阵列波导光栅_AWG_器件及其应用
- 格式:pdf
- 大小:1.08 MB
- 文档页数:5
21世纪,随着通信技术及其业务的飞速发展,尤其是因特网的迅速崛起,人们对数据的需求也急剧增加,对通信网的宽带提出了更高的要求,传统的通信技术已经很难满足不断增加的通信容量的需求。
光纤通信技术凭借其巨大的潜在宽带资源,成为支撑通信业务量增长的重要通信技术之一。
波分复用(WDM wavelength division Multiplexing)技术是允许在一根光纤上面传输多路相互独立的波长带,这样便可提供多路通道和高的多的通信容量,使得通信容量随可复用波长的数目成倍的增长。
在光纤通信中,波分复用系统中经历着从点到点系统到透明光网络的转变,经历着从以往的电光转换到全光交换的装变,密集波分复用(DWDM,dense wavelength division multiplexing)已成为当今光纤通信的首选技术,尤其在长距离、骨干网中已获得广泛的应用。
阵列波导光栅(AWG,arrayed waveguide grating)器件是一种角色散型无源器件,它基于平面光回路技术(PLC,planar light-wave circuit)。
与其它波分复用器件相比,AWG器件具有设计灵活、插入损耗低、滤波性能好、长期稳定、易与光纤耦合等优点。
此外,AWG还比较容易与光放大器、半导体激光器等有源器件结合,实现单片集成,因此AWG成为DWDM光网络中最理想的器件,是当今研究热点。
中国市场的光通信芯片主要依赖外国供应商。
在PON核心芯片方面,基本没有国内厂商。
EPON芯片商主要有四家,包括Cortina、PMC- Sierra、Teknovus (被Broadcom收购)以及中国厂商Opulan,但Opulan已于2010年7月被Atheros 收购。
GPON芯片提供商则相对较为分散,包括Broadlight、PMC-Sierra、Broadcom、Marvel、Cortina、Infineon、Ikanos等近十家厂商。
阵列波导光栅结构1. 引言阵列波导光栅结构(Arrayed Waveguide Grating,AWG)是一种用于光通信和光谱分析的关键器件。
它通过将输入的光信号分散成多个不同频率的波长,并将它们耦合到输出波导中,实现了光信号的多路复用和解复用。
本文将对阵列波导光栅结构的原理、制备工艺以及应用进行全面详细的介绍。
2. 原理阵列波导光栅结构由一系列平行排列的等长波导组成,其中每个波导都有一个固定的折射率。
当入射光从其中一个输入波导进入时,会在所有波导之间发生耦合,并形成一系列干涉效应。
这些干涉效应会使得不同频率的光在输出端形成不同强度的干涉峰,从而实现了对不同波长的分散和解复用。
具体而言,阵列波导光栅结构可以分为两个主要部分:输入级和输出级。
输入级包括输入端口、输入星型耦合器和阵列波导,用于将入射光耦合到阵列波导中。
输出级包括输出星型耦合器和输出端口,用于将解复用后的光信号从阵列波导中耦合出来。
在阵列波导中,入射光会被分散成不同频率的波长,并沿着波导逐渐传播。
每个波导之间的距离被精确设计,以使得不同频率的光在特定位置相位匹配,从而形成干涉峰。
这些干涉峰的强度与入射光的波长有关,因此可以通过调整波导长度和折射率来实现对不同波长的分散和解复用。
3. 制备工艺制备阵列波导光栅结构通常采用集成光学技术,其中最常见的方法是利用硅基材料。
以下是一般制备工艺流程:1.材料选择:选择具有较高折射率差异的材料作为主要构成元素,例如硅和二氧化硅。
2.芯片设计:根据应用需求设计芯片结构,并确定输入级和输出级的参数。
3.芯片制备:使用化学气相沉积(Chemical Vapor Deposition,CVD)或物理气相沉积(Physical Vapor Deposition,PVD)等技术,在硅基底上生长薄膜。
4.光刻和蚀刻:利用光刻技术将设计好的波导图案转移到薄膜上,并通过干法或湿法蚀刻将多余的材料去除。
5.抛光和平整化:对制备好的芯片进行抛光和平整化处理,以提高表面质量和波导性能。
阵列波导光栅在光通信器件中的应用
阵列波导光栅是一种重要的光学器件,它在光通信器件中有着广泛的应用。
阵列波导光栅是一种具有周期性折射率变化的光学波导结构,它可以将光束分散成多个波长,从而实现光谱分析和光通信等应用。
在光通信器件中,阵列波导光栅主要用于光滤波和波长分复用。
光滤波是指通过光学器件将特定波长的光信号从复杂的光信号中分离出来,以便进行进一步的处理。
阵列波导光栅可以实现高效的光滤波,因为它可以将光束分散成多个波长,从而实现对特定波长的选择性滤波。
波长分复用是指将多个不同波长的光信号合并在一起传输,从而提高光通信的带宽和效率。
阵列波导光栅可以实现高效的波长分复用,因为它可以将多个不同波长的光信号分散成多个波长,从而实现波长分离和复用。
除了光滤波和波长分复用,阵列波导光栅还可以用于光谱分析、光学传感和光学调制等应用。
例如,阵列波导光栅可以用于分析光源的光谱特性,从而确定光源的波长和强度。
阵列波导光栅还可以用于光学传感,例如测量温度、压力和化学成分等参数。
此外,阵列波导光栅还可以用于光学调制,例如调制光信号的相位和振幅等参数。
阵列波导光栅是一种重要的光学器件,它在光通信器件中有着广泛的应用。
阵列波导光栅可以实现高效的光滤波和波长分复用,从而提高光通信的带宽和效率。
此外,阵列波导光栅还可以用于光谱分析、光学传感和光学调制等应用,具有广阔的应用前景。
21世纪,随着通信技术及其业务的飞速发展,尤其是因特网的迅速崛起,人们对数据的需求也急剧增加,对通信网的宽带提出了更高的要求,传统的通信技术已经很难满足不断增加的通信容量的需求。
光纤通信技术凭借其巨大的潜在宽带资源,成为支撑通信业务量增长的重要通信技术之一。
波分复用(WDM wavelength division Multiplexing)技术是允许在一根光纤上面传输多路相互独立的波长带,这样便可提供多路通道和高的多的通信容量,使得通信容量随可复用波长的数目成倍的增长。
在光纤通信中,波分复用系统中经历着从点到点系统到透明光网络的转变,经历着从以往的电光转换到全光交换的装变,密集波分复用(DWDM,dense wavelength division multiplexing)已成为当今光纤通信的首选技术,尤其在长距离、骨干网中已获得广泛的应用。
阵列波导光栅(AWG,arrayed waveguide grating)器件是一种角色散型无源器件,它基于平面光回路技术(PLC,planar light-wave circuit)。
与其它波分复用器件相比,AWG器件具有设计灵活、插入损耗低、滤波性能好、长期稳定、易与光纤耦合等优点。
此外,AWG还比较容易与光放大器、半导体激光器等有源器件结合,实现单片集成,因此AWG成为DWDM光网络中最理想的器件,是当今研究热点。
中国市场的光通信芯片主要依赖外国供应商。
在PON核心芯片方面,基本没有国内厂商。
EPON芯片商主要有四家,包括Cortina、PMC- Sierra、Teknovus (被Broadcom收购)以及中国厂商Opulan,但Opulan已于2010年7月被Atheros 收购。
GPON芯片提供商则相对较为分散,包括Broadlight、PMC-Sierra、Broadcom、Marvel、Cortina、Infineon、Ikanos等近十家厂商。
阵列波导光栅在光通信器件中的应用阵列波导光栅在光通信器件中的应用摘要:随着光通信的发展,光波导作为一种特殊类型的光学器件开始介入了光通信领域,并发挥着重要的作用。
本文结合现实实际,介绍了阵列波导光栅(AWG)的基本性质及其在光通信器件中的应用。
阵列波导光栅具有高调制率、低插入损耗、高阻抗匹配、高复用等优势,目前已在多种光通信器件中得以成功应用。
本文主要介绍了阵列波导光栅在差分光复用器、光连接器、光布线器件、多模光纤、光网络、数字光纤网络等光通信器件中的应用。
关键词:光通信;阵列波导光栅;差分光复用器;光网络;数字光纤网络1绪论随着现代社会的发展,光通信技术已成为各类通讯系统的核心。
光波导作为一种特殊类型的光学器件也开始介入了光通信领域,并发挥着重要的作用。
阵列波导光栅(Arrayed Waveguide Grating,简称AWG)是由阵列波导和光栅构成的一种半导体光学元件。
它既具有波导光栅的优点,又具备了阵列波导的优势,具有高调制率、低插入损耗、高阻抗匹配、高复用等特性,成为光通信研究的热点。
本文主要介绍了阵列波导光栅在光通信器件中的应用,包括其工作原理、特点及其在差分光复用器、光连接器、光布线器件、多模光纤、光网络、数字光纤网络等光通信器件中的应用。
2 AWG的基本性质2.1 工作原理阵列波导光栅是一种具有波导光栅和阵列波导性质的半导体光学器件,它由一组竖状多芯熔接的阵列波导和一组具有等间距光栅的翘曲波导构成,两者由一个反射镜结合。
如图1所示:图1 阵列波导光栅结构其工作原理如下:入射光在输入波导中传播,并进入阵列波导中运动,由于阵列波导的折射率不同,产生多重反射,入射光的波长会发生不同程度的折射和反射,最终出射到等间距的光栅中,再通过反射镜反射回来,最终形成一个窄带的光束。
2.2 特点阵列波导光栅具有良好的高调制率,可达到50dB;具有较低的插入损耗,可达到0.5dB;具有良好的阻抗匹配,可高达50Ω;具有较高的复用性,最多可达到40条通道;非常抗振动和抗温度变化,具有较高的可靠性。
1美国标准AWG (American Wire Gauge) 中文译名美国线规分类电信管理解释分类光纤通信简介AWG(Arrayed Waveguide Grating)是密集波分复用系统(DWDM)中的首选技术。
一组具有相等长度差的阵列波导形成的光栅,使用具有分波的能力。
其原理为:含有多个波长的复用信号光经中心输入信道波导输出后,在输入平板波导内发生衍射,到达输入凹面光栅上进行功率分配,并耦合进入阵列波导区。
因阵列波导端面位于光栅圆的圆周上,所以衍射光以相同的相位到达阵列波导端面上。
经阵列波导传输后,因相邻的阵列波导保持有相同的长度差ΔL,因而在输出凹面光栅上相邻阵列波导的某一波长的输出光具有相同的相位差,对于不同波长的光此相位差不同,于是不同波长的光在输出平板波导中发生衍射并聚焦到不同的输出信道波导位置,经输出信道波导输出后完成了波长分配即解复用功能。
这一过程的逆过程,即如果信号光反向输入,则完成复用功能,原理相同。
AWG现状阵列波导光栅(AWG)是正在迅速发展的DWDM 网络的关键器件。
1988年,荷兰Delft大学的Smit首先提出AWG 的概念。
其重要的应用价值引起了NTT公司和Bell实验室等机构的关注。
经过十多年的研制开发,已研制出多种不同的AWG器件,并开始用于DWDM 系统。
AWG具有滤波特性和多功能性。
可获得大量的波长和信道数,实现数十个至几百个波长的复用和解复用。
利用N×N 的矩阵形式。
在N个波长上可同时传输N 路不同的光信号,并能灵活地与其它光器件构成多功能器件和模块。
此外,AWG还具有高稳定性及好的性价比,非常适合高速大容量的DWDM 系统使用。
AWG器件是以光集成技术为基础的平面波导型器件,具有平面波导技术的潜在优点,适宜于批量生产,重复性好,尺寸小,插入损耗均匀性较好,加温控后热稳定性可达0.0013 nm/℃,并且可与有源器件集成,组成光电集成电路(OEIC)等,是未来发展的主流技术。
18.企业精神:敬业·诚信·创新·和谐一 概述阵列波导光栅(AWG)型复用/解复用器是一种平面波导器件,是在单个芯片上制作的阵列波导光栅。
AWG型DWDM器件的特点是信道间隔小、插入损耗小且均匀性好、复用信道数多、体积小、易于与其它器件集成等等。
并且由于AWG是波导集成器件,易于批量、自动化生产,在成本上有一定的优势,所以在40或80个波长的DWDM系统的驱动下,AWG型DWDM器件推广的势头强劲。
目前AWG芯片的制备工艺基本成熟,国外许多大公司都能提供商品化的AWG芯片,并且价格也不断下调,但AWG模块价格却保持较高的水平,原因是将AWG芯片和光纤阵列对准粘接在一起形成AWG模块的耦合封装工作难度很大。
波导通道的横截面尺寸大约几个μm,将如此小的波导通道和芯径约9个μm的单模光纤精确对准,是非常困难的。
另外,虽然国内外对AWG芯片的研究文章非常之多,但对既重要又有难度的耦合封装工作的报道却非常少。
阵列波导光栅(AWG)复用/解复用器的耦合封装技术研究马卫东 宋琼辉,杨涛武汉邮电科学研究院光迅科技股份有限公司19.经营理念:持续·稳健·快速·规模目前对准AWG芯片和光纤阵列主要有手工对准和自动对准两种做法,它们依赖的硬件主要有六维精密(电动程控)微调架、光源和功率计等。
图1给出了目前典型的AWG耦合封装系统示意图,两个光纤阵列分别固定在六维精密微调架上,AWG芯片放在中间的支架上,左边为输入端,右边为输出端。
首先光源的光进入左边输入端光纤阵列1,并将光电探测器下移到AWG芯片的右输出端,调节微调架1,通过监测光电探测器的读数来对准光纤阵列1和AWG的输入端,然后移走探测器;调节微调架2,通过监测光功率计的读数来对准AWG的输出端和光纤阵列2。
目前这种对准方案存在耗时长,封装好的AWG模块作为双向器件使用时可能出现插入损耗过大的问题。
本文提出了一种新的AWG耦合封装方案,先利用两个探测器来监测AWG通道的功率值,快速对准AWG和光纤阵列,再利用光功率的双向监测来完成AWG和光纤阵列的最终对准。
AWG产品介绍及工艺培训目录§AWG基本原理及应用§AWG结构§AWG生产工艺流程§AWG 工艺介绍AWG基本原理及应用AWG是什么?中文名:阵列波导光栅英文名: Arrayed Waveguide Grating它是一种平面集成波导型(PLC)的WDM器件,具有复用与解复用功能。
用AWG来实现WDM器件的原理最早由M.K. Smit于1988年提出。
AWG同时具有聚焦和色散的功能,也就是说,让同一波长的光聚焦于一点,同时对于不同波长的光,让其聚焦点发生色散偏移。
§AWG基本原理及应用结构原理图阵列波导输出波导输出波导自由传输区AWG基本原理及应用AWG基本原理及应用§AWG应用之一:V-mux§VOA与Mux相结合实现信道功率自动均衡.应用领域:发送单元业务上下接点光交叉接点AWG基本原理及应用§AWG应用之二§功率探测器阵列与Dumux相结合,实现同时监控所有信道的功率、波长、OSNR等参数.应用领域:传输系统的各个接点.AWG基本原理及应用§AWG应用之三波长选择器§SOA阵列开关与AWG相结合§实现高速波长选择§应用领域:§传输系统的光交叉接点特征§低插入损耗§高相邻通道隔离度§低偏振相关性§高可靠性AWGAWG芯片AWG 单纤FA工艺流程要求:161§工艺图示热盘准备准备夹具设置点胶机芯片清洗预处理盖板清洗预处理摆放下盖板§工艺图示放芯片点胶示意图点胶加上盖板盖压块4、详细参考CU组装操作指导书§工艺图示图一穿插芯图一粘玻璃块图一粘玻璃板图一穿光纤§工艺图示图一清洗图二装夹具图三设置热盘图一清洗图四粘玻璃板图五UV固化图六放置铝条图七图八放置玻璃块对光材料清洗§清洗要求:§ 1. 端面无灰尘,无异物.§ 2. 清洗完后,注意保护好清洗材料§避免二次污染.§3. 详细参考清洗作业指导书要清洗面对光要求:5.详细参考操作指导书紫外胶水紫外胶水对光平台精密调节架1、六维调节架2、调节精确微米级UV 固化设备1、光强2、时间点胶设备其他辅助设备光源、光开关、光谱分析仪、功率计等无热AWG 对光机台对光测试§测试平台示意图电脑控制测试多通道测试系统偏振控制器可调光源多通道功率计要求:1 、注意光纤保护,请参照相关知识2 、产品测试前,用标准件检测试系统是否正常工作。
AWG介绍一:的工作原理和主要技术指标 ( 2008/6/26 13:50 )在光纤通信系统中,最早商用的DWDM模块是由多个三端口的介质膜滤波器(TFF)串联而成,但是当信道数大于16时,基于TFF技术的DWDM模块因损耗太大,不能满足应用需求。
阵列波导光栅(AWG)应运而生,成为32通道以上DWDM模块的主要技术途径。
AWG是以平面光路(PLC)技术制作的器件,其基本结构如图1所示,由输入波导、输入星形耦合器、阵列波导、输出星形耦合器和输出波导阵列五部分组成。
输入的DWDM信号,由第一个星形耦合器分配到各条阵列波导中,阵列波导的长度依次递增ΔL,对通过的光信号产生等光程差,其功能相当于一个光栅,在阵列波导的输出位置发生衍射,不同波长衍射到不同角度,经过第二个星形耦合器,聚焦到不同的输出波导中。
图1. AWG基本结构为了更直观的理解AWG的工作原理,我们首先来分析凹面反射式光栅和罗兰圆的结构和原理,如图2所示,凹面光栅的曲率半径为R=2r,罗兰圆的半径为r,二者内切且罗兰圆通过光栅中心。
通过简单的光路分析和一定的近似可知,罗兰圆上任一点发出的光,经凹面光栅衍射之后仍聚焦在罗兰圆上,不同衍射级次对应不同衍射角,满足衍射条件:(1)图2. 凹面反射式光栅和罗兰圆结构AWG的输入/输出星形耦合器采用类似凹面反射式光栅和罗兰圆的结构,如图3所示,输入/输出波导的端口位于罗兰圆的圆周上,阵列波导位于凹面光栅的圆周上。
a)图3. a)输入星形耦合器,b)输出星形耦合器输入星形耦合器与输出星形耦合器成镜像关系,输入波导发出的光信号经阵列波导衍射,不同波长聚焦到不同输出波导;图4中罗兰圆上C点发出的光信号经凹面光栅反射衍射,不同波长聚焦到罗兰圆上的不同点。
二者完全等效,差别只在于后者是反射式光栅,而前者是透射式光栅。
对于前者,我们也可以理解为图3(b)中波导C发出的光信号,经阵列波导反射衍射并聚焦到不同输出波导中。
AWG工作原理资料AWG,即阵列波导光栅(Arrayed Waveguide Grating),是光通信领域中常用的光谱分析和光分路器件。
它由丝状或波导条状的感应道互连而组成,广泛应用于多通道光路交叉、光网络分析和光路复用等技术中。
以下将详细介绍AWG的工作原理。
AWG是一种基于波导相位调制原理的组成分析设备,主要由波导芯片、输入/输出光纤连接器和电子控制系统组成。
其工作原理可以分为两个步骤:光耦合和光束分离传送。
首先,输入光源经过耦合光纤将光信号传入AWG的输入端口。
输入端口上有一个两级波导耦合器,用于把光信号分配到AWG内的每个波导通道上。
这个波导耦合器控制着相模匹配,确保每个光信号经过此装置后传递到AWG内。
然后,每个光信号通过耦合波导分配到一系列的输入波导。
输入波导将光信号引导到波导光栅的发散区域。
“发散区域”的作用是将入射光束进行解焦,以便能够进一步处理和解析成不同波长的通道。
接下来,光束经过波导光栅的相位调制结构,波导光栅在每个波导上的等效层面上形成了一组肋条。
在不同的波导层上,每个肋条的长度和尺寸都不同。
这些肋条通过光厚和折射率分布调制入射光的相位,进而确定不同的出射路径。
如此一来,光信号经过相位调制后会被波导栅格偏转到不同的传输通道上。
这就实现了光信号的分离和分路。
最后,输出波导将光信号从AWG芯片的输出端口传递到波导光纤,在输出端口处通过AWG的输出光纤连接器输出。
整个过程中,AWG的输出端口上同样有一个两级波导耦合器,用于将不同通道传输的光信号耦合到输出光纤上。
通过控制输出波导的长度和尺寸,可以调整不同通道之间的传输损耗和其他光学性能。
总结起来,AWG的工作原理基于波导相位调制和光栅折射原理。
通过光束的分散和分离,AWG能够将输入光信号分配到不同通道上,并将其联接到输出光纤上。
AWG具有分离能力强、通道数目多、传输效率高等特点,成为光通信领域中一种重要的光谱分析和光调制器件。
阵列光波导模
阵列光波导模(Arrayed Waveguide Grating)
阵列光波导模(Arrayed Waveguide Grating,简称AWG)是一种用于多波长光通信系统的重要光学器件。
它可以实现多波长的复用和解复用,并且在光纤通信和光网络中发挥着重要的作用。
首先,AWG是一种光学分光器件,能够将入射的光信号分成多个不同波长的信号,并将它们输出到不同的通道中。
这种分波的原理是利用光波在光波导中的传播特性,通过改变波导的几何参数和长度,使得不同波长的光在光波导中的传播速度不同,从而实现波长的分离。
这种波长选择性使得AWG成为一种理想的多波长复用器。
其次,AWG还可以实现波长解复用,即将多个波长的光信号合并成一个输出信号。
在这个过程中,光信号会根据不同的波长被定向到不同的输出通道中。
这种波长选择性使得AWG也可以被用于波长解复用,例如在光网络中将不同波长的信号重新分发给不同的终端设备。
除了多波长复用和解复用功能,AWG还具有其他一些优点。
首先,它可以实现很低的插入损耗和交叉耦合损耗,因此在光通信系统中能够保持较高的信号质量。
其次,AWG的制作工艺相对简单,成本较低,并且容易与其他光学器件集成在一起。
此外,AWG还具有很好的稳定性和可靠性,能够适应各种环境和工作条件。
总之,阵列光波导模作为一种重要的光学器件,在光通信和光网络中发挥着重要的作用。
它能够实现多波长的复用和解复用,并且具有低插入损耗、高信号质量、简单制作工艺和稳定可靠等优点。
未来随着光通信技术的不断发展,阵列光波导模将继续发挥重要的作用,并为光通信系统带来更大的便利和效益。