当前位置:文档之家› 集合论讲义

集合论讲义

集合论讲义
集合论讲义

集合论讲义

知识清单

一.集合的含义与表示

二.集合间的基本关系

三.集合的基本运算

知识网络

知识详解

一.集合的含义与表示

(一)集合的概念

1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们

能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

4.元素与集合的关系

(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A

(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a?A 6.集合与元素的字母表示:

集合通常用大写的拉丁字母A,B,C…表示,

集合的元素用小写的拉丁字母a,b,c,…表示。

7.常用的数集及记法:

非负整数集(或自然数集),记作N;

正整数集,记作N*或N+;

整数集,记作Z;

有理数集,记作Q;

实数集,记作R;

(二)集合表示

1.我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

2.列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

说明:①集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

各个元素之间要用逗号隔开;

②元素不能重复;

③集合中的元素可以数,点,代数式等;

④对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后 方能用省略号,象自然数集N用列举法表示为{}1,2,3,4,5,......

3.描述法:

(1)定义:把集合中的元素的公共属性描述出来,写在花括号{ }内。

(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范 围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

(3)一般格式:{}()x A p x ∈如:{x|x-3>2},{(x,y)|y=x 2

+1},{x ︳直角三角形},…; (4)说明:

①描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}是不同

的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x ︳整数},即代表整数集Z 。

②这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

③列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

二.集合间的基本关系

(一)子集(包含)

利用集合的包含关系解题

集合的包含关系是一重要知识点和高考考查点,它在题目中或明或暗,特别是“暗”(综合型题目)的。如果你对集合的包含关系没有一个深刻的认识与理解,往往就很难捕捉到,也就很难解决问题。如何准确把握与深入挖掘这一关系,利用这一关系解题呢?

例1:已知函数[]

f x x x x ()=--∈472012,, (I )求f x ()的单调区间和值域;

(II )设a ≥1,函数[]g x x a x a x ()=--∈323201,,,若对于任意[]x 101∈

,,总存在[]x 001∈

,,使得g x f x ()()01=成立,求a 的取值范围。 解析

(I )利用导数法易得f x ()在012,

?? ???上是减函数,在121,?? ???上是增函数,所以f x ()的值域为[]

--43,。

(II )因为a g x x a ≥=-1322,'()(),所以x ∈()01,时,g x gx '()()<0,是减函数 所以[]g x g g ()()()∈10,,而g

a g aa ()()0211232=-=--, 即当[]x ∈01,时,有[]g

x aa a ()∈---12322, 对于任意[][]x f x 110143∈∈--,,,(),总存在[]x 001∈

,,使得g x f x ()()01= 则[][]--?---4312322,,a a a

,所以12342--≤-a a 且-≥-23a 解得132

≤≤a 点评:关键是把“若对于任意……成立”转化为“[][]--?---4312322,,a a a ”这种集合的包含关系。

例2:已知不等式x x 2430-+<(1)和不等式290

2x x a -+<(2),若满足(2)的x 值也满足(1),求a 的取值范围。

解析:设不等式(1)、(2)的解集分别为A 、B ,则由题意知B A ?,且B ≠φ。这相当于方程f x x x a ()=-+=2902的两异根在区间(1,3)内,其充要条件为:?=->8180a 且1943<<,且f a f a ()()170390=-≥=-≥,且,由此可得9818

2x x a -+<的解集分别为A 、B ,若B A ?,求a 的取值范围。

解析:当B =φ时,有?1

2980=--≤()a ,得a ≥818,此时,B A ? 当B ≠φ时,同例2,可得9818≤<

a 综上,所求a 值范围为a ≥9

例4:已知p :||()

1132210022

--≤-+-≤>x q x x mm ,:,若??p q 是的必要而不充分条件,求实数m 的取值范围。 解析:p x x :||113

2210--≤?-≤≤ [][]q x x m x m x m

m x m

:22210

11011-+-≤?---+≤?-≤≤+()() 因为??p q 是的必要而不充分条件,所以其等价命题为:p 是q 的充分而不必要条件

即若设{}Ax x =-≤≤|210,{}B x m x m =-≤≤+|11,则A B ?≠

所以12-<-m ,且110+>m ,求得m >9

。 后记:集合与三角、函数、不等式、解析几何等知识结合,形成多知识点的综合型问题,符合“考纲”在知识交汇点处命题的指导思想,其解题的关键在于灵活运用有关知识,特别是捕捉到集合的包含关系,居高临下解决问题。

(二)等集

若集合M ={2005,6,7},集合N ={x x M |∈},则集合M 与N 的关系是( )

A. M =N

B. M N ?

C. M N ?

D. M N =?

解析:N x x M =∈{|}

,则x N x M ∈?∈,可得N M ?。又x M x M ∈?∈,则M N ?。所以M =N ,选A

(三)空集

4一个不可忽视的集合——空集

集合是高中数学中一个重要概念,与数学中许多内容有着广泛的联系,同时作为一种思想、一种语言、一种工具渗透到了其他学科之中。本目通过几例来说明空集的存在,从而进一步了解空集的性质。

(1)不了解空集的定义而忽略空集的存在

例:A B =?,M ={P|P 为A 的子集},N ={Q|Q 为B 的子集},那么( )

A. M N =?

B. MN =?{}

C. M N AB =

D. M N A B ?≠

解析:由于A 、B 的子集中都有?,即??A ,??B ,而?相对M 、N 来说是作为一个元素的身份出现,则MN =?{}

,应选B 。 (2)在集合的运算过程中,不了解空集的性质而忽视空集的存在

例:设集合A x x x =+={|}240,B x x a x a =+++-={|()}22

2110,若A B ?,求实

数a 的范围。 解析:A ={|}{}x x x 2

4004+==-,。由B ?A ,得B =?,或{0},或{-4},或{0,

-4}。

①当B =?时,?=4+)--<(()a a 141022,解得a <-1。

②当B ={0}时,由两根为0及韦达定理得210

102()a a +=-=???,解得a =-1。

③当B ={-4}时,由两根为-4及韦达定理得218116

2()a a +=-=???,无解。

④当B ={0,-4}时,由韦达定理得214102()a a +=-=???

,解得a =1。 综上①②③④知,所求实数a 的范围为(]{}

-∞-,11 。

(3)不了解空集的实质而忽视空集的存在

例:已知A x x x B x m x m =--≤=+≤≤-{|}{|}

23100121,,若A B =A ,求实数m 的范围。

分析:由A BA B A

=?,得。而B 是由参数m 所确定的集合,m 在不同的范围内,可能使得B 为非空数集,也可能使得B 为空集。

解析:A x x x x x =--≤=-≤≤{|}{|}

2310025 ①若m m +>-121,即m <2

时,B =?,适合题意。 ②若m m +=-121,即m =2时,B ={}3,适合题意。

③若m m +<-121,即m >2

时,要使B A ?成立,只需21512

m m -≤+≥-??? 解得-≤≤33m 。从而可得23

<≤m ,适合题意。 综上①②③知,所求m 的范围应为(]-∞,3

三.集合的基本运算

题型总结

1、集合的概念:

(1)集合中元素特征,确定性,互异性,无序性;

(2)集合的分类:

①按元素个数分:有限集,无限集;

②按元素特征分;数集,点集。如数集{y|y=x 2},表示非负实数集,点集{(x ,y)|y=x 2}表示开口向上,以y 轴为对称轴的抛物线;

(3)集合的表示法:

①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。

2、两类关系:

(1)元素与集合的关系,用∈或?表示;

(2)集合与集合的关系,用?,≠?,=表示,当A?B时,称A是B的子集;当A≠?B时,称A是B的真子集。

3、集合运算

(1)交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},C U A={x|x ∈U,且x?A},集合U表示全集;

(2)运算律,如A∩(B∪C)=(A∩B)∪(A∩C),C U(A∩B)=(C U A)∪(C U B),

C U(A∪B)=(C U A)∩(C U B)等。

集合论的发展史

集合论的发展史 集合是什么,通俗地说它是一些元素组成的集体,是一些确定而又可分的“物”的集体。集合并不指具体的“物”,而是由物的集体所组成的新对象。20世纪以来的研究表明,不仅微积分的基础——实数理论奠定在集合论的基础上,而且各种复杂的数学概念都可以用“集合”概念定义出来,而各种数学理论又都可以“嵌入”集合论之内。因此,集合论就成了全部数学的基础,而且有力地促进了各个数学分支的发展。现代数学几乎所有的分支都会用到集合这个概念。集合论最重要的创建者是康托尔(Georg Cantor,1845—1918)。在19世纪人们很少怀疑微积分的基础应该建立在严密的实数理论上,而严密的实数理论可以由集合论推出。但是微积分本质上是一种“无限数学”。那么无限集合的本质是什么?它是否具备有限集合所具有的性质? 从19世纪60年代起,法国数学家康托尔承担了这一工作,他清楚地看到以往数学基础中的问题,都与无穷集合有关。康托尔的集合论的建立,不仅是数学发展史上一座高耸的里程碑,甚至还是人类思维发展史上的一座里程碑。它标志着人类经过几千年的努力,终于基本上弄清了无限的性质,找到了制服无限“妖怪”的法宝。苏联著名数学家柯尔莫戈洛夫说:“康托尔的不朽功绩在于向无限冒险迈进。”德国数学大师伯特赞扬康托尔的理论是“数学思想最惊人的产物,在纯粹理性的范畴中人类活动最美的表现之一”。 然而事情并非总是顺利的。1900年左右,正当康托尔的思想逐渐被人接受,并成功地把集合论应用到了许多别的数学领域中去,大家认为数学的“绝对严格性”有了保证的时候,一系列完全没有想到的逻辑矛盾,在集合论的边缘被发现了。开始,人们并不直接称之为矛盾,而是只把它们看成数学中的奇特现象。1903年英国哲学家兼数学家罗素(Russell, B.A.W,1872—1970)提出了一个悖论,“一切不包含自身的集合所形成的集合是否包含自身?”答案如果说是,即包含自身,属于这个集合,那么它就不包含自身;如果说否,它不包含自身,那么它理应是这个集合的元素,即包含自身。 可能有人看不懂罗素悖论,没关系,罗素本人就用通俗的“理发师悖论”作了比喻;理发师自称,他给所有自己不刮胡子的人刮胡子,但不给任何自己刮胡子的人刮胡子。试问理发师该不该给自己刮胡子?如果他从来不给自己刮胡子,就属于“自己不刮胡子的人”。根据他的自称,他就应该给自己刮胡子,但是,一旦他给自己刮胡子,他就成了“自己刮胡子的人”了。还是根据他的自称,他就不应该给自己刮胡子。所以不管理发师的胡子由谁来刮,都会产生矛盾。罗素悖论以其简单、明确震动了整个西方数学界和逻辑学界,逻辑学家费雷格收到罗素的信之后,在他刚要出版的《算术基础法则》第二卷末尾写道:“一位科学家不会碰到比这更难甚的事情了,即在工作完成之时,它的基础垮掉了。当这本书等待付印的时候,罗素先生的一封信把我置于这种境地。”弗雷格对罗素悖论的迅速反应是惊恐地感到:“算术开始受难。” 数学史上第三次危机来临了,数学王国的居民们惶惶不安,因为数学家们一贯追求严密性,一旦发现他们自称绝对严密的数学的基础——集合论并不严密,竟然出现了“悖论”这种自相矛盾的结果,可以想像,他们是多么震惊。震惊之余,数学家们意识到,应当建立某种公理系统来对集合论作出必要的规定,以排除“罗素悖论”和其他有关的“悖论”。现在,各种成功地解决悖论的方案都对集合的“无限扩张”进行了限制,因此现在任何一种形式的集合论,实质上都包

离散数学集合论部分常考××题

离散数学常考题型梳理 第2章关系与函数 一、题型分析 本章主要介绍关系的概念及运算、关系的性质与闭包运算、等价关系、相容关系和偏序关系三个重要关系、函数以及函数相关知识等内容。常涉及到的题型主要包括: 2-1关系的概念理解以及关系的并、交、补、差以及复合和逆关系等运算2-2关系自反和反自反、对称和反对称等性质的概念理解与判定;自反、对称和传递闭包运算。 2-3等价关系 2-4偏序关系和哈斯图 2-5 函数的概念和性质 因此,在本章学习过程中希望大家要清楚地知道: 1.有序对和笛卡尔积 (1)有序对:所谓有序对就是指一个有顺序的数组,如< x , y >,x , y的位置是确定的,且< a , b >< b , a >。 (2)笛卡尔积:把集合A,B合成集合A×B,规定: {,|} ?=<>∈∈ 且 A B x y x A y B 由于有序对< x , y >中x,y 的位置是确定的,因此A×B 的记法也是确定的,不能写成B×A 。 笛卡儿积的运算一般不满足交换律。 2.二元关系的概念和表示、几种特殊的关系和关系的运算 (1)二元关系的概念:二元关系是一个有序对集合,设集合A,B ,从集合A 到B的二元关系 R∈ x ∈ < y =且 > } , x {B | y A 记作xRy。 二元关系的定义域:A Ram? R ) (。 ) R Dom? (;二元关系的值域:B 二元关系R 是一个有序对组成的集合.因此,一个二元关系是一个集合,可以用集合形式表示;反过来说,一个集合未必是一个二元关系,仅当集合是由有序对元素组成的,才能当做二元关系。 常用关系的表示法包括了集合表示法、列举法、描述法、关系矩阵法和关系图法。关系矩阵和关系图是有限集合上的二元关系的表示方法。

集合论 第一章 南开大学李娜

第1章集合 1 集合的引入 集合----作为本书的中心概念,至少从表面上看是非常简单的。一个集合是一个任意的收集、群和总体。因此,我们有2016年9月南开大学所有已注册学生的集合、所有偶自然数的集合、在平面 上距离给定点P恰好两厘米的所有点的集合、所有粉红色大象的集合。 集合不像桌子和星星一样是现实世界的对象,它们是被我们的思维而不是我们的双手创造出来的。大量的土豆不是土豆的一个集合,一滴水中所有分子的集合和那滴水不同。由于人的思维具有抽象的能力,它能根据某个共同的性质把不同的对象汇聚在一起,形成一个具有该性质的对象的集合。这里所说的性质仅仅是把这些对象联系在一起的能力。因此,存在一个恰好包含数2、5、11、13、28、35、22000的集合。虽然我们很难看出是什么把它们联系在一起的,但是只有一个事实,即在思维中,我们把它们汇总在一起。因此,什么是集合?一个直觉的回答是: 一个集合就是将一些对象收集起来汇合成的一个整体。 这些被收集起来的对象就是这个被汇合成的整体的元素或者成员。德国数学家Georg Cantor 19世纪70年代创立了集合论,并在19世纪的后三十年里发表了一系列论文。他如下地表述集合: 集合是我们的直觉或思维中确定的、可区分的对象所汇集成的一个整体,这些对象叫做集合的元素。” 构成集合的对象叫做该集合的元素或成员,我们也说它们属于该集合。 本书中,我们想发展集合的理论作为其它数学规律的一个基础。因此,我们不关心人或者分子的集合,只关心数学对象的集合,例如,数、空间的点、函数、或集合。事实上,前三个概念可以在集合论中被定义为具有某种特殊性质的集合,我们将在以后的章节中完成这一点。因此,从现在起,我们关心的对象只有集合。为了解释的目的,在数、点这些数学对象被定义之前,我们谈论它们的集合。然而,我们只在例子、习题和问题中谈论到它们,而不会在集合论的主体中谈论它们。例如,数学对象的集合有 1.1 例 (1) 648的所有素因子的集合。 (2) 能够被3除尽的所有数的集合。

流形概念的演变与理论发展

流形概念的演变与理论发展 一、引言 流形是20 世纪数学有代表性的基本概念,它集几何、代数、分析于一体,成为现代数学的重要研究对象。在数学中,流形作为方程的非退化系统的解的集合出现,也是几何的各种集合和允许局部参数化的其他对象。〔1〕53物理学中,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。 流形是局部具有欧氏空间性质的拓扑空间,粗略地说,流形上每一点的附近和欧氏空间的一个开集是同胚的,流形正是一块块欧氏空间粘起来的结果。从整体上看,流形具有拓扑结构,而拓扑结构是“软” 的,因为所有的同胚变形会保持拓扑结构不变,这样流形具有整体上的柔性,可流动性,也许这就是中文译成流形(该译名由着名数学家和数学教育学家江泽涵引入)的原因。 流形作为拓扑空间,它的起源是为了解决什么问题?是如何解决的?谁解决的?形成了什么理论?这是几何史的根本问题。目前国内外对这些问题已有一些研究〔1-7〕,本文在已有研究工作的基础上,对流形的历史演变过程进行了较为深入、细致的分析,并对上述问题给予解答。 二、流形概念的演变 流形概念的起源可追溯到高斯

( C.F.Gauss,1777-1855)的内蕴几何思想,黎曼(C.F.B.Riemann,1826-1866)继承并发展了的高斯的想法,并给出了流形的描述性定义。随着集合论和拓扑学的发展,希尔伯特(D.Hilbert,1862-1943)用公理化方案改良了黎曼对流形的定义,最终外尔(H.Weyl,1885-1955)给出了流形的严格数学定义。 1. 高斯-克吕格投影和曲纹坐标系 十八世纪末及十九世纪初,频繁的拿破仑战争和欧洲经济的发展迫切需要绘制精确的地图,于是欧洲各国开始有计划地实施本国领域的大地测量工作。1817 年,汉诺威政府命令高斯精确测量从哥廷根到奥尔顿子午线的弧长,并绘制奥尔顿的地图,这使得高斯转向大地测量学的问题与实践。高斯在绘制地图中创造了高斯-克吕格投影,这是一种等角横轴切椭圆柱投影,它假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面。 采用分带投影的方法,是为了使投影边缘的变形不致过大。当大的控制网跨越两个相邻投影带,需要进行平面坐标的邻带换算。高斯-克吕格投影相当于把地球表面看成是一块块平面拼起来的,并且相邻投影带的坐标可以进行换算。这种绘制地图的方式给出了“流形”这个数学概念的雏形。 大地测量的实践导致了高斯曲面论研究的丰富成果。由于地球表面是个两极稍扁的不规则椭球面,绘制地图实际上就是寻找一般

离散数学之集合论

第二篇集合与关系 集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。 随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。 现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学科的通用语言,一切必要的数据结构都可以利用集合这个原始数据结构而构造出来,计算机科学家或许也可以利用这种方法。 本篇介绍集合论的基础知识,主要内容包括集合及其运算、性质、序偶、关系、映射、函数、基数等。 第2-1章集合及其运算 §2-1-1 集合的概念及其表示 一、集合的概念 “集合”是集合论中的一个原始的概念,因此它不能被精确地定义出来。一般地说,把具有某种共同性质的许多事物,汇集成一个整体,就形成一个集合。构成这个集合的每一个事物称为这个集合的一个成员(或一个元素),构成集合的这些成员可以是具体东西,也可以是抽象东西。例如:教室内的桌椅;图书馆的藏书;全国的高等学校;自然数的全体;程序设计语言C的基本字符的全体等均分别构成一个集合。通常用大写的英文字母表示集合的名称;用小写的英文字母表示元素。若元素a属于集合A记作

集合论介绍

集合论介绍 一.集合论的历史 1.基本概念 关于集合的理论是19世纪末开始形成的。当时德国数学家康托尔试图回答一些涉及无穷量的数学难题,例如“整数究竟有多少?”“一个圆周上有多少点?”0—1之间的数比1寸长线段上的点还多吗?”等等。而“整数”、“圆周上的点”、“0—1之间的数”等都是集合,因此对这些问题的研究就产生了集合论。 康托尔(Georg Cantor,1845-1918,德)康托尔1845年出生于俄国的圣彼得堡,后来离开俄国迁入德国,其家庭是犹太人后裔。 集合是什么呢?用康托尔的话说,集合就是把具体的或思想上的一些确定的、彼此不同的对象聚集成的整体。简单说来,集合就是一组事物。 有一些集合,它们的元素是有穷的,如{1,4,9,……100},{里根,布什,克林顿},这种集合称为有穷集合。而有些集合则有无穷多个元素,如整数的集合等,这种集合称为无穷集合。无穷集合的基数大于任何有穷集合的基数。由上节的分析可以看出,无穷集合可以通过一一对应的方法进行比较,但却出现了令人惊讶的结果,如偶数集合与自然数集合的元素一样多,一条线上点的集合与平面上点的集合其元素也是相等的。康托尔把无穷集合的概念作为集合理论的基础,并证明无穷集合的一个显著特点就是无穷集合自身可与其部分具有一一对应关系。 为了将有穷集合的元素个数的概念推广到无穷集合,他以一一对应为原则,提出了集合等价的概念。两个集合只有它们的元素间可以建立一一对应才称为是等价的。这样就第一次对各种无穷集合按它们元素的“多少”进行了分类。他还引进了“可列”这个概念,把凡是能和正整数构成一一对应的任何一个集合都称为可列集合。 有1个元素的集合其子集有2个,有2个元素的集合其子集共有4个,一般地,有n个元素的集合其子集有2n个,n个元素的集合其基数为n,而其所有子集组成的集合的基数为2^n ,显然2^n>n。因此有“康托尔定理”:任意集合(包括无穷集)的幂集的基数大于该任意集合的基数。 2.康托尔悖论 据康托尔集合理论,任何性质都可以决定一个集合,这样所有的集合又可以组成一个集合,即“所有集合的集合”(大全集)。显然,此集合应该是最大的集合了,因此其基数也应是最大的,然而其子集的集合的基数按“康托尔定理”又必然是更大的,那么,“所有集合的集合”就不成其为“所有集合的集合”,这就是“康托尔悖论”。对这一悖论,康托尔并没有感到害怕,因为通过反证法恰恰证明没有“所有集合的集合”或者说“最大的集合”,当然也没有“最大的基数”。 3.罗素悖论 悖论的出现这时并没有引起多大的震动,人们觉得这似乎仅仅牵涉到集合理论的一些技术问题,只要作适当的修正,集合论仍然会成为数学大厦的基础,康托尔只是利用悖论进行反证,而并没有细究悖论的来源及意义,他没有意识到这种反证之所以可能,是因为他的理论中所使用的基本概念“集合”、“属于”、“元素”是包含着矛盾的。1901年罗素发表的“罗素悖论”则“剥掉了数学技术性的细节”,使其中的矛盾赤裸裸地暴露出来了! 把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:P={A∣A∈A},Q={A∣A?A} 问,Q∈P还是Q ∈Q?若Q∈P,那么根据第一类集合的定义,必有Q∈Q,但是Q中任何集合都有A?A的性质,因为Q∈Q,所以Q?Q,引出矛盾。若Q∈Q,根据第一类集合的定义,必有Q∈P,而显然P∩Q=Φ,所以Q?Q,还是矛盾。这就是著名的“罗素悖论”。罗素悖论还有一些较为通俗的版本,如理发师悖论等。 4.理发师悖论 由著名数学家伯特兰?罗素(Bertrand A.W. Russell,1872—1970)提出的悖论与之相似: 在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。 5.数学的三次危机 第一次无理数, 无限不循环小数. 第二次,无穷小无穷小是零还是非零第三次,无穷大,A是非A,导致无限循环. 第三次数学危机是由“罗素悖论”引起的。 背景:大概是这样的。在第二次数学危机结束后,数学的进一步发展表明,一切问题都可以化归到集合论。比如,几何由于解析几何化归到了代数,代数又可化归到解方程,解方程可化归到实数理论,进而到自然数论,最后到集合论。 对于当时的一些不能解决的问题,存在几个派别,其中有一派是以希尔伯特为代表的形式公理派。他认为,

《点集拓扑讲义》集合论初步学习笔记

《点集拓扑学》第一章集合论初步本章介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发,给出集合运算、关系、映射以及集合的基数等方面的知识.至于选择公理,只是稍稍提了一下,进一步的知识待到要用到时再阐述.旨在不会过早地陷入繁难的逻辑困惑之中。 这里所介绍的集合论通常称为“朴素的集合论”,如果对集合的理论有进一步的需求,例如打算研究集合论本身或者打算研究数理逻辑,可以去研读有关公理集合论的专著. 即令就朴素集合论本身而言,我们也无意使本章的内容构成一个完全自我封闭的体系,主要是我们没有打算重建数系,而假定读者了解有关正整数,整数,有理数,实数的基本知识,以及其中的四则运算,大小的比较(<和≤),和实数理论中关于实数的完备性的论断(任何由实数构成的集合有上界必有上确界)等,它们对于读者决不会是陌生的.此外,对于通常的(算术)归纳原则也按读者早已熟悉的方式去使用,而不另作逻辑上的处理. §1.1集合的基本概念 集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体.例如我们常说“正在这里听课的全体学生的集合”,“所有整数的集合”等等.集合也常称为集,族,类. 1 / 23

集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点,或成员. 集合也可以没有元素.例如平方等于2的有理数的集合,既大于1又小于2的整数的集合都没有任何元素.这种没有元素的集合我们称 之为空集,记作.此外,由一个元素构成的集合,我们常称为单点集. 集合的表示法: (1)用文句来描述一个集合由哪些元素构成(像前面所作的那样),是定义集合的一个重要方式. (2)描述法:我们还通过以下的方式来定义集合:记号 {x|关于x的一个命题P} 表示使花括号中竖线后面的那个命题P成立的所有元素x构成的集合.例如,集合{x|x为实数,并且0

集合论的创立与发展

三次数学危机与集合论的创立 一、 前言 每一门学科都有其自己的历史。数学,常被认为是一门完善的自然学科也有着自己的发展历程。同一切事物一样,数学在其发展的过程中,并非是一帆风顺的,而是经历了很多次问题的出现和解决才逐步发展起来的。无论是概念还是体系,内容还是方法,理论还是应用,都是伴随着各种问题的斗争和解决而进步和发展的。比如无理数,连续,无穷等概念的出现,没一个新问题的提出都刺激着数学的发展。 1、数学危机 虽然总是不断的有新问题的出现,但是就数学的整个历史发展历程来说,曾遇到过三次数学危机。第一次危机是由无理数的发现引发的;第二次危机是由于无穷小量引发的;第三次危机则是由罗素悖论产生的。每一次危机的出现都猛烈冲击着原有的理论体系,都是对原有理论体系内在矛盾的揭示,通过对其中逻辑矛盾的发现,启发人们对原有理论的缺陷或局限性进行思考。 危机的出现刺激着人们更加深入的研究,而每一次危机的解决都是对科学的进一步的改正、完善、补充和促进,对数学的发展有重要的意义,也必将推动数学的快速发展。正如人们常说,“危机是一种激化了的非解决不可的矛盾冲突,每一次危机都大大推动了数学的发展。” 2、集合论简介 集合论作为整个现代数学的基础,是数学中有着极为重要的作用。集合论是19世纪70年代由德国数学家康托尔G.Cantor 1845 - 1918创立的。集合论到现在已经被应用到了各个科学领域,并成为了数学的基础,产生了很多数学分科。 3、集合论与数学危机的联系 集合论的出现,使得第一第二次数学危机得到了很好的解决,成为了其理论基础。而第三次数学危机的出现对作为根基的集合论提出了矛盾,从而形成了更大的危机。 二、 三次数学危机 1、 第一次数学危机 第一次数学危机是由希泊索斯(Hippasis )对无理数的发现而引发的。 在公元前580~568年之间的古希腊,当时“万物皆数”是在学术界占统治地位的毕达哥拉斯学派的一个信条。他们认为一切都可以归结到整数或整数比,也就是说世上只有有理数。当时毕达哥拉斯学派还有一大贡献就是毕达哥拉斯定理,即勾股定理。然而希泊索斯发现了不可公度性的两条线段——等腰直角三角形的腰长与斜边,致使毕达哥拉斯学派内部的理论体系中产生了矛盾。 假设等腰直角三角形腰长a b =,而其斜长c 为有理数。 反证法:可知,2222 2c a b a =+=。不妨设a 和c 互素,则可以知道 c 为偶数,必有a 为奇数。取2c p =,得到222a p =,a 为偶数。得到矛盾。 对于第一次危机的研究,人们把几何建立在古典逻辑的基础上,不再把几何与数密切联系起来(数形分离),促进了几何学的发展。对于这个危机要么勾股定理不对,要么就承认有理数的不完备,进而预示着无理数的存在。 2、 第二次数学危机 (1)危机产生

康托与集合论

康托与集合论 康托(Georg Cantor ,1845-1918) 德国数学家,19世纪数学伟大成就之一——集合论的创立人。1845 年3月3日生于俄国彼得堡一个犹太商人的家庭。1856年全家迁居德 国法兰克福。康托先后就学于苏黎世大学、哥廷根大学、法兰克福大学 和柏林大学,主要学习哲学、数学和物理。 十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集。 这是集合论研究的开端。1874年,德国数学家康托尔在著名的《克雷尔数学杂志》上发表了关于无穷集合论的第一章革命性文章。从1874年到1884年,康托尔的一系列关于集合的文章,奠定了集合论的基础。他对集合所下的定义是:把若干确定的、有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,其中各事物称为该集合的元素。 集合是数学的一个基本分支,在数学中占据着一个极其独特的地位,其基本概念已渗透到数学的所有领域。如果把现代数学比作一座无比辉煌的大厦,那么可以说集合论正是构成这座大厦的基石,由此可见它在数学中的重要性。其创始人康托尔也以其集合论的成就被誉为对二十世纪数学发展影响最深的学者之一。 但是如同每一个新事物的出现一样,集合论一经问世就遭到许多数学家及其他学者的激烈反对。当时的权威数学家克罗内克(Kronecker)非常敌视康托尔的集合论思想,时间达整整十年之久,法国数学大家庞加莱(Poincare)则预测后一代人将把集合论当作一种疾病。在猛烈的攻击下与过度的用脑思考中,康托尔本人一度成为这一激烈论争的牺牲品,他得了精神分裂症,几次陷于精神崩溃。然而乌云遮不住太阳,经历二十余年后,集合论最终获得了世界公认。到二十世纪初集合论已得到数学家们的赞同。数学家们乐观地认为从算术公理系统出发,只要借助集合论的概念,便可以建造起整个数学的大厦。在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了。我们可以说,现在数学已经达到了绝对的严格。”然而这种自得的情绪并没能持续多久。英国哲学家罗素(Russell)就很怀疑数学的这种严密性,他经过三年的苦思冥想,于1902年找到了一个能证明自己观点的简单明确的“罗素悖论”。不久,集合论是有漏洞的消息迅速就传遍了数学界。

城市集合住宅的发展历程

城市集合住宅的发展历程 真正意义上的城市集合住宅最早的探索成果出现于法国巴黎中产阶级住宅中。19世纪末到20世纪的头十余年问,雏形期的城市集合住宅在欧洲及美国各大城市相继出现。此时正值新艺术运动时期,集合住宅的设计带有明显的这一时代的风格。 20世纪初期,设计的出发点明确定位为为多个家庭提供住宅,对艺术造型的处理 取得了很高的成就。城市集合住宅刚刚面世便因其更适合现代都市生活的合理性 表现出令人瞩目的生命力。但此时的城市集合住宅服务对象主要为中产阶层,其 相关理论以及技术条件获得初步发展,对现代社会和城市的巨大价值开始显现。 20世纪20到30年代,第一代现代主义建筑师实现了一个观念的巨大转变: 首次将“社会"和“公众”作为最主要的服务对象,并将城市集合住宅看作现代 工业社会的根基和现代建筑学的中心问题。勒·柯布西耶旗帜鲜明地指出:“设 计为普通而平常的人使用的普通而平常的住宅,这是时代的标志"Ⅲ。到20年 代末,欧洲各国建筑师展开了一场关于住宅密度与形态问题的大讨论,这场讨论 为城市集合住宅的发展奠定了理论基础,城市集合住宅开始肩负起其真正的历史 使命。 二战以后到七十年代由于各国住宅普遍数量上的严重不足,城市集合住宅成 为这一时期住宅建设的重点,各国都把城市与住宅的恢复和建设看作当务之急, 城市集合住宅迎来了它恢复和发展的新时期。工业化的浪潮不可阻挡,城市集合 住宅的理论和实践毁誉参半,各国走过了十分相似但又各具特色的发展之路。 70年代中期随着经济高度增长的结束,各国经济进入平稳增长时期。《马丘 比丘宪章》的颁布标志着城市规划和居住空间理论开始了一个新的时代,各国集 合住宅的建设产生了由量转向质的巨大转变。高层逐渐向中低层过渡:由新区开 发转向旧城改造;集合住宅逐渐回归城市街道;功能趋向复合:设计日趋多样化; 公众的参与越来越成为公共集合住宅设计的重要组成部分。在人本主义与新的社 区理论的影响下,城市集合住宅终于从一味强调功能主义和技术主义的思想中解 脱出来,向着更加丰富于人性和多元的方向迈进。

关于集合与集合论

第一章 关于集合与集合论 在许多数学教材上都会见到这样一种说法:集合论是现代数学的基础,集合概念是数学的基本概念。那么为什么会有这种说法呢?这种说法的依据是什么呢?在这一章,我们将对此给出一种解释。 在本章的第1节,将简要重温一些与集合论相关的基本概念与符号,其中大多数的概念与符号用法是每一个高中生都应当熟悉的。在第2节,本书作者对集合论的意义及其产生的思想渊源进行了介绍和分析,其中有些是作者个人的观点,仅供读者参考。最后两节则是在讲一些基本逻辑常识的基础上,介绍了较为规范的集合表示方法以及用集论语言定义的某些重要数学概念。 §1. 集合论中的常见概念与符号 1.1. 集合概念与属于关系 在集合论中,“集合”这个概念是作为不定义的基本概念,以符号“∈”表示的“属于”关系,也是不定义关系。在朴素集合论中,人们用日常语言给集合概念和属于关系以直观说明。其中最常见的是集合论创始人康托的说法:“将一些明确的(确定的)、彼此有区别的、具体的或理念中抽象的对象看作一个整体,便叫作一个集合。”在本书的前三章,便以康托的这个描述作为“集合”概念含义的说明。理解这个说明,主要注意如下几点. (1)当我们提到一个集合时,这个集合自身是作为一个整体被看待的; (2)集合是由可以确定的一些对象个体汇集而成的,也就是说,必须可以清晰判定任何一个对象个体是否在这些对象个体之中,并且可以明确区分开这些对象个体中任何两个不同的对象个体。 (3)在朴素集合论中,集合中的元素既可以是物理世界中的对象,也可以是我们头脑中形成的观念对象。比如:将“北京大学2002年所有在籍学生的全体”作为一个集合,其元素都是具体现实的人(在籍学生);将“所有实数的全体” 的对象,作为一个集合,其元素(实数)便是由理念抽象的对象组成的集合。作为数学理论,集合论所讨论的集合,基本上都是由人类理念在其抽象过程中产生的对象汇集而成的。只有在将数学应用于现实时,才会涉及到由现实物理世界中的对象作为元素组成的集合。因此,在理解作为数学理论的集合论时,一定要适应抽象的思维方式和观念对象的建构方式。 如果以符号A 表示一个集合,a 表示一个对象个体,假如a 在那些汇集为集合A 的对象个体之中,我们称a 属于A ,记为A a ∈,否则记为A a _ ∈。如果A a ∈,称a 是A 的元素,也称集合A 含a 。按照上面的理解,若A 与B 是两个集合,当我们可以判定(证明)A 的元素也都是B 的元素或者可以判定没有任何一个A 中的元素不属于B ,我们称A 被B 所包含,或集合B 包含A ,记为B A ?。集合, 注:请读者注意在本书中对“含”与“包含”这两个词汇的不同用法。当B A ?且A B ?时,我们便认为A 与B 是两个完全相同的集合,记为A =B ,这时A 与B 作为集合被看作是同一个对象。如果B A ?,且A ≠B 可以明确记作B A ≠ ?,称A 是B 的真子集。

江西财经大学数学社2015年下学期第一次讲义

2015年数学社第一次测试 (适用教材:微积分、高等数学、数学分析) 命题人:钱佳威 基础部分 1.(微分方程解的特性考察)已知x x xe y e y ==21和是齐次二阶常系数线性微分方程的解,求该方程。 2.(对构造幂级数或者拆分法的考察)求∑=∞ →+n k n k k 1)! 1(lim . 3.(对计算积分进行考察)计算? ++1 14 3x dx x . 4.(对三角函数的周期与基本极限的考察)求极限( )2 lim 1sin 14n n n π→∞ ++. 5.(对极值与隐函数的考察)设函数()y y x =由323322x x y y +-=确定,求 ()y x 的极值。 6.(积分定义的概念考察)求极限如下: 提高部分 1.(全国大学生数学竞赛.数学类)设f(x)在[0,1]上黎曼可积,在x=1处 可导,f(1)=0,f ’(x)=a ,求证:a dx x f x n n n -=? ∞ →1 2 )(lim . 2.(全国大学生数学竞赛.数学类)设f(x)在[0,1]上黎曼可积,]1,0[∈f . 求证:},1,0{)(,0=?>?x g ε使得任意ε<-???|))()((|],1,0[],[b a dx x g x f b a .

3.(全国大学生数学竞赛.数学类)设∑+∞=1 n n na 收敛,证明:∑∞ =+∞ →1 lim k k n n ka =0. 参考答案 基础篇 1. 2. 3.C x x x +++++-+|11|ln 43143)1(83343432 4 4.解 因为() 222 sin 14sin 142sin 142n n n n n π π ππ+=+-=++ 原式22lim 1sin exp lim ln 1sin 142142n n n n n n n n ππππππ→∞ →∞??????=+=+?? ? ?++++???????? 1 422exp lim sin exp lim 142142n n n n e n n n n π π ππππ→∞ →∞ ???? === ? ?++++??? ? 5.解 方程两边对x 求导,得22236360x xy x y y y ''++-= .故()2222x x y y y x +'=-,令 0y '=,得()200x x y x +=?=或2x y =- 将2x y =-代入所给方程得2,1x y =-=,

集合论和中国的发展

论文标题:集合论思想的演变及在当代中国的发展 论文作者姜玉声/朱焕志 论文关键词,论文来源自然辩证法研究,论文单位京,点击次数148,论文页数031-037页1995年1995月论文网https://www.doczj.com/doc/ca8465275.html,/paper_143662921/ 集合论自上世纪70年代由德国数学家G.Cantor创立以来,不断促进着许多数学分科的发展,并成为全部现代数学的基础。然而,近30年来又相继出现了Fuzzy集合论与可拓集合论。为说明这两种集合论的产生在数学史中的意义,理清集合论思想演变的脉络,弘扬我国学者在这一发展中的创造精神,本文拟在简要回顾集合论思想从Cantor到Fuzzy的演变的基础上,就可拓集合论的产生与发展加以分析、研讨集合论思想发展的规律,谈谈我们的浅见。 1集合论思想从Cantor到Fuzzy的演变 长期以来,人们利用数学处理问题的主导思想通常是“枝是枝,蔓是蔓”,不允许半点儿“含混”,语言的“准确”,推理的“严格”,结论的“确定”从来天经地义。[(1)a]数学中的这种传统观念,把人们的思想局限在“确定性”的小天地里。所谓“确定性”,它要求概念有明确的外延,逻辑上严格地遵从形式逻辑的四条基本规律,结论只能是唯一确定的。与这种观念相适应,数学中便产生了Cantor集合论。 众所周知,集合是数学中的一个不定义概念。所谓集合,是指具有某种特定属性的对象的全体,集合中的每一个体(对象)叫做集合的元素。按Cantor的集合论,一个元素x与一个集合A的关系只能有属于(记作∈)和不属于(记作 )两种,二者必居其一且仅居其一,即 x∈A或x A。如表为特征函数的形式,记集合A的特征函数为C[,A](x),则有在长时间里,这种集合论思想占据统治地位,可以说整个传统数学[(2)a]就建立在这种集合论的基础上。实践表明,Cantor的集合论在研究确定性事物的范围内显现着巨大作用,其光辉是永不磨灭的。 然而,随着社会的发展,人类的知识视野和研究领域不断扩大,需要探讨的问题加速度地增加着。于是,不确定性现象,特别是其中的模糊性现象,逐渐被人们意识。具体地说,近几十年来,学者们不断发觉,某些现象呈现出不确定性,是由于概念本身就没有明确的外延,逻辑上并不严格遵从传统的排中律,表现为客观事物在差异的中介过渡中所呈现的“亦此亦彼”性。例如,人的年轻与年老、环境的清洁与脏污及天气的晴与阴等许多对立概念之间,都没有绝对分明的界限。严格地说,这些概念都没有明确的外延。若按这些概念去确定“集合”,则相应的“集合”都没有清晰的边界,一个元素是否属于某个“集合”不是很分明的。当然,如果数学家同意把这样的“集合”仍称为集合的话,则这种集合已经不是Cantor意义下的经典集合了。一个对象对于一个这样的集合,除可以属于和不属于外,还可以有某种程度的属于或不属于,而且后者才是更一般的情形。譬如,若用年轻人这个概念构造这种集合,要问一个人是否属于这个集合,即是否年轻,则除了年轻和不年轻这两个极端情形外,还要遇到比较年轻、基本年轻等不少中间过渡的档次,且每一档次内还可细分更小的档次。这就是事物的模糊性。为了研究和处理模糊性事物,美国控制论专家L.A.Zadeh教授于1965年提出了Fuzzy集合论。 Fuzzy集合论的基本思想较集中地体现在下面的开创性概念中:所谓给定了论域U上的一个模糊子集Α,是指对于任意的u∈U,都指定了一个数μ (u)∈〔0,1〕,用它来表示u对A的隶属程度,叫u对 的隶属度。映射叫做 的隶属函数。[(1)]有了这个概

集合教学中的发展性评价

发展性评价在集合教学中的应用 昆明市第三十四中学卞智华 内容摘要:发展性评价是一种过程性评价的教学理念及方法,本文将用高中数学必修一第一章第一节集合具体展示我如何实施发展性评价。文中将细致讲述我在作业,课堂中我如何通过发展性评价纠正学生认知错误,改变学生学习习惯及提升学生学习数学的自信心和兴趣。关键词:集合教学发展性评价数学能力数学习惯 发展性评价是顺应国家课程改,根据《数学课程标准》的要求,重视学生主体地位,尊重学生人格关注其内在情感、意志和态度,使发展评价有利于树立学生学习数学的自信心,提高学习数学的兴趣,明确自己努力的方向,促进学生进一步的发展。 高中集合是学生由初中进入高中的第一课,这关系到学生由初中到高中学生学习方法,态度的过度,并直接影响学生对高中数学学习的自信心和兴趣,因此在教学中对学生学习习惯的培养和学习能力的培养极为重要。而且针对我们学校属于昆明市二级学校,学生数学基础薄弱的特点,采用发展性评价有助于缓解学生自卑感,也可以杜绝学生破罐子破摔的心理及行为。 对于发展性评价的实施,我主要分为以下几步:第一,把知识点分类,设置不同任务的考核目标;第二,任务检测,针对学生作业及反馈评价学生学习情况及问题诊断;第三,问题讲评及改正建议及意见;第四,回顾诊断,设置测试,检测学生知识,态度,听课及改错情况,及时反馈评价。 评价方式主要有,作业批注(优,良,中,差),作业展示(作业认真细致的和作业马虎应付的),口头表扬或批评(积极回答问题,学习状态改变较大的,或者是问题突出的),晚自习或者是课件找谈话,针对作业及上课情况,和学生一起分析最近出现问题的原因并一起分析对策。 评价标准及准则。评价主要从学习态度,学习习惯,学习效果,学习能力四方面进行。其中学习态度主要从预习,作业书写认真程度,听课,笔记及改错这些方面进行评价;学习习惯从看书,做题写关键步骤,错题及时整理等方面进行评价;学习效果通过对比学生在整体中的排名和学生自身学习前后的数学知识能力的变化进行评价;学习能力通过设置新题型,创新题,变式题,测试学生模仿,类比,归纳分析等方面能力的变化。 差异性及动态评价,在任务达成过程中,如果学生觉得我认为可以模仿,推理出来的知识难度过大,可以让其主动选择完成简单地复述,记忆,知识整理和题型总结。力求做到让学生有事可做,有题会做,当然每天做的题,学习的东西又有所提高,保持学习的新鲜感和学习兴趣和数学学习的成就感。 以下从具体教学中,阐述以上各方面在集合教学中的应用。 第一,集合概念及其表示的教学。 第一步,知识点分类,设置预习任务和预习提示。 由知识点把集合概念及表示主要达成三个目标,认识元素与集合的关系,会用列举法和描述法表示集合,能够找到描述法表示的集合中的元素或者是描述法表示集合元素的特征。按能力要求主要分为以下四点: 阅读能力:集合的描述性定义,简单地列举法和描述法的表示,能够判断能否构成集合 记忆能力:特殊数集的表示 模仿类比:根据课本奇数的表示得到偶数的表示 符号解读:描述法到列举法的转换 任务布置及预习提示:

第一章 集合论

第1章集合论 一、内容提要 1.集合: 集合是数学中没有给出精确定义的基本数学概念。我们通常称集合是具有某种特定的研究对象的聚合,其中每一个对象称为这个集合的元素。通常用大写的英文字母A,B,C,D,…表示集合,用小写的英文字母a,b,c,d,…表示集合中的元素。个体与集合之间的关系是属于或不属于的关系:当a 是集合A中的元素时,称为a属于A,并记作a ∈A;当a 不是集合A中的元素时,称为a不属于A,并记作a? A。 2.集合表示法: 集合通常有三种表示法:文字表示法、元素列举法(罗列法)和谓词表示法。我们规定用花括号——{ } 表示集合。文字表示法用文字表示集合的元素,两端加上花括号,如:{ 奇数},{ 闭区间[0,1]上的连续函数}等;元素列举法(罗列法)将集合中的元素逐一列出,两端加上花括号,比较适合集合中的元素有限(较少或有规律)、无限(离散而有规律)的情况,如:{ 1,2,3,4,5},{ 2,4,6,8,10,… }等;谓词表示法的形式{ x : P(x) } 或者{ x︱P(x) },其中:P表示x所满足的性质(一元谓词)。比较适合在对集合中的元素性质了解甚详,且易于用精确的数学语言来刻划时使用,如:{ x : x∈I∧x<8}等。 3.空集: 不含任何元素的集合称为空集,记为?。所要研究的问题所需的全部对象(元素)所构成的集合称为全集,记为X(或U ,E)。空集是唯一的,而哦全集是相对唯一的,不是绝对唯一的。 4.全集和子集: 对于两个集合A,B,若A中的每个元素x都是B的一个元素,则称A包含在B 中(或者说B包含A),记为A?B。同时称A是B的子集(称B是A 的超集(superset))。 如果A是B的子集,且B中总有一些或一个元素不属于A,则称A是B的真子集,记为A?B。 5.补集: 由所有不属于A的元素构成的集合,称为A的补集,记作A'。 6.幂集: 一个集合A的所有子集构成的集合称为A的幂集,记为2A ( 或P (A) )。 7.定理:设A,B,C为任意三个集合。那么: (1) 自反性:A ? A ( 每个集合是它自己的子集) ; (2) 反对称性:A?B ∧B?A ? A=B ; (3) 传递性:A?B ∧B?C ? A?C ; 8.定理:空集是任一集合的子集。即:??A。 9.余(补或非)运算: 设X是全集。一元运算':2X → 2 X 对任何集合A ? X ,使得A'={ x : x∈X ∧x?A } (当全集明确时,A' ={x : x?A })。称为集合的余运算。称A'是A关于X 的余集。余运算有时也记为或~A 或?A 。

Fuzzy模糊数学-共5节-电子书---讲义

模糊数学 第1节模糊聚类分析 第2节模糊模式识别 第3节模糊相似优先比方法 第4节模糊综合评判 第5节模糊关系方程求解 在自然科学或社会科学研究中,存在着许多定义不很严格或者说具有模糊性的概念。这里所谓的模糊性,主要是指客观事物的差异在中间过渡中的不分明性,如某一生态条件对某种害虫、某种作物的存活或适应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气候对农业产量的影响程度为“较重、严重、很严重”,等等。这些通常是本来就属于模糊的概念,为处理分析这些“模糊”概念的数据,便产生了模糊集合论。 根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一,且仅居其一。这样的集合论本身并无法处理具体的模糊概念。为处理这些模糊概念而进行的种种努力,催生了模糊数学。模糊数学的理论基础是模糊集。模糊集的理论是1965年美国自动控制专家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。 模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。实践证明,模糊数学在农业中主要用于病虫测报、种植区划、品种选育等方面,在图像识别、天气预报、地质地震、交通运输、医疗诊断、信息控制、人工智能等诸多领域的应用也已初见成效。从该学科的发展趋势来看,它具有极其强大的生命力和渗透力。 在侧重于应用的模糊数学分析中,经常应用到聚类分析、模式识别和综合评判等方法。在DPS系统中,我们将模糊数学的分析方法与一般常规统计方法区别开来,列专章介绍其分析原理及系统设计的有关功能模块程序的操作要领,供用户参考和使用。 第1节模糊聚类分析 1. 模糊集的概念 对于一个普通的集合A,空间中任一元素x,要么x∈A,要么x?A,二者必居其一。这一特征可用一个函数表示为: A x x A x A ()= ∈ ?? ? ? 1 A(x)即为集合A的特征函数。将特征函数推广到模糊集,在普通集合中只取0、1两值推广到模糊集中为[0, 1]区间。 定义1 设X为全域,若A为X上取值[0, 1]的一个函数,则称A为模糊集。 如给5个同学的性格稳重程度打分,按百分制给分,再除以100,这样给定了一个从域X={x1 , x2 , x3 , x4, x5}到[0, 1]闭区间的映射。 x1:85分,即A(x1)=0.85 x2:75分,A(x2)=0.75 x3:98分,A(x3)=0.98 x4:30分,A(x4)=0.30 x5:60分,A(x5)=0.60

相关主题
文本预览
相关文档 最新文档