三维地质建模学习资料
- 格式:ppt
- 大小:8.14 MB
- 文档页数:37
矿床三维地质模型构建引言矿床三维地质模型是根据地球内部结构和特定地质过程的理论基础上,通过采集、处理和分析地质数据,以及运用地质模拟方法和数学建模技术建立起来的地质现象的可视化模拟模型。
这种模型构建可以帮助地质学家、矿产资源管理者和矿业公司更好地理解和掌握矿床的成因、分布和演化规律,为矿产资源勘查和开发提供决策依据。
三维地质模型构建的基本步骤1. 数据采集与预处理矿床三维地质模型的构建首先需要采集相关的地质数据,包括地层、地球物理、遥感和地球化学等方面的数据。
这些数据需要进行预处理,进行数据清理、滤波、平滑等处理,以提高数据的质量和完整性。
2. 数据解释与分析在数据采集和预处理之后,需要对采集到的数据进行解释和分析。
这包括地质剖面的解释、地球物理图像的解释以及地球化学数据的分析等。
3. 建立模型框架在数据解释和分析的基础上,需要建立矿床三维地质模型的框架。
这个模型框架包括矿床的主要元素、空间分布规律和演化过程等方面的要素。
4. 模型参数设定与模拟模型参数设定是矿床三维地质模型构建的一个关键步骤。
参数设置需要根据地质数据和模型框架进行合理的设定,以保证模型的可靠性和准确性。
5. 模型验证与优化在模型参数设定之后,需要对模型进行验证和优化。
这包括与实际地质观测数据进行对比和验证,同时根据验证结果进行模型参数的调整和优化,以改进模型的可信度和准确性。
6. 模型展示与应用在模型验证和优化之后,可以将矿床三维地质模型进行展示和应用。
这可以通过三维可视化的方式展示模型结果,同时可以将模型结果用于矿产资源勘查和开发中的决策和规划。
三维地质模型构建的关键技术和方法1. 地质数据处理与解析地质数据处理与解析是矿床三维地质模型构建的基础。
这包括地层解析、电磁测深解析、遥感数据解析、地球化学解析等。
这些解析技术可以帮助地质学家理解地质数据的含义和特征。
2. 数值建模与计算数值建模与计算是矿床三维地质模型构建的关键步骤。
GMS 地质三维建模学习教程本教程由群友pocar(马朋林,地大)与冬-京-地质(王铎)共同总结。
1、建立工程(project)选择钻孔模块,然后左侧目录浏览框中--右键--new--borehole,新建钻孔数据project2、选择工程所需模块在project上右键,选择model interfaces…弹出对话框,选择进行模拟所需要的模块3、输入地层分层数据在顶部菜单栏中,选择(materials)按钮,弹出如下对话框根据所选的模块不同,会自动添加所需输入的地层分层数据相关的参数,在这里只进行地质三维建模,因此,模块选择为空,地层分层数据所需输入的数据参数如下:4、导数或输入钻孔数据(包括坐标、标高、分层数据等)选中Borehole,右键,选择 ptoperties…弹出如下对话框输入钻孔数据5、建立地层剖面在顶部菜单栏中,选择Boreholes菜单下的 Auto cross blank cross section建立地层剖面线然后在顶部菜单栏中,选择Boreholes菜单下的Auto fill blank cross section,对剖面进行填充弹出如下对话框勾选第二个单选点OK,然后生成剖面6圈定模拟范围在顶部工具栏选择选择水平投影视图目录浏览框中右键,NEW,Coverage弹出选择OK选中coverage,然后点选中间竖条工具栏最后一个画弧按钮,在右侧编辑窗口中画弧线,圈定模拟区范围然后,选择,在右侧编辑窗口选定用于圈定模拟区范围的弧线选择顶部菜单栏中的菜单中的弹出将spacing 中的值改小点,一般在20-30之间即可,点ok,边界线上的点增加变多继续,选择顶部菜单栏中的菜单中的biuld polygons,建立区域7、建立地质三维模型选择顶部菜单栏中的菜单中的Map-TIN弹出点OK左侧目录浏览框中,选中tin(1),顶部菜单变为在顶部菜单栏中,选择菜单栏中的弹出下一步下一步点OK,然后选择旋转一下角度,即可显示完成三维地质建模基本工作。
前言GMS(Groundwater Modeling System)是种综合性的图形界面软件,是一个各种软件于一体的,能够从钻孔到地层结构、从平面到空间、从单元到系统的综合性、系统性、全面性的软件。
不仅具有地下水模拟、地下水溶质运移模拟的功能,其在实现地质结构可视化方面功能亦同样突出。
经过10多年的发展,GMS软件的功能越来越完善,并在各个领域中取得广泛应用。
本文重点介绍了GSM软件在工程地质方面的应用情况,与其他三维地质建模软件对比。
对比显示GMS软件在当前广泛应用的三维建模软件软件中,如:GIS、FEFLOW、MOFDFLOW、FFMWATER、MT3DMS、RT3D、SEAM3D、MODPATH、SFFP2D,以其强大的功能明显优于其他三维地质建模软件。
在本文最后的工程实例中对3D GMS软件在三维地质建模中的应用有更详尽的阐述。
1三维地质建模基本问题概述1.1三维地质建模概述三维地质建模技术在上世纪60年代被国外学者提出,在国外,地质建模已经发展了几十年,中国自上世纪80年代末开始引入EsrthVision以来,也已经发展了快二十年。
近10年来,地学领域将其理解为地理Geography、地质Geology、地球物理Geophysics和大地测量Geodesy等地学相关学科的统称,因其英文名称之前缀均(Geo-)关于三维空间信息的研究与日俱增,形成了两大并行发展的支流:一是三维地理信息系统(3D GIS),二是三维地学模拟系统(3D Geosciences Modeling System,3D GMS)。
真3D地学模拟、地面与地下空间的统一表达、陆地海洋的统一建模、三维拓扑描述、三维空间分析、三维动态地学过程模拟等问题,已成为地学与信息科学的交叉技术前沿和攻关热点。
三维地质建模(3D Geological Modeling)又称为三维地学建模(3D Geoscience Modeling)、三维地质数字化建模等,一般对其过程进行了概括:三维地质建模是指在原始的地质勘探数据基础上,在地质工程师的专家知识和经验指导下经过一系列的解译、修改后,以适当的数据结构建立地质特征的数学模型,通过对实际地质实体对象的几何形态、拓扑信息(地质对象间的关系)和物性三个方面的计算机模拟,由这些对象的各种信息综合形成的一个复杂整体三维模型的过程[1]。
地质三维数据结构模型
地质三维数据结构模型是将地质数据以三维形式进行表示和存储的模型。
它通过使用空间坐标和属性信息,以及各种先进的计算和可视化技术,将地质对象的空间分布、几何形状和属性特征进行描述和呈现。
以下是几种常见的地质三维数据结构模型:
1.点云模型:点云模型使用大量的点来描述地质对象的空间位置,在每个点上附加了属性信息。
这种模型通常用于地质勘探、地形测绘和三维扫描等应用,如激光雷达扫描得到的地形数据。
2.三角网格模型:三角网格模型使用一系列相连接的三角形来近似地表面或地质对象的几何形状。
每个三角形都有顶点和属性信息,可以包括地层分布、岩性、地球化学特征等。
这种模型常用于地质建模和地质工程分析。
3. 体素模型:体素模型将空间划分为一系列相等大小的立方体单元(体素),每个体素都有一组属性信息,如密度、属性、岩石类型等。
这种模型主要用于岩石物性模拟、地下水模拟和地震模拟等领域。
4. 网格模型:网格模型将地质对象分割为规则或不规则的网格单元,每个单元都带有属性信息,如物性参数、岩性等。
这种模型常用于地下水流动模拟、矿产资源评估和地质灾害分析等应用。
5. 分层模型:分层模型根据地质体的内部结构和层序关系来描述地层的连续性。
它可以用来表示地层的分布、变形和岩性等信息,用于石油勘探、地层建模和地质演化研究等领域。
这些地质三维数据结构模型能够更好地支持地质数据的可视化、分析和预测,为地质学研究、资源开发和环境保护等提供有力的工具和方法。
地质体三维建模方法与技术指南本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March内容简介本书系统分析了目前国内外地质体三维模拟技术和应用软件开发的现状,由此提出了不同领域地质体三维建模的数据需求、技术流程和主要建模软件的数据接口;详细阐述了Micmmine、surpac、Mapgis、3D-Grid等三维地质体模拟软件在矿山、地下水、城市地质等领域的应用实践和示范工作,以及提交的相应三维模型成果;并对今后如何展开相关工作提出了建议。
本书可作为开展三维地质建模工作的指导用书,同时亦可作为地质及相关专业学生的专业参考书。
【节选】(一)地下水三维地质建模所需数据类型在地下水三维地质建模中,会涉及的地质现象主要有:地貌(或地形)、地层、褶皱、断裂、透镜体及侵人体等,为刻画这些地质现象,就需要用到地表数字高程模型数据(DEM)、遥感影像数据、地理信息数据、钻孔数据及剖面数据等。
具体来说,为刻画三维模型中的各种地质现象,需要的相关数据包括以下几种:1.地表数字高程模型(DEM)数据地表数学高程模型数据用于生成三维地质结构模型顶面(地表面),此部分数据可以从测绘主管部门获取或向国家测绘局基础地理信息中心购买,从基础地理信息中心购买的数据属于标准数据,数据以ARCINFO数据格式存放。
DEM数据比例尺有多种,其中,全国的1:25万数据库在空间上包含816幅地形图数据,覆盖整个国土范围,国外部分沿国界外延25公里采集数据。
地貌统一在TERLK层中存放,包括等高线、等深线、冲沟等,DEM等高线的等高距,在全国范围内共分40 m、50 m、100 m三种,使用时可参照等分布图确定。
对于标准数据,可以根据需要进行数据格式转换、比例变换、投影变换等多种处理。
另外,如果不能获取现成的DEM数据,也可以自己使用专门的地理信息系统软件用地形图生产。
地质体三维建模及滑坡分析N图1 地形面平面显示(等高线为10m间距)N图2 地形面平面显示(根据高程赋予不同颜色)图3 地形面立体显示(等高线为10m 间距)图4 地形面和基岩顶面平面显示图中地形面用浅黄色显示,地形面的2m 等高线用黄色显示,10m 等高线用绿色显示。
基岩顶面用紫色显示,基岩顶面的等高线为2m 间距,用红色显示。
从图4可以看出钻孔范围内的地形面与基岩顶面的关系。
N图5 基岩顶面的平面显示(根据高程赋予不同的颜色)1层,坡洪积土,亚粘土含碎石2层,洪坡积土,碎石土3层,岩堆,块石土5层,基岩,为泥岩shui1,覆盖层水shui2,基岩顶面水图6 钻孔资料显示从图6可以看到每个钻孔揭露的地层岩性,以及覆盖层水和基岩顶面水在钻孔处的出水位置、水的厚度、含水层的岩性。
fugaiceng, 覆盖层jiyan, 基岩图7 覆盖层和基岩的立体显示图8 覆盖层和基岩的剖面显示图6是well,然后做了region和marker,用不同颜色表示了。
图7是做了一个SGrid,然后用一个面将它分为两个region了,图8是sgrid的剖面显示。
讨论区:有几个问题请教大家,帮帮忙啊!谢谢!1、我感觉well的marker的颜色是自动设置的,而且不能改,只能通过修改名字系统配给另一种颜色。
而且保存后重新打开,它的颜色又变了。
我是好不容易才把水的颜色变为绿色和蓝色的。
2、SGrid生成region的时候,所用的surface必须能完全切开SGrid。
而我希望是中间有两个面围成一个封闭的部分(范围比较小)也能生成一个region。
就像面包中有一个杏仁的东西。
3、生成的面按属性(比方是高程)动态出现。
如模拟水从较高的一个地方流向较低的地方,就是一个面按高程逐渐出现。
SGrid生成region的时候,可以用中间两个面围成一个封闭的部分(范围比较小)也能生成一个region。
三维油藏地质建模的原理和方法现代油藏描述以建立定量三维油藏地质模型为最终目标。
这是计算机技术在油藏描述中广泛应用的结果,也是提高油藏模拟和开采动态预测精度的要求。
由于计算机技术的发展,地质和数学更进一步的结合,以及地质工作本身向定量化的深入发展,使过去只能以各种二维图件来表现油藏地质面貌的传统地质工作方法已逐步被应用计算机技术建立和显示三维的、定量的地质模型所代替,各种建模技术和计算机软件、不断地问世,成为近十几年来油藏描述向油藏表征推进的主要标志。
一、油藏地质模型的类别一个完整的油藏地质模型应包括:构造模型:油藏构造形态及断层分布;储层模型:储层建筑结构及各种属性的空间分布;流体模型:储层内油气水分布,即各种流体饱和度分布和流体性质的空间变化。
根据油田不同开发阶段的任务,对油藏地质模型的精细程度要求不同,依此通常可以把油藏地质模型分为三类。
概念模型:把所描述的油藏的各种地质特征,特别是储层,典型化、概念化,抽象成具有代表性的地质模型。
只追求油藏总的地质特征和关键性的地质特征的描述,基本符合实际,并不追求每一局部的客观描述。
这祥的地质摸型可供研究油田开发中的战略指导路线,或进行开采机理研究。
静态模型:也称实体模型,把所描述的油藏地质面貌,依据资料控制点实测的数据,加以如实地描述,并不追求控制点间的预测精度。
建立这样的地质模型必须有一定密度的资料控制点--井网密度,才有意义。
一般是开发井网完成后进行,为油田开发早期生产服务,过去油田实际应用的静态资料即属这一类型。
预测模型:预测模型不仅忠实于资料控制点的实测数据,而且追求控制点间的内插外推值有相当的精确度,即对无资料点有一定的预测能力。
实际上这是追求高精细度的油藏地质模型,一般为二次采油中后期调整及三次采油实施所需求。
依据油藏描述规模的地质模型分类。
为配合油藏模拟进行不同开发问题的研究,实际工作经常需要建立不同规模的地质模型,常用的有:①一维单井地质模型②二维砂体剖面模型③二维砂体平面模型④三维砂体模型⑤二维层系剖面模型⑥三维井组模型⑦三维油藏整体摸型⑧二维层内隔层模型⑨三维层内隔层模型二、通常的建模原理和方法地下地质工作中,油藏地质模型建模技术中的关键点,是如何根据已知的控制点资料内插、外推资料点间及以外的油藏特性。