 〕2 (7) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的外表积为〔A 〕20π〔B 〕24π 〔C 〕28π 〔D 〕32π精品否是 0n k >输出s结束a1+=+⋅=k k a x s s遇到红灯,则至少需要等待15秒才出现绿灯的概率为〔A 〕107 〔B 〕85 〔C 〕83 〔D 〕103 (9) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,假设输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s 〔A 〕7 〔B 〕12 〔C 〕17 〔D 〕34 (10)以下函数中,其定义域和值域分别与函数xy lg 10=的定义域和值域相同的是〔A 〕x y = 〔B 〕x y lg = 〔C 〕xy 2= 〔D 〕xy 1=(11)函数)(x x x f -+=2cos6 2 cos )(π的最大值为 〔A 〕4 〔B 〕5 〔C 〕6 〔D 〕7(12)已知函数)( )(R x x f ∈满足)2()(x f x f -=,假设函数322--=x x y 与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则∑=mi ix1〔A 〕0 〔B 〕m 〔C 〕m 2 〔D 〕m 4第Ⅱ卷本卷包括必考题和选考题两部分。
全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)一、选择题1.已知集合{123}A =,,,2{|9}B x x =<,则A B = ( )(A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12}, 【答案】D【解析】试题分析:由29x <得,33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B = ,故选D.【考点】 一元二次不等式的解法,集合的运算. 2.设复数z 满足i 3i z +=-,则z =( )(A )12i -+ (B )12i - (C )32i + (D )32i -【答案】C【解析】试题分析:由3z i i +=-得,32z i =-,所以32z i =+,故选C. 【考点】 复数的运算,共轭复数.3.函数=sin()y A x ωϕ+的部分图像如图所示,则( )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=【答案】A【解析】试题分析:由图知,2A =,周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+,因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22(Z)32k k ππϕπ+=+∈, 令0k =得,6πϕ=-,所以2sin(2)6y x π=-,故选A.【考点】 三角函数图像的性质4.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( ) (A )12π (B )323π(C )8π (D )4π【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为为2412ππ⋅=,故选A.【考点】 正方体的性质,球的表面积. 5.设F 为抛物线C :y 2=4x 的焦点,曲线y=kx(k>0)与C 交于点P ,PF ⊥x 轴,则k=( )(A )12 (B )1 (C )32 (D )2【答案】D【解析】试题分析:因为F 抛物线24y x =的焦点,所以(1,0)F , 又因为曲线(0)k y k x =>与C 交于点P ,PF x ⊥轴,所以21k=,所以2k =,选D.【考点】 抛物线的性质,反比例函数的性质. 6.圆x 2+y 2−2x −8y+13=0的圆心到直线ax+y −1=0的距离为1,则a=( )(A )−43 (B )−34(C (D )2【答案】A【解析】试题分析:由2228130x y x y +--+=配方得22(1)(4)4x y -+-=,所以圆心为(1,4),半径2r =,因为圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,1=,解得43a =-,故选A.【考点】 圆的方程,点到直线的距离公式.7.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【答案】C【解析】试题分析:由题意可知,圆柱的侧面积为122416S ππ=⋅⋅=,圆锥的侧面积为2122482S ππ=⋅⋅⋅=,圆柱的底面面积为2324S ππ=⋅=,故该几何体的表面积为12328S S S S π=++=,故选C.【考点】 三视图,空间几何体的体积. 8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )(A )710 (B )58 (C )38 (D )310【答案】B【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 【考点】 几何概型.9.中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s=( )(A )7 (B )12 (C )17 (D )34【答案】C【解析】试题分析:由题意,当2,2,0,0x n k s ====,输入2a =,则0222,1s k =⨯+==,循环;输入2a =,则2226,2s k =⨯+==,循环;输入5a =,62517,32s k =⨯+==>,结束.故输出的17s =,选C.【考点】 程序框图,直到型循环结构.10.下列函数中,其定义域和值域分别与函数y=10lgx 的定义域和值域相同的是( )(A )y=x (B )y=lgx (C )y=2x (D )y= 【答案】D【解析】试题分析:lg 10x y x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .【考点】 函数的定义域、值域,对数的计算.11.函数π()cos 26cos()2f x x x =+-的最大值为( )(A )4 (B )5 (C )6 (D )7 【答案】B【解析】试题分析:因为22311()12sin 6sin 2(sin )22f x x x x =-+=--+,而s i n [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B. 【考点】 正弦函数的性质、二次函数的性质. 12.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y=|x 2-2x-3| 与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑( )(A )0 (B )m (C )2m (D )4m 【答案】B【解析】试题分析:因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数的奇偶性,对称性.二、填空题13.已知向量a=(m,4),b=(3,-2),且a ∥b ,则m=___________. 【答案】6-【解析】试题分析:因为a ∥b ,所以2430m --⨯=,解得6m =-. 【考点】平面向量的坐标运算 ,平行向量.14.若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为__________【答案】5-【解析】试题分析:由1030x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,点()1,2A ,由1030x y x -+=⎧⎨-=⎩得34x y =⎧⎨=⎩,点()3,4B ,由3030x x y -=⎧⎨+-=⎩得30x y =⎧⎨=⎩,点()C 3,0,分别将A ,B ,C 代入2z x y =-得:1223z A =-⨯=-,3245z B =-⨯=-,C 3203z =-⨯=,所以2z x y =-的最小值为5-. 【考点】 简单的线性规划.15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a=1,则b=____________. 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=, 又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 【考点】 正弦定理,三角函数和差公式.16.有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 【考点】 推理.三、解答题17.等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;(Ⅱ)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.【答案】(Ⅰ)235n n a +=;(Ⅱ)24.【解析】试题分析:(Ⅰ)题目已知数列{n a }是等差数列,根据通项公式列出关于1a ,d 的方程,解方程求得1a ,d ,从而求得n a ;(Ⅱ)根据条件[]x 表示不超过x 的最大整数,求n b ,需要对n =分类讨论,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==, 所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦, 当n =1,2,3时,2312,15n n b +≤<=; 当n =4,5时,2323,25n n b +≤<=; 当n =6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45nnb+≤<=,所以数列{}n b的前10项和为1322334224⨯+⨯+⨯+⨯=.【考点】等差数列的性质,数列的求和.18.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求()P A的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求()P B的估计值;(Ⅲ)求续保人本年度的平均保费估计值.【答案】(Ⅰ)由6050200+求()P A的估计值;(Ⅱ)由3030200+求()P B的估计值;(Ⅲ)根据平均值得计算公式求解.【解析】试题分析:(Ⅰ)由已知数据,一年内出险次数小于2的有2种情况,由频数和除以样本总数即可得到一年内险次数小于2的频率;(Ⅱ)由已知数据,一续保人本年度的保费高于基本保费但不高于基本保费的160%,即为一年内出险次数大于1且小于4.由频数和除以样本总数即得()P B的估计值;(Ⅲ)由题所求分布列,由平均数的计算公式求解结论.试题解析:(Ⅰ)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55 200+=,故P(A)的估计值为0.55.(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3 200+=,故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费0.85a a 1.25a 1.5a 1.75a2a频率0.300.250.150.150.100.05调查200名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.3020.10 1.1925a a a a a a a⨯+⨯+⨯+⨯+⨯+⨯=,因此,续保人本年度平均保费估计值为1.1925a.【考点】样本的频率、平均值的计算.19.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD 上,AE CF =,EF 交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置.(Ⅰ)证明:'AC HD ⊥;(Ⅱ)若55,6,,'4AB AC AE OD ====求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(Ⅰ)由已知得,,.⊥=AC BD AD CD 又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD . (Ⅱ)由//EF AC 得1.4==OH AE DO AD由5,6==AB AC 得 4.==DO BO 所以1, 3.'===OH D H DH于是2222219,''+=+==OD OH D H 故.'⊥OD OH 由(Ⅰ)知'⊥AC HD ,又,'⊥= AC BD BD HD H , 所以⊥AC 平面,'BHD 于是.'⊥AC OD又由,'⊥= OD OH AC OH O ,所以,'⊥OD 平面.ABC又由=EF DH AC DO 得9.2=EF 五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S所以五棱锥'ABCEF D -体积16934=⨯⨯=V【考点】 空间中的线面关系判断,几何体的体积.20.已知函数()(1)ln (1)f x x x a x =+--.(Ⅰ)当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 【答案】(Ⅰ)220x y +-=;(Ⅱ)(],2.-∞【解析】试题分析:(Ⅰ)先求函数的定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解. 试题解析:(Ⅰ)()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x,(1)2,(1)0.'=-=f f 所以曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-= (Ⅱ)当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x , 则222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x ,(Ⅰ)当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x , 故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;(Ⅱ)当2>a 时,令()0'=g x 得1211=-=-+x a x a 由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()0<g x . 综上,a 的取值范围是(],2.-∞【考点】 导数的几何意义,函数的单调性.21.已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =2k <.【答案】(Ⅰ)14449;(Ⅱ)).【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=.(Ⅱ)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故1||2|AM x =+=.由题设,直线AN 的方程为1(2)y x k =-+,故同理可得212||43AN k =+.由2||||AM AN =得2223443k k k=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k 在2k <<. 【考点】椭圆的性质,直线与椭圆的位置关系.22.选修4-1:几何证明选讲如图,在正方形ABCD 中,,E G 分别在边,DA DC 上(不与端点重合),且DE DG =,过D 点作DF CE ⊥,垂足为F .(Ⅰ)证明:,,,B C G F 四点共圆;(Ⅱ)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【答案】(Ⅰ)详见解析;(Ⅱ)12. 【解析】试题分析:(Ⅰ)证,DGF CBF ∆~∆再证,DGF CBF ∆~∆可得0180,CGF CBF ∠+∠=即得,,,B C G F 四点共圆;(Ⅱ)由由,,,B C G F 四点共圆,可得FG FB ⊥,再证明,Rt BCG Rt BFG ∆~∆根据四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍求得结论.试题解析:(Ⅰ)因为DF EC ⊥,所以,DEF CDF ∆~∆ 则有,,DF DE DG GDF DEF FCB CF CD CB∠=∠=∠== 所以,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠由此0180,CGF CBF ∠+∠=所以,,,B C G F 四点共圆.(Ⅱ)由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB , 由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ 因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=【考点】 三角形相似、全等,四点共圆23.选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||AB ,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ). 【解析】试题分析:(Ⅰ)利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(Ⅱ)先求直线l 的极坐标方程,将l 的极坐标方程代入C 的极坐标方程得到关于ρ的一元二次方程212cos 110.ρρα++=,再根据韦达定理,弦长公式求出cos α,进而求得tan α,即可求得直线l 的斜率.试题解析:(Ⅰ)由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++=(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得 212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB 得23cos ,tan 8αα==,所以l 的斜率为3或3-. 【考点】圆的极坐标方程与普通方程互化, 直线的参数方程,点到直线的距离公式.24.选修4—5:不等式选讲 已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)分12x <-,1122x -≤≤和12x >三种情况去掉绝对值,再解不等式()2f x <,即可得集合M ;(Ⅱ)采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,确定21a -和21b -的符号,从而证明不等式1a b ab +<+成立.试题解析:(Ⅰ)12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时, ()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(Ⅱ)由(Ⅰ)知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|.a b ab +<+【考点】绝对值不等式,不等式的证明.。
2016年普通高等学校招生全国统一考试(全国II卷文科)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单选题(本大题共12小题,每小题____分,共____分。
)1.已知集合,则(D)A. B. C. D.2.设复数z满足,则=(C)A. B. C. D. 3-2i3.函数的部分图像如图所示,则(A)A.B.C.D.4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为(A)A. B. C. D.5. 设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=(D)A. B. 1 C. D. 26. 圆x2+y2−2x−8y+13=0的圆心到直线ax+y−1=0的距离为1,则a=(A)A. −B. −C.D. 27.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(C)A. 20πB. 24πC. 28πD. 32π8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(B)A. B. C. D.9.中国古代有计算多项式值得的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依闪输入的a为2,2,5,则输出的s=(C)A. 7B. 12C. 17D. 3410.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是(D)A. y=xB. y=lgxC. y=2xD.11.函数的最大值为(B)A. 4B. 5C. 6D. 712. 已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3| 与y=f(x) 图像的交点为(x1,y1),(x2,y2),…,(x m,y m),则(B)A. 0B. mC. 2mD. 4m二、填空题(本大题共4小题,每小题____分,共____分。
第1页(共25页) 2016年全国统一高考数学试卷(文科)(新课标Ⅱ) 一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求. 1.(5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=( ) A.{﹣2,﹣1,0,1,2,3} B.{﹣2,﹣1,0,1,2} C.{1,2,3} D.{1,2} 2.(5分)设复数z满足z+i=3﹣i,则=( ) A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i 3.(5分)函数y=Asin(ωx+φ)的部分图象如图所示,则( )
A.y=2sin(2x﹣) B.y=2sin(2x﹣) C.y=2sin(x+) D.y=2sin(x+) 4.(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( ) A.12π B.π C.8π D.4π
5.(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=( ) A. B.1 C. D.2 6.(5分)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=( ) A.﹣ B.﹣ C. D.2 7.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) 第2页(共25页)
A.20π B.24π C.28π D.32π 8.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A. B. C. D. 9.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )
A.7 B.12 C.17 D.34 10.(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是( ) 第3页(共25页)
A.y=x B.y=lgx C.y=2x D.y= 11.(5分)函数f(x)=cos2x+6cos(﹣x)的最大值为( ) A.4 B.5 C.6 D.7 12.(5分)已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣
3|与 y=f(x) 图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则xi=( ) A.0 B.m C.2m D.4m
二、填空题:本题共4小题,每小题5分. 13.(5分)已知向量=(m,4),=(3,﹣2),且∥,则m= .
14.(5分)若x,y满足约束条件,则z=x﹣2y的最小值为 . 15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= . 16.(5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .
三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(12分)等差数列{an}中,a3+a4=4,a5+a7=6. (Ⅰ)求{an}的通项公式; (Ⅱ)设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2. 18.(12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 0 1 2 3 4 ≥5 第4页(共25页)
保费 0.85a a 1.25a 1.5a 1.75a 2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表: 出险次数 0 1 2 3 4 ≥5 频数 60 50 30 30 20 10 (I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值; (Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值; (Ⅲ)求续保人本年度的平均保费估计值. 19.(12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置. (Ⅰ)证明:AC⊥HD′; (Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积.
20.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1). (I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程; (II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
21.(12分)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA. (I)当|AM|=|AN|时,求△AMN的面积 (II) 当2|AM|=|AN|时,证明:<k<2.
请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲] 第5页(共25页)
22.(10分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F. (Ⅰ)证明:B,C,G,F四点共圆; (Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.
[选项4-4:坐标系与参数方程] 23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25. (Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程; (Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.
[选修4-5:不等式选讲] 24.已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集. (Ⅰ)求M; (Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|. 第6页(共25页)
2016年全国统一高考数学试卷(文科)(新课标Ⅱ) 参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求. 1.(5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=( ) A.{﹣2,﹣1,0,1,2,3} B.{﹣2,﹣1,0,1,2} C.{1,2,3} D.{1,2} 【分析】先求出集合A和B,由此利用交集的定义能求出A∩B的值. 【解答】解:∵集合A={1,2,3},B={x|x2<9}={x|﹣3<x<3}, ∴A∩B={1,2}. 故选:D. 【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
2.(5分)设复数z满足z+i=3﹣i,则=( ) A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i 【分析】根据已知求出复数z,结合共轭复数的定义,可得答案. 【解答】解:∵复数z满足z+i=3﹣i, ∴z=3﹣2i, ∴=3+2i, 故选:C. 【点评】本题考查的知识点是复数代数形式的加减运算,共轭复数的定义,难度不大,属于基础题.
3.(5分)函数y=Asin(ωx+φ)的部分图象如图所示,则( ) 第7页(共25页)
A.y=2sin(2x﹣) B.y=2sin(2x﹣) C.y=2sin(x+) D.y=2sin(x+) 【分析】根据已知中的函数y=Asin(ωx+φ)的部分图象,求出满足条件的A,ω,φ值,可得答案. 【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2, =,故T=π,ω=2, 故y=2sin(2x+φ), 将(,2)代入可得:2sin(+φ)=2,
则φ=﹣满足要求, 故y=2sin(2x﹣), 故选:A. 【点评】本题考查的知识点是由y=Asin(ωx+φ)的部分图象确定其解析式,确定各个参数的值是解答的关键.
4.(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( ) A.12π B.π C.8π D.4π 【分析】先通过正方体的体积,求出正方体的棱长,然后求出球的半径,即可求出球的表面积. 【解答】解:正方体体积为8,可知其边长为2, 正方体的体对角线为=2, 即为球的直径,所以半径为, 第8页(共25页)
所以球的表面积为=12π. 故选:A. 【点评】本题考查学生的空间想象能力,体积与面积的计算能力,是基础题.
5.(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=( ) A. B.1 C. D.2 【分析】根据已知,结合抛物线的性质,求出P点坐标,再由反比例函数的性质,可得k值. 【解答】解:抛物线C:y2=4x的焦点F为(1,0), 曲线y=(k>0)与C交于点P在第一象限, 由PF⊥x轴得:P点横坐标为1, 代入C得:P点纵坐标为2, 故k=2, 故选:D. 【点评】本题考查的知识点是抛物线的简单性质,反比例函数的性质,难度中档.
6.(5分)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=( ) A.﹣ B.﹣ C. D.2 【分析】求出圆心坐标,代入点到直线距离方程,解得答案. 【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),
故圆心到直线ax+y﹣1=0的距离d==1,
解得:a=, 故选:A. 【点评】本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.