阵列波导光栅的滤波特性集成光器件可作为波长路由器
- 格式:ppt
- 大小:1.18 MB
- 文档页数:27
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
21世纪,随着通信技术及其业务的飞速发展,尤其是因特网的迅速崛起,人们对数据的需求也急剧增加,对通信网的宽带提出了更高的要求,传统的通信技术已经很难满足不断增加的通信容量的需求。
光纤通信技术凭借其巨大的潜在宽带资源,成为支撑通信业务量增长的重要通信技术之一。
波分复用(WDM wavelength division Multiplexing)技术是允许在一根光纤上面传输多路相互独立的波长带,这样便可提供多路通道和高的多的通信容量,使得通信容量随可复用波长的数目成倍的增长。
在光纤通信中,波分复用系统中经历着从点到点系统到透明光网络的转变,经历着从以往的电光转换到全光交换的装变,密集波分复用(DWDM,dense wavelength division multiplexing)已成为当今光纤通信的首选技术,尤其在长距离、骨干网中已获得广泛的应用。
阵列波导光栅(AWG,arrayed waveguide grating)器件是一种角色散型无源器件,它基于平面光回路技术(PLC,planar light-wave circuit)。
与其它波分复用器件相比,AWG器件具有设计灵活、插入损耗低、滤波性能好、长期稳定、易与光纤耦合等优点。
此外,AWG还比较容易与光放大器、半导体激光器等有源器件结合,实现单片集成,因此AWG成为DWDM光网络中最理想的器件,是当今研究热点。
中国市场的光通信芯片主要依赖外国供应商。
在PON核心芯片方面,基本没有国内厂商。
EPON芯片商主要有四家,包括Cortina、PMC- Sierra、Teknovus (被Broadcom收购)以及中国厂商Opulan,但Opulan已于2010年7月被Atheros 收购。
GPON芯片提供商则相对较为分散,包括Broadlight、PMC-Sierra、Broadcom、Marvel、Cortina、Infineon、Ikanos等近十家厂商。
阵列波导光栅结构1. 引言阵列波导光栅结构(Arrayed Waveguide Grating,AWG)是一种用于光通信和光谱分析的关键器件。
它通过将输入的光信号分散成多个不同频率的波长,并将它们耦合到输出波导中,实现了光信号的多路复用和解复用。
本文将对阵列波导光栅结构的原理、制备工艺以及应用进行全面详细的介绍。
2. 原理阵列波导光栅结构由一系列平行排列的等长波导组成,其中每个波导都有一个固定的折射率。
当入射光从其中一个输入波导进入时,会在所有波导之间发生耦合,并形成一系列干涉效应。
这些干涉效应会使得不同频率的光在输出端形成不同强度的干涉峰,从而实现了对不同波长的分散和解复用。
具体而言,阵列波导光栅结构可以分为两个主要部分:输入级和输出级。
输入级包括输入端口、输入星型耦合器和阵列波导,用于将入射光耦合到阵列波导中。
输出级包括输出星型耦合器和输出端口,用于将解复用后的光信号从阵列波导中耦合出来。
在阵列波导中,入射光会被分散成不同频率的波长,并沿着波导逐渐传播。
每个波导之间的距离被精确设计,以使得不同频率的光在特定位置相位匹配,从而形成干涉峰。
这些干涉峰的强度与入射光的波长有关,因此可以通过调整波导长度和折射率来实现对不同波长的分散和解复用。
3. 制备工艺制备阵列波导光栅结构通常采用集成光学技术,其中最常见的方法是利用硅基材料。
以下是一般制备工艺流程:1.材料选择:选择具有较高折射率差异的材料作为主要构成元素,例如硅和二氧化硅。
2.芯片设计:根据应用需求设计芯片结构,并确定输入级和输出级的参数。
3.芯片制备:使用化学气相沉积(Chemical Vapor Deposition,CVD)或物理气相沉积(Physical Vapor Deposition,PVD)等技术,在硅基底上生长薄膜。
4.光刻和蚀刻:利用光刻技术将设计好的波导图案转移到薄膜上,并通过干法或湿法蚀刻将多余的材料去除。
5.抛光和平整化:对制备好的芯片进行抛光和平整化处理,以提高表面质量和波导性能。
阵列波导光栅在光通信器件中的应用
阵列波导光栅是一种重要的光学器件,它在光通信器件中有着广泛的应用。
阵列波导光栅是一种具有周期性折射率变化的光学波导结构,它可以将光束分散成多个波长,从而实现光谱分析和光通信等应用。
在光通信器件中,阵列波导光栅主要用于光滤波和波长分复用。
光滤波是指通过光学器件将特定波长的光信号从复杂的光信号中分离出来,以便进行进一步的处理。
阵列波导光栅可以实现高效的光滤波,因为它可以将光束分散成多个波长,从而实现对特定波长的选择性滤波。
波长分复用是指将多个不同波长的光信号合并在一起传输,从而提高光通信的带宽和效率。
阵列波导光栅可以实现高效的波长分复用,因为它可以将多个不同波长的光信号分散成多个波长,从而实现波长分离和复用。
除了光滤波和波长分复用,阵列波导光栅还可以用于光谱分析、光学传感和光学调制等应用。
例如,阵列波导光栅可以用于分析光源的光谱特性,从而确定光源的波长和强度。
阵列波导光栅还可以用于光学传感,例如测量温度、压力和化学成分等参数。
此外,阵列波导光栅还可以用于光学调制,例如调制光信号的相位和振幅等参数。
阵列波导光栅是一种重要的光学器件,它在光通信器件中有着广泛的应用。
阵列波导光栅可以实现高效的光滤波和波长分复用,从而提高光通信的带宽和效率。
此外,阵列波导光栅还可以用于光谱分析、光学传感和光学调制等应用,具有广阔的应用前景。
21世纪,随着通信技术及其业务的飞速发展,尤其是因特网的迅速崛起,人们对数据的需求也急剧增加,对通信网的宽带提出了更高的要求,传统的通信技术已经很难满足不断增加的通信容量的需求。
光纤通信技术凭借其巨大的潜在宽带资源,成为支撑通信业务量增长的重要通信技术之一。
波分复用(WDM wavelength division Multiplexing)技术是允许在一根光纤上面传输多路相互独立的波长带,这样便可提供多路通道和高的多的通信容量,使得通信容量随可复用波长的数目成倍的增长。
在光纤通信中,波分复用系统中经历着从点到点系统到透明光网络的转变,经历着从以往的电光转换到全光交换的装变,密集波分复用(DWDM,dense wavelength division multiplexing)已成为当今光纤通信的首选技术,尤其在长距离、骨干网中已获得广泛的应用。
阵列波导光栅(AWG,arrayed waveguide grating)器件是一种角色散型无源器件,它基于平面光回路技术(PLC,planar light-wave circuit)。
与其它波分复用器件相比,AWG器件具有设计灵活、插入损耗低、滤波性能好、长期稳定、易与光纤耦合等优点。
此外,AWG还比较容易与光放大器、半导体激光器等有源器件结合,实现单片集成,因此AWG成为DWDM光网络中最理想的器件,是当今研究热点。
中国市场的光通信芯片主要依赖外国供应商。
在PON核心芯片方面,基本没有国内厂商。
EPON芯片商主要有四家,包括Cortina、PMC- Sierra、Teknovus (被Broadcom收购)以及中国厂商Opulan,但Opulan已于2010年7月被Atheros 收购。
GPON芯片提供商则相对较为分散,包括Broadlight、PMC-Sierra、Broadcom、Marvel、Cortina、Infineon、Ikanos等近十家厂商。
阵列波导光栅在光通信器件中的应用阵列波导光栅在光通信器件中的应用摘要:随着光通信的发展,光波导作为一种特殊类型的光学器件开始介入了光通信领域,并发挥着重要的作用。
本文结合现实实际,介绍了阵列波导光栅(AWG)的基本性质及其在光通信器件中的应用。
阵列波导光栅具有高调制率、低插入损耗、高阻抗匹配、高复用等优势,目前已在多种光通信器件中得以成功应用。
本文主要介绍了阵列波导光栅在差分光复用器、光连接器、光布线器件、多模光纤、光网络、数字光纤网络等光通信器件中的应用。
关键词:光通信;阵列波导光栅;差分光复用器;光网络;数字光纤网络1绪论随着现代社会的发展,光通信技术已成为各类通讯系统的核心。
光波导作为一种特殊类型的光学器件也开始介入了光通信领域,并发挥着重要的作用。
阵列波导光栅(Arrayed Waveguide Grating,简称AWG)是由阵列波导和光栅构成的一种半导体光学元件。
它既具有波导光栅的优点,又具备了阵列波导的优势,具有高调制率、低插入损耗、高阻抗匹配、高复用等特性,成为光通信研究的热点。
本文主要介绍了阵列波导光栅在光通信器件中的应用,包括其工作原理、特点及其在差分光复用器、光连接器、光布线器件、多模光纤、光网络、数字光纤网络等光通信器件中的应用。
2 AWG的基本性质2.1 工作原理阵列波导光栅是一种具有波导光栅和阵列波导性质的半导体光学器件,它由一组竖状多芯熔接的阵列波导和一组具有等间距光栅的翘曲波导构成,两者由一个反射镜结合。
如图1所示:图1 阵列波导光栅结构其工作原理如下:入射光在输入波导中传播,并进入阵列波导中运动,由于阵列波导的折射率不同,产生多重反射,入射光的波长会发生不同程度的折射和反射,最终出射到等间距的光栅中,再通过反射镜反射回来,最终形成一个窄带的光束。
2.2 特点阵列波导光栅具有良好的高调制率,可达到50dB;具有较低的插入损耗,可达到0.5dB;具有良好的阻抗匹配,可高达50Ω;具有较高的复用性,最多可达到40条通道;非常抗振动和抗温度变化,具有较高的可靠性。
阵列波导光栅(AWG)的理论研究与优化设计的开题报告1. 研究背景和意义随着通信技术的发展,光纤通信系统已经成为一种重要的通信传输方式,其中光纤光栅作为现代光学通信系统中最重要的元件之一,在分光复用、分离信道、分配光功率、滤波和光谱分析中广泛应用。
而在光栅元件中,阵列波导光栅(AWG)以其具有多路功率分配和复用能力、宽波长可调性和灵活性等特点,在光通信系统中得到了广泛的应用和研究。
然而,AWG的设计和优化问题一直是一个亟待解决的问题。
如何实现高分辨率、低插入损耗、宽带、低交叉损耗、低色散等性能的平衡就是设计和优化中的主要问题。
因此,本文将从理论研究和优化设计两个方面入手,对AWG进行研究和探讨,以期能够提高AWG的性能和应用价值。
2. 研究内容和方法本文将主要从以下几个方面开展研究:(1)AWG原理及其性能分析通过对AWG的原理和性能进行分析,了解AWG的基本结构、工作原理和特点,确定AWG性能分析的指标。
(2)AWG理论模型的建立在分析AWG原理和性能的基础上,建立AWG的理论模型,研究影响AWG性能的因素以及它们之间的关系。
(3)AWG优化设计的算法研究通过改变AWG的结构参数,优化AWG的性能指标,并确定合适的优化算法,采用仿真和试验等方法对AWG进行性能验证。
(4)AWG的实际应用研究在完成AWG的研究和优化设计后,结合实际应用场景,验证AWG的应用效果,并探索和研究适用于不同应用需求的AWG结构和设计方案。
3. 研究预期结果和意义本研究预期能够筛选出性能优异的AWG结构和设计方案,满足不同的应用需求,并能够提高AWG在光通信系统中的应用价值。
同时,本研究也将有助于深入理解AWG的原理和性能特点,为AWG的进一步研究提供理论基础。