实用文库汇编之将军饮马问题(讲)
- 格式:doc
- 大小:681.50 KB
- 文档页数:14
将军饮马问题16大模型将军饮马问题是一个经典的数学问题,被广泛应用于算法设计和逻辑推理。
在这个问题中,有一个有限数量的将军和马,将军们需要同时饮马,而且马的数量要足够多,以保证每个将军都能骑到马上。
然而,问题的难点在于,如果将军们不约定时间,他们同时骑上马的可能性很小。
为解决这个问题,已经提出了许多解决方案,下面我将介绍16种解决这个问题的模型。
1. 广播模型将军们可以通过广播的方式进行通信,每个将军都可以听到其他将军的广播信号。
在某个固定时间,将军们开始广播他们已准备好骑马的消息,并等待其他将军的回应。
只有当每个将军都收到了其他将军的回应信号,他们才会同时骑上马。
2. 协商模型将军们可以通过协商的方式进行通信,每个将军都可以与其他将军直接交流。
在某个固定时间,将军们开始与其他将军交流他们已准备好骑马的消息,并等待其他将军的回应。
只有当每个将军都收到了其他将军的回应信息,他们才会同时骑上马。
3. 仲裁者模型将军们委任一个仲裁者作为中介来传递消息。
每个将军将自己已准备好骑马的消息告诉仲裁者,仲裁者负责将该消息传递给所有其他将军。
只有当每个将军都收到其他将军的消息,他们才会同时骑上马。
4. 时钟模型在固定的时间间隔内,每个将军都可以检查时钟的状态。
他们会设定一个目标时间,当时钟的时间达到目标时间时,将军们会同时骑上马。
这样,他们可以通过同步的方式来保证同时骑马。
5. 群体模型将军们通过形成一个群体来解决这个问题。
在一个固定时间,将军们同时进入群体,并在一起饮马。
这种方式需要所有将军都同意进入群体,并时刻保持一致,才能保证同时骑马。
将军们依次传递一个令牌表示自己已准备好骑马。
当每个将军都收到了令牌并且已经骑上马时,他们才会将令牌传递给下一个将军。
这种方式需要将军们按照一定的规则来传递令牌,以保证同时骑马。
7. 树模型将军们通过构建一棵树来解决这个问题。
树的根节点是一个仲裁者,每个将军是树的叶子节点。
当仲裁者收到所有将军的准备好骑马的消息时,他会通知所有将军同步骑马。
将军饮马问题初一下册数学
将军饮马问题是一道经典的数学问题,可以出现在初一下册数学教材中。
问题描述如下:
一位将军正在战场上指挥军队,突然他接到了一份紧急情报,需要尽快传达给另一位将军。
情报中标明,另一位将军所在的位置离现在的位置有100公里。
将军所在的位置有一匹马,这匹马每小时能以20公里的速度飞驰。
情报又标明,该将军只能在3个小时内接到情报,否则将会有重大损失。
请问,将军至少需要准备多少匹马才能保证在3个小时内成功将情报传达给另一位将军?
解答:
我们可以计算出,将军在3个小时内最远可以跑60公里(3小时 x 20公里/小时 = 60公里)。
也就是说,无论如何将军都无法到达100公里远的位置。
因此,我们可以得出结论,将军至少需要准备2匹马才能保证在3个小时内成功将情报传达给另一位将军。
他可以先骑一匹马跑60公里,然后再换乘另一匹马跑40公里,总共跑100公里,将情报传达给另一位将军。
将军饮马问题的原理
将军饮马问题是一个经典的数学问题,它的原理是利用线性方程组来解决实际问题。
这个问题的背景是:有一位将军要带兵过河,他手下有若干个骑兵和步兵,每个骑兵需要2匹马来驮运,每个步兵需要1匹马来驮运。
现在将军手中有一定数量的马,问能否满足所有人的渡河需求?
为了解决这个问题,我们可以设骑兵的数量为x,步兵的数量为y,马的数量为z。
根据题意,我们可以得到以下两个方程:2x + y = z (每匹马可以驮运一个骑兵或两个步兵)
x + y = z/2 (将军手中的马只能驮运部分人)
将第二个方程式变形得到 x = z/2 - y,将其代入第一个方程式中,消去x,得到:
2(z/2 - y) + y = z
化简后得到:
3y = z
因此,无论将军手中的马有多少只,只要骑兵和步兵的数量之比为2:1,就可以满足所有人的渡河需求。
这就是将军饮马问题的原理。
通过建立线性方程组并求解,我们可以找到问题的最优解。
数学将军饮马知识点总结一、问题描述数学将军饮马问题的描述如下:一个将军率领一支骑兵队,要经过一片沙漠。
沙漠上有一口水井,水井的深度可以满足整支骑兵队的饮水需求。
将军骑着一匹马,可以携带一定数量的水。
现在问题来了,将军每小时可以骑马走一定的距离,而每匹马每小时可以喝一定的水。
现在需要确定将军携带多少水,才能保证整支骑兵队能够成功地跨越沙漠,而又不至于浪费水资源。
二、问题分析1. 数学模型建立数学将军饮马问题首先需要进行问题分析和建模,以确定针对这一问题的数学模型。
通过观察和分析可以得出,这是一个关于时间、距离和水量的问题,需要建立数学关系,建模求解。
2. 走距离与喝水在沙漠中骑马跋涉,对于骑马走的距离和喝水之间的关系需要进行合理的分析和计算。
根据数学将军饮马问题的描述,我们可以得知:将军每小时可以骑马走一定的距离,每匹马每小时可以喝一定的水。
3. 求解根据将军队伍的规模、马的喝水速度和水源的容量,我们需要求解将军携带多少水能够足够整支骑兵队顺利跨越沙漠的问题。
三、相关知识点总结1. 时间、距离与速度的关系在数学将军饮马问题中,时间、距离和速度是密不可分的。
根据题目描述,我们需要确定将军每小时可以骑马走的距离。
这就涉及到了时间、距离和速度的关系。
在实际生活和工作中,我们也经常会遇到时间、距离和速度的计算和关系问题,而这一问题正是数学知识在实际应用中的体现。
2. 水量的计算在数学将军饮马问题中,将军骑马携带的水量是一个重要的问题。
将军需要在保证整支骑兵队能够成功跨越沙漠的前提下,尽量减少携带的水量,避免浪费水资源。
因此,对于将军饮马问题,我们需要进行水量的计算和分析,以确定最合适的携带水量。
3. 最优化问题数学将军饮马问题可以理解为一个最优化问题,在保证整支骑兵队能够成功地跨越沙漠的前提下,需要尽量减少携带的水量,以达到最优化的效果。
这就涉及到了数学中的最优化问题的求解方法,需要通过建立数学模型、分析求解,找到最优的携带水量。
选必一数学,点与直线的对称问题应用将军饮马和入射
反射光线
1. 将军饮马问题:
(1) 定义:将军骑马从军营出发,先到一条直线上某点饮马,然后返回军营。
最短路径是什么?
(2) 解题方法:作出发地点关于直线的对称点,连接对称点和目标地点,这
条连线与直线的交点即为最短路径的点。
(3) 证明:利用轴对称的性质和三角形的三边关系证明。
2. 入射反射光线问题:
(1) 定义:一条光线从某点射出,经过直线反射后回到原点。
求反射点的位置。
(2) 解题方法:作出发点和反射点的中点,连接这个中点和直线上的任意一点,作这个连线与直线的交点,即为反射点。
(3) 证明:利用中位线定理和相似三角形的性质证明。
将军饮马问题例题
摘要:
1.将军饮马问题的定义与背景
2.将军饮马问题的数学模型
3.解析将军饮马问题的关键步骤
4.将军饮马问题的实际应用
正文:
一、将军饮马问题的定义与背景
将军饮马问题是数学中的一个经典问题,起源于古代战争中将军在河边饮马的情景。
问题描述为:一位将军站在河边,他的马在河对岸,将军与马之间的距离已知,问将军如何在保证不被敌人发现的情况下,使得自己与马之间的距离最短。
这个问题实际上涉及到的是几何光学的知识,尤其是光的传播和直线传播的原理。
二、将军饮马问题的数学模型
为了解决将军饮马问题,我们需要建立一个数学模型。
首先,我们可以将问题简化为二维平面几何问题,将军所在位置为A 点,马所在位置为B 点,河对岸为C 点,AC 与BC 的夹角为θ,那么,将军到马最短距离就是线段AB 在角度θ上的投影。
根据三角函数知识,我们可以知道,这个投影长度等于线段AB 的长度乘以cosθ。
三、解析将军饮马问题的关键步骤
解决将军饮马问题的关键在于找到角度θ的值。
我们可以通过以下步骤来
求解:
1.画出问题场景的示意图,明确各点的位置关系。
2.利用三角函数中的正切函数,求出角度θ。
3.利用三角函数中的余弦函数,求出将军到马的最短距离。
四、将军饮马问题的实际应用
将军饮马问题虽然起源于战争场景,但在现实生活中,它的应用却非常广泛。
比如在光学领域,将军饮马问题可以帮助我们理解光线的传播和反射;在工程领域,将军饮马问题可以帮助我们解决最短路径问题,提高运输效率。
将军饮马问题,掌握这⼗个数学模型就够了“将军饮马”问题是初中数学中⾮常重要的数学知识和⼏何模型,也是求线段最值问题的最常⽤数学模型。
将军饮马问题是⼀个有故事的数学问题,故事⼤意如下:唐朝诗⼈李颀的诗《古从军⾏》开头两句说:'⽩⽇登⼭望烽⽕,黄昏饮马傍交河。
'诗中隐含着⼀个有趣的数学问题。
传说亚历⼭⼤城有⼀位精通数学和物理的学者,名叫海伦,⼀天,⼀位罗马将军专程去拜访他,向他请教⼀个百思不得其解的问题。
将军每天从军营A出发,先到河边饮(yìn)马,然后再去河岸同侧的B地开会,应该怎样⾛才能使路程最短?从此,这个被称为'将军饮马'的问题⼴泛流传。
将军饮马问题的最基础模型探究:这个问题的解决并不难,据说海伦略加思索就解决了它。
抽象为数学模型:直线l同侧有两个定点A、B,请在直线l上找⼀点C,使AC+BC最⼩。
假设点A、B在直线l的异侧就好了,这样我们就可以利⽤【点到点最值模型:两点之间线段最短】找到点C的位置了。
即连接AB交直线l于点C。
因此,我们可以找点A关于直线l的对称点,连接A’B交直线l于点C,点C即为所求!如果将军在河边的另外任⼀点C'饮马,所⾛的路程就是AC'+C'B,但是AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB.故在点C处饮马,路程最短。
要点概述:1.初中数学线段最值问题可以总结为三类,点与点、点与线和线与线之间的最值,⼀般需要⽤到以下知识点:2.将军饮马问题的核⼼思想,它的核⼼思想是“化折为直”,“化折为直”是初中数学最重要的⼀个解题思想,将军饮马,费马点,胡不归,阿⽒圆等最值问题,都⽤到“折化直”的数学转换思想。
化折为直的⽅法有轴对称,平移,构造⼦母相似三⾓形,三⾓函数转换等等,将军饮马问题⼤都采⽤的是轴对称来实现“折化直”的⽬标。
最值问题之将军饮马一、模型精讲最小?基础模型:如图,在直线上找一点P使得PA+PB模型解析:作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+模型变式:1.两定一动之点点周长最小.在OA、OB上分别取点M、N,使得△PMN2.两定两动之点点的周长最小。
在OA、OB上分别取点M、N使得四边形PMNQ3.一定两动之点线12在OA 、OB 上分别取M 、N 使得PM +MN最小。
此处M 点为折点,作点P 关于OA 对称的点P ',将折线段PM +MN 转化为P 'M +MN ,即过点P '作OB 垂线分别交OA 、OB 于点M 、N ,得PM +MN 最小值(点到直线的连线中,垂线段最短)二、针对训练一、单选题1如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为()A.4B.42C.25D.52如图所示,在△ABC 中,∠ABC =68°,BD 平分∠ABC ,P 为线段BD 上一动点,Q 为 边AB 上一动点,当AP +PQ 的值最小时,∠APB的度数是()A.118°B.125°C.136°D.124°3如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD的最小值为() A.154 B.245 C.5 D.2034如图所示,已知A (1,y 1),B (2,y 2)为反比例函数y =2x图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段3AP 与线段BP 之差达到最大值时,点P 的坐标是()A.(3,0)B.72,0C.53,0D.52,05如图,如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,PA ,PB 与x 轴分别交于A ,B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为()A.3B.4C.5D.66如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若AE =2,则EM +CM的最小值为()A.26B.33C.27D.427如图,点M 是菱形ABCD 的边BC 的中点,P 为对角线BD 上的动点,若AB =2,∠A =120°,则PM +PC的最小值为()A.2B.3C.2D.18如图1,正方形ABCD 中,点E 是BC 的中点,点P 是对角线AC 上的一个动点,设AP =x ,PB +PE =y ,当点P 从A 向点C 运动时,y 与x 的函数关系如图2所示,其中点M 是函数图象的最低点,则点M 的坐标是()4A.42,35 B.22,35 C.35,22 D.35,429如图,E 为正方形ABCD 边AD 上一点,AE =1,DE =3,P 为对角线BD 上一个动点,则PA+PE 的最小值为()A.5B.42C.210D.1010如图,在矩形ABCD 中,AB =8,AD =4,点E 是矩形ABCD 内部一动点,且∠BEC =90°,点P 是AB 边上一动点,连接PD 、PE ,则PD+PE 的最小值为()A.8B.45C.10D.45-2二、填空题11如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,EF 垂直平分BC ,点P 为直线EF 上任意一点,则AP +BP 的最小值是.12如图,在等边△ABC 中,BD ⊥AC 于D ,AD =3cm .点P ,Q 分别为AB ,AD 上的两个定点且BP =AQ =1cm ,点M 为线段BD 上一动点,连接PM ,QM ,则PM +QM 的最小值为cm .513如图,牧童在A 处,A 、B 处相距河岸的距离AC ,BD 的长分别为700m 和500m ,且C ,D 两地距离为500m ,天黑前牧童从A 处将牛牵到河边饮水,再赶回家,那么牧童最少要走.14如图,菱形草地ABCD 中,沿对角线修建60米和80米两条道路AC <BD ,M 、N 分别是草地边BC 、CD 的中点,在线段BD 上有一个流动饮水点P ,若要使PM +PN 的距离最短,则最短距离是米.15在平面直角坐标系中,点A 0,-3 ,点O 0,0 ,若有一点B 2a +1,-2a +2 ,当BA +BO 的值最小时,a =.16如图,直线y =x +4与x 轴,y 轴分别交于A 和B ,点C 、D 分别为线段AB 、OB 的中点,P 为OA 上一动点,当PC +PD的值最小时,点P 的坐标为.17如图,点P 是∠AOB 内任意一点,OP =3cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,∠AOB =30°,则△PMN 周长的最小值是.618如图,在周长为12的菱形ABCD 中,DE =1,DF =2,若P 为对角线AC 上一动点,则EP +FP 的最小值为.19如图,在Rt △ABC 中,∠ACB =90°,AC =BC,点C 在直线MN 上,∠BCN =30°,点P 为MN 上一动点,连接AP ,BP .当AP +BP 的值最小时,∠CBP 的度数为度.20如图,抛物线y =x 2-4x +3与x 轴分别交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,在其对称轴上有一动点M ,连接MA ,MC ,AC ,则△MAC 周长的最小值是.三、解答题21如图,抛物线y =x 2+bx +c 与x 轴交于A -1,0 ,B 3,0 两点.(1)求该抛物线的解析式;(2)观察函数图象,直接写出当x 取何值时,y >0?(3)设(1)题中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.22教材呈现:下图是华师版八年级下册数学教材第111页的部分内容.7(1)问题解决:请结合图①,写出例1的完整解答过程.(2)问题探究:在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB =4,∠BAD =2∠ABC .过点D 作DE ⎳AC 交BC 的延长线于点E .如图②,连结OE ,则OE 的长为.(3)如图③,若点P 是对角线BD 上的一个动点,连结PC 、PE ,则PC+PE 的最小值为.23在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,A (3,0),B (0,4),D 为边OB 的中点.(1)若E 为边OA 上的一个动点,求△CDE 的周长最小值;(2)若E 、F 为边OA 上的两个动点,且EF =1,当四边形CDEF 的周长最小时,求点E 、F 的坐标.24如图,在Rt △ABC 中,∠ACB =90°,斜边AB =8,AB 经过原点O ,点C 在y 轴的正半轴上,AC 交x 轴于点D ,且CD :AD =4:3,反比例函数y =k x的图象经过A 、B 两点.(1)求反比例函数的解析式.(2)点P 为直线AC 上一动点,求BP +OP 的最小值.25如图,已知抛物线y =ax 2+bx -6与x 轴的交点A (-3,0),B (1,0),与y 轴的交点是点C .8(1)求抛物线的解析式;(2)点P 是抛物线对称轴上一点,当PB +PC 的值最小时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M ,N ,使得∠CMN =90°且以点C ,M ,N 为顶点的三角形与△OAC 相似?若存在,求出点M 和点N 的坐标;若不存在,说明理由.26如图,直线l 1经过A 92,0、B 2,-5两点,直线l 2:y =-x +3与直线l 1交于点C ,与x 轴交于点D .(1)求点C 的坐标;(2)点P 是y 轴上一点,当四边形PDCB 的周长最小时,求四边形PDCB 的面积;(3)把直线l 1沿y 轴向上平移9个单位长度,得到新直线l 3与直线l 2交于点E ,试探究在x 轴上是否存在点Q ,在平面内存在点F 使得以点D ,Q ,E ,F 为顶点的四边形是菱形(含正方形)?若存在,直接写出符合条件的点Q 的坐标;若不存在,说明理由.27如图,已知一次函数y =kx +b 的图像经过A (1,4),B (4,1)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的表达式;(2)若y 轴存在一点P 使PA +PB 的值最小,求此时点P 的坐标及PA +PB 的最小值;(3)在x 轴上是否存在一点M ,使△MOA 的面积等于△AOB 的面积;若存在请直接写出点M 的坐标,若不存在请说明理由.28如图,在平面直角坐标系中,直线AB 分别与x 轴的负半轴、y 轴的正半轴交于A 、B 两点,其中OA =2,S △ABC =12,点C 在x 轴的正半轴上,且OC =OB .9(1)求直线AB 的解析式;(2)将直线AB 向下平移6个单位长度得到直线l 1,直线l 1与y 轴交于点E ,与直线CB 交于点D ,过点E 作y 轴的垂线l 2,若点P 为y 轴上一个动点,Q 为直线l 2上一个动点,求PD +PQ +DQ 的最小值;(3)若点M 为直线AB 上的一点,在y 轴上是否存在点N ,使以点A 、D 、M 、N 为顶点的四边形为平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.29在Rt △ABC 中,AB =BC ,在Rt △CEH 中,∠CEH =45°,∠ECH =90°,连接AE.(1)如图1,若点E 在CB 延长线上,连接AH ,且AH =6,求AE 的长;(2)如图2,若点E 在AC 上,F 为AE 的中点,连接BF 、BH ,当BH =2BF ,∠EHB +12∠HBF =45°时,求证:AE =CE ;(3)如图3,若点E 在线段AC 上运动,取AE 的中点F ,作FH '∥BC 交AB 于H ,连接BE 并延长到D ,使得BE =DE ,连接AD 、CD ;在线段BC 上取一点G ,使得CG =AF ,并连接EG ;若点E 在线段AC 上运动的过程中,当ACD 的周长取得最小值时,△AED 的面积为25,请直接写出GE +BH ′的值.。
最全“将军饮马”类问题(类型大全+分类汇编)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最全“将军饮马”类问题(类型大全+分类汇编))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最全“将军饮马”类问题(类型大全+分类汇编)的全部内容。
最全“将军饮马”类问题(类型大全+分类汇编)1.如图,直线 l 和 l 的异侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小.2.如图,直线 l 和 l 的同侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小。
3。
如图,点 P 是∠MON 内的一点,分别在 OM,ON 上作点 A,B。
使△PAB 的周长最小4.如图,点 P,Q 为∠MON 内的两点,分别在 OM,ON 上作点 A,B。
使四边形 PAQB 的周长最小。
最全“将军饮马”类问题(类型大全+分类汇编)5.如图,点 A 是∠MON 外的一点,在射线 OM 上作点 P,使 PA 与点 P 到射线ON 的距离之和最小6. .如图,点 A 是∠MON 内的一点,在射线 OM 上作点 P,使 PA 与点 P 到射线 ON 的距离之和最小最全“将军饮马”类问题(类型大全+分类汇编)二、常见题型三角形问题1.如图,在等边△ABC 中,AB = 6,AD⊥BC,E 是 AC 上的一点,M 是 AD 上的一点,若 AE = 2,求EM+EC 的最小值A解:∵点 C 关于直线 AD 的对称点是点 B,A∴连接 BE,交 AD 于点 M,则 ME+MD 最小,过点 B 作BH⊥AC 于点 H,则 EH = AH – AE = 3 – 2 = 1,BH = BC2 - CH2 = 62 — 32 = 3 3在直角△BHE 中,BE =BH2 + HE2 B= (3 3)2 + 12 = 2 7D C B D C2.如图,在锐角△ABC 中,AB = 4 2,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M、N 分别是 AD 和 AB 上的动点,则 BM+MN 的最小值是.解:作点 B 关于 AD 的对称点B’,过点B’作B’E⊥AB 于点 E,交AD 于点 F,则线段B’E 的长就是 BM+MN的最小值在等腰Rt△AEB’中,根据勾股定理得到,B'E = 4CB’M F D A N E B3.如图,△ABC 中,AB=2,∠BAC=30°,若在 AC、AB 上各取一点 M、N,使 BM+MN 的值最小,则这个最小值C 解:作 AB 关于 AC 的对称线段 AB',过点 B'作B’N⊥AB,垂足为 N,交 AC 于点 M,则 B'N = MB'+MN = MB+MNB’N 的长就是 MB+MN 的最小值则∠B'AN = 2∠BAC= 60°,AB' = AB = 2,∠ANB’= 90°,∠B’ =30°。
1 *作者:飞将下* 作品编号:94877660222254 创作日期:2020年12月20日
实用文库汇编之将军饮马问题
类型一、基本模式
类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P和Q),使得总路程MP+PQ+QN最短.
【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再
马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短.
3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短?
2
4. 如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA边的距离之和最小
5已知∠MON内有一点P,P关于OM,ON的对称点分别是和,分别交OM, ON于点A、B,已知=15,则△PAB 的周长为( ) A. 15 B 7.5 C. 10 D. 24 6. 已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N两点的距离也相等.
7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数. 3
8. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为______.
练习 1、已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由.
2、 如图,在公路a的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理?
aBA
4
3、 已知:A、B两点在直线l的同侧, 在l上求作一点M,使得||AMBM
最小.
4、如图,正方形ABCD中,8AB,M是DC上的一点,且2DM,N是AC
上的一动点,求DNMN的最小值与最大值.
NMDCBA
5、如图,已知∠AOB内有一点P,试分别在边OA和OB上各找一点E、F,使得△PEF的周长最小。试画出图形,并说明理由。
6、如图,直角坐标系中有两点A、B,在坐标轴上找两点C、D,使得四边形ABCD的周长最小。 5
7、如图,村庄A、B位于一条小河的两侧,若河岸a、b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?
8、4)9(122xxy,当x为何值时,y的值最小,并求出这个最小值.
9、在平面直角坐标系中,A(1,-3)、B(4,-1)、P(a,0)、N(a+2,0),当四边形PABN的周长最小时,求a的值.
10、如图,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
.A . B 6
练习 1、观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个 2、以下图形中,既是轴对称图形,又是中心对称图形的是( ) A.等边三角形 B.矩形 C.等腰梯形 D.平行四边形 3、在下列四个图案中既是轴对称图形,又是中心对称图形的是
4、在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为( ) A.1个 B.2个 C.3个 D.4个 5、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,
大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图乙)的对应点
所具有的性质是( ) (A)对应点连线与对称轴垂直 (B)对应点连线被对称轴平分 (C)对应点连线被对称轴垂直平分 (D)对应点连线互相平行 7
6、对右图的对称性表述,正确的是( ). A.轴对称图形 B.中心对称图形 C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形又不是中心对称图形 7、如图,△A′B′C′是由△ABC经过变换得到的,则这个变换过程是 (A)平移 (B)轴对称 (C)旋转 (D)平移后再轴对称
8、如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),C B A
B′BA′B
C′ 8
点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-12x
+b交折线OAB于点E. (1)记△ODE的面积为S,求S关于b的函数关系式; (2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1, 9、探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
【答案】(1)由题意得B(3,1). 作者:飞将下
作品编号:94877660222254 创作日期:2020年12月20日
若直线经过点A(3,0)时,则b=32
若直线经过点B(3,1)时,则b=52 若直线经过点C(0,1)时,则b=1 ①若直线与折线OAB的交点在OA上时,即1<b≤32,如图25-a,
此时E(2b,0) ∴S=12OE·CO=12×2b×1=b
C D B
A E O
x
y
图1 DEx
y
CBAO9
②若直线与折线OAB的交点在BA上时,即32<b<52,如图2 此时E(3,32b),D(2b-2,1) ∴S=S矩-(S△OCD+S△OAE +S△DBE ) = 3-[12(2b-1)×1+12×(5-2b)·(52b)+12×3(32b)]
=252bb
∴2312535222bbSbbb (2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形OA1B1C1
与矩形OABC的重叠部分的面积即为四边形DNEM的面积。
本题答案由无锡市天一实验学校金杨建老师草制!
由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形 根据轴对称知,∠MED=∠NED 又∠MDE=∠NED,∴∠MED=∠MDE,∴MD=ME,∴平行四边形DNEM为菱形. 过点D作DH⊥OA,垂足为H,
DEx
yCB
AO图2
图3 HNMC1A1B1O1DE
x
yCBAO10
由题易知,tan∠DEN=12,DH=1,∴HE=2, 设菱形DNEM 的边长为a, 则在Rt△DHM中,由勾股定理知:222(2)1aa,∴54a
∴S四边形DNEM=NE·DH=54 ∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为54.
10.如图,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3)。 (1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标; (2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2
的坐标;,
(3)将△A2B2C2平移得到△ A3B3C3,使点A2的对应点是A3,点B2的对应点是B3 ,点C2的对应点是C3(4,-1),在坐标系中画出△ A3B3C3,并写出点A3,B3的坐标。
【答案】 (1)C1(-1,-3) (2)C2(3,1) (3)A3(2,-2),B3(2,-1) 11
11、分别按下列要求解答: (1)在图1中,将△ABC先向左平移5个单位,再作关于直线AB的轴对称图形,经两次变换后得到△A1B1 C1.画出△A1B1C1; (2)在图2中,△ABC经变换得到△A2B2C2.描述变换过程.
【答案】 (1) 如图. (2) 将△ABC先关于点A作中心对称图形,再向左平移 2个单位,得到△A2B2C2.(变换过程不唯一)
0 1 2 3 4 5 6 7 8 9 10 12 11 12 11 10 9 8 7 6 5 4 3 2 1
A B
C A2 B2
C2
0 1 2 3 4 5 6 7 8 9 10 12 11 12 11 10 9 8 7 6 5 4 3 2 1
A B
C