纳米粉体超细纳米研磨技术交流
- 格式:pdf
- 大小:522.40 KB
- 文档页数:6
试述纳米粉体制备过程中粒子的团聚及控制方法1. 纳米粉体制备过程中粒子的团聚现象是指纳米粉体在制备过程中粒子之间相互吸引而形成的团块或聚集体。
2. 粒子团聚的主要原因是静电作用、范德华力、表面能及溶剂挥发等因素的影响,使粒子间发生相互吸引。
3. 粒子团聚对纳米材料性能的均匀性和稳定性产生不良影响,因此需要进行控制和消除。
4. 控制粒子团聚的方法之一是通过表面改性,如采用表面修饰剂对粒子进行包覆以增加粒子间的排斥力,从而减少团聚现象的发生。
5. 表面改性剂可以选择有机物、无机物等多种材料,通过吸附在粒子表面形成稳定的层以增加粒子间的隔离。
6. 表面改性剂的选择应考虑其与纳米粉体相容性的问题,以及对纳米粉体性能的影响。
7. 另一种控制纳米粉体团聚的方法是通过超声处理,超声波的作用力可以破坏粒子团聚,使之重新分散。
8. 超声波通过其高频振动和剪切力对粒子进行分散,从而有效地消除团聚现象。
9. 超声波处理时间和功率的选择需要根据具体纳米粉体的特性和制备条件来确定。
10. 在纳米粉体制备中,还可以通过添加稳定剂来控制粒子团聚。
11. 稳定剂的作用是通过与粒子表面发生相互作用,减少粒子间的吸引力。
12. 稳定剂可以选择阳离子型、阴离子型或非离子型等多种类型,具体选择需要根据纳米粉体的性质和要求来确定。
13. 在纳米粉体制备过程中,可以采用液固分离的方法来分离粒子团聚。
14. 液固分离是通过减小溶液中的中间质量浓度,使团聚体流失到液相中,从而实现团聚的去除。
15. 液固分离的方法主要包括离心、过滤和沉淀等,具体选择需要根据纳米粉体的性质和要求来确定。
16. 控制纳米粉体团聚还可以采用电场和磁场等外界力场的作用。
17. 电场作用可以通过施加外电压或使用电磁场来实现,在外电场的作用下,粒子间的相互作用力会发生变化,从而减少团聚现象。
18. 磁场作用可以通过外加磁场的作用下,使纳米粒子带上磁性,利用磁场的作用力来分散和控制纳米粉体的团聚。
2011年6月北京化工大学北方学院JUN.2011北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OFCHEMICAL TECHNOLOGY2008级纳米材料课程论文题目: 纳米三氧化二铝的制备与应用进展学院:理工学院专业:应用化学班级:学号:姓名:指导教师:2011年6月6日文献综述前言纳米材料一般是指在一维尺度小于100nm,并且具有常规材料和常规微细粉末材料所不具有的多种反常特性的一类材料。
作为纳米材料的一种,Al2O3拥有小尺寸效应、表面界面效应、量子尺寸效应和宏观量子隧道效应一切特殊性质,所以具备特殊的光电特性、高磁阻现象、非线性电阻现象、在高温下仍具有的高强度、高韧、稳定性好等奇异特性,从而使Al2O3近年来备受关注研究并且在催化、滤光、光吸收、医药、磁介质及新材料等领域有广阔的应用前景[1]。
近年来从用途大体可以把氧化铝分为两类:第一类是用作电解铝生产的冶金氧化铝,随着氧化铝材料的广泛应用该类氧化铝占产量的大多数;第二类为非冶金氧化铝,主要包括非冶金用的氢氧化铝和氧化铝,也是通常所说的特种氧化铝,因其作用不同而与冶金氧化铝有较大的区别,主要表现在纯度、化学成分、形貌、形态等方面。
由于粒径细小,纳米氧化铝可用来制作人造宝石、分析试剂以及纳米级催化剂和载体,用于发光材料可较大的提高其发光强度,对陶瓷、橡胶增韧,要比普通氧化铝高出数倍,特别是提高陶瓷的致密性、光洁度、冷热疲劳等。
纳米氧化铝已用于YGA激光器的主要部件和集成电路基板,并用在涂料中来提高耐磨性[2]。
随着人们对自身健康的关注和环保意识的增强,绿色化学理念正在材料制备与应用领域备受关注[3]。
第一章纳米Al2O3的一般物理化学特性Al2O3在地壳中含量非常丰富的一种氧化物。
Al2O3有许多同质异晶体,根据研究报道的变种有10多种,主要有3种:α-Al2O3 、β-Al2O3 、γ-Al2O3其中α-Al2O3是最稳定的一种无色晶体粉末,具有比表面大、熔点高、热稳定性极好、硬度高、吸水率极好、电绝缘性能好和耐酸碱腐蚀等许多优点,所以此类粉体广泛应用于各种氧化铝陶瓷的制备[4];γ-Al2O3是在400℃到800℃内由水合氧化铝脱水形成,不溶于水,能溶于酸或碱,强热至1273K,经一定保温时间能转变为α-Al2O3[2];热处理工艺参数对三氧化铝粒子颗粒特性的影响由强到弱:煅烧温度、水合氧化铝在300℃分解温度点的保温时间、在煅烧温度点的保温时间;通过控制其热处理工艺参数,可获得尺寸范围大小均匀、分散性好的球形γ-Al2O3[5];γ-Al2O3具有强的吸附能力和催化活性,所以其一般又叫活性氧化铝,它属于立方面心紧密堆积构型,四角晶系,与尖晶石结构十分相似。
[38]DA L M A N N W ,N ESSE T ,HEL FR ICHT R ,et al.N ew hydr ocyclone t echnique in ko lin industr y o f GD R[A ].3st Co nf Hydro cy clo ne [C ].Ox for d :BHR A Fluid Eng ineering .1987.J3.[39]CIL L IERS J J,HA RRISO N S T L.T he effect o f visco sity on the r ecov ery and concent rat ion o f micr oo rg anism uisng mini -hydro cyclones [A ].CL AX T O N D,SV A ROV SK YL ,T HEWMT.Hydro cyclones'96[C ].L ondon and Bur y St Edm unds :M echanical Engineer ing Publicatio ns L im ited.1996.123-134.[40]Y U A N H ,T HEW M T ,RICHWO OD D .Separat ion of y east w ith hy dr ocyclones[A ].CL AX T O N D ,SV A ROV SK Y L ,T HEW M T .Hy dr ocyclones'96[C ].L o ndon and Bur y StEdm unds:M echanicalEngineer ingPublicatio ns L im ited.1996.135-150.收稿日期:1999-04-13作者简介:张喜梅(1969-),女,辽宁沈阳人,华南理工大学轻化工研究所助理研究员,博士,主要从事声化学研究。
有关纳米晶/超细晶问题的研究一、纳米晶/超细晶介绍1、定义:纳米材料是指在三维空间尺寸至少有一维是处于纳米数量级 (d<100nm)的材料,而处于亚微米数量级 (0.1<d<lμm)的材料称为超细晶材料。
纳米晶/超细晶金属材料的最大优点是纯金属的强度达到甚至超过了相应合金的水平。
目前,对纳米晶/超细晶材料的研究主要集中在两个方面:纳米晶超细晶材料的制备方法和纳米晶/超细晶材料的组织结构与性能的研究。
其中,纳米晶/超细晶材料的制备技术是关键环节,细化材料微观组织成为目前新型高性能材料发展的共同趋势。
2、纳米晶/超细晶各方面的性能当金属材料的晶粒被细化到超细晶时,材料将表现出优异的力学、热学、光学、电学和磁学性能。
其各方面的性能变化原因主要体现在以下几个方面:1)力学性能和变形行为超细晶材料的性能改变首先表现在力学性能的提高上,Hall--Petch指出,常规多晶体的屈服应力与晶粒尺寸之间存在关系式:式中一一材料发生0.2%变形时的屈服应力一一移动单位个位错时产生的晶格摩擦阻力K一一常数d一一平均晶粒直径H--P关系式是在多晶体的位错塞积模型基础上导出的.对于传统的多晶材料而言,相对于晶粒内部,晶界的自由能很高,是阻碍位错运动的势垒.在外力作用下,为了在相邻晶粒内产生切变变形,晶界处必须产生足够大的应力集中。
细化晶粒可产生更多的晶界,如果晶界的结构未发生变化,则需施加更大的外力才能产生位错塞积,从而材料得到强化。
因此,细化晶粒一直是改善材料强度的一种有效手段。
如果H--P关系式成立,则材料的屈服应力或硬度与几之间为斜率大于零的线性关系,即材料强度随晶粒尺寸的减小而迅速提高。
但是,材料强度并不可能随着晶粒尺寸减小而无限地增加.右图为与d之间关系的示意图。
理论上,材料强度不可能超过其完整晶须的强度,这可视为对应关系的上限。
此外,在晶粒非常细小的情况下,晶界处任何弛豫过程均可使强度下降;同时,如果晶粒小到不能容纳一个位错时,H--P关系式将不再成立,此即右图中的d<时的情况。
纳米材料的制备摘要:纳米材料是指颗粒尺寸在1~100 nm的超细材料,由于其晶粒小,比表面积大 ,这就使其产生了块状材料所不具有的量子尺寸效应、表面效应、宏观量子隧道效应、介电限域效应等。
表现在纳米体系的光、热、电、磁等性质与常规材料不同,从而在工程材料、磁性材料、催化剂、计算机等方面有着广泛的应用。
在众多的纳米材料的研究与应用中,纳米材料的制备是基础。
本论文从物理制备方法和化学制备方法来阐述纳米材料的一些制备方法,对纳米材料的制备作一些简单的介绍。
相信随着科学研究的不断深入,会有更好更多的新制备方法出现,以满足人们的需要,纳米材料的应用会越来越广泛。
关键词: 纳米材料;球磨法;气体冷凝法;溅射法;化学沉淀法;溶胶—凝胶法纳米材料一般指尺寸从1nm到100nm之间 ,处于原子团族和宏观物体交接区域内的粒子。
纳米材料具有宏观材料所不具有的特殊性质,即所谓的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等。
纳米材料包括纳米粉体、纳米纤维、纳米块体、纳米复合材料和纳米结构材料等,它们的制备方法有的相同,有的不相同,有的原理上相同,但工艺上有显著的差异。
纳米材料的制备方法很多,目前尚无科学的分类方法。
如果按照反应类型分可分为物理方法和化学方法;如果根据反应介质可分为固相法、液相法及气相法;如果按反应物状态可分为干法和湿法等。
分类方法不同,研究问题的侧重点就不同。
为了更明了地阐述纳米材料制备过程的物理和化学机理,本论文按照物理方法和化学方法的分类来阐述纳米材料的一些制备方法。
[1]1、物理法制备纳米材料1.1 球磨法球磨法是利用介质和物料之间的相互研磨和冲击使物料粒子粉碎。
球磨法最早用于制备氧化物分散增强的超合金,目前,此技术已扩展到生产各种非平衡结构,包括纳米晶、非晶和准晶材料。
现应用于不同目的的球磨方法包括振动磨、搅拌磨、胶体磨、纳米气流粉碎气流磨等。
球磨法工艺示意图如图1所示。
在一个密封的容器内掺有直径约50μm粒子的粉体,其中有许多硬钢球或包覆碳化钨的球。