叶绿体表达载体--如何构建载体
- 格式:pdf
- 大小:160.90 KB
- 文档页数:5
本技术涉及生物基因工程技术领域,是一种构建等鞭金藻叶绿体同源重组转基因系统的方法。
以等鞭金藻叶绿体基因组来源的SEQ ID NO:1所示序列和SEQ ID NO:2所示的序列为同源臂,SEQ ID NO:3所示的序列、SEQ ID NO:4所示的序列为启动子,以SEQ ID NO:5所示的序列、SEQ ID NO:6所示的序列为终止子,以bar基因为筛选标记基因,并通过SEQ ID NO:7连接多个外源基因构成多顺反子结构从而构建同源重组载体,并利用基因枪法将载体导入等鞭金藻细胞,经除草剂草丁膦筛选获得转基因藻株。
采用本技术的等鞭金藻叶绿体同源重组转基因系统,可实现多个外源基因在叶绿体中稳定表达。
权利要求书1.一种等鞭金藻叶绿体同源重组转基因系统,该系统载体包括来源于等鞭金藻叶绿体基因组的同源臂,启动子和终止子,其特征在于:转基因系统载体含SEQ ID NO:1 所示序列的上游同源臂和SEQ ID NO:2所示序列的下游同源臂。
2.按权利要求1所述的等鞭金藻叶绿体同源重组转基因系统,其特征在于:所述上下游同源臂间插入选择标记基因。
3.按权利要求1所述的等鞭金藻叶绿体同源重组转基因系统,其特征在于:所述上游同源臂与下游同源臂间插入至少一个启动子和终止子。
4.按权利要求1-3任意一项所述的等鞭金藻叶绿体同源重组转基因系统,其特征在于:所述重组空载体依次含上游同源臂、至少一个启动子、选择标记基因、与至少一个外源基因构成多顺反子结构的SEQ ID NO:7所示的碱基序列、终止子和下游同源臂。
5.按权利要求4所述的等鞭金藻叶绿体同源重组转基因系统,其特征在于:所述启动子为调控外源基因的启动子;或,调控外源基因的启动子和调控选择标记基因的启动子;其中,启动子为SEQ ID NO:3所示的碱基序列和/或SEQ ID NO:4所示的碱基序列。
6.按权利要求4所述的等鞭金藻叶绿体同源重组转基因系统,其特征在于:所述终止子为调控外源基因的终止子;或,调控外源基因的终止子和调控选择标记基因的终止子;其中,终止子为SEQ ID NO:5所示的碱基序列和/或SEQ ID NO:6所示的碱基序列。
一、稀释引物1、4℃,15min、13000转离心(先等离心机降温)2、根据OD值加DD水。
3、静置30min(冰上)4、准备1.5毫升EP管,并加90ulDD水。
5、向EP管中加10ul引物,震荡离心,-20℃保存。
二、跑MIX检测引物(20ul体系)、上引物0.8ul下引物0.8ulMix 10ulDNA(日本晴)1ulDD水7.4ul三跑高保真酶(50ul体系)DNAorCDNA 2ul上引物2ul下引物2ul5*buffer 10uldNTPs 5ulDD水28ulPfu(最后加)1ul四胶回收流程1、在紫外线下切胶,用牙签装入2ml的EP管中。
2、按量加XP2,放在55℃水浴锅中10min,每2min摇匀1次,涡旋,短离。
3、将液体冷却到室温,转移到平衡住中,离心10000转,1min30s,倒掉滤液。
4、加入xp2 300ul,离心10000r,1min30s,倒掉滤液。
5、加入spw700ul,离心10000r,1min,倒掉滤液(重复一次)6、空转2min,13000r,之后换1.5mlEP管。
7、套上保鲜膜放入37℃烘箱中,30min。
8、加入DD水10ul,静置2min,离心2min,13000r,重复3次,-20℃保存。
五、胶回收产物检测(10ul)体系上引物0.4ul下引物0.4ulMix 5ul回收产物1ulDD水 3.2ul六、构建blunt cloning 载体(克隆载体)(4ul 体系)胶回收产物 3.5ulBlunt cloning 0.5ul混匀后,PCR:25℃15min 盖子温度50℃之后转化1、提前5min从-70℃冰箱中拿出大肠杆菌感受态,冰上解冻5min。
2、将样品(4ul)加入感受态的大肠杆菌中,冰上30min,大约剩5min左右,打开水浴锅预热到42℃,并拿出SDC 培养基解冻(室温解冻)。
3、水浴锅42℃,60-90s迅速转移到冰浴2min,该过程中不要摇动离心管。
基因表达载体构建实验方法基因表达载体构建实验目的较为官方的解释为:使目的基因能在受体细胞中稳定存在,并且可以遗传给下一代,同时,使目的基因能够表达和发挥作用。
通过这种手段,我们就可以将众多的目的基因进行异源性的表达,因此能够快速并且大量的富集到对应的目的蛋白;此外,我们还能够以农杆菌为目的基因的载体,通过植物侵染的方式,将目的基因转入到植物中,从而形成特殊的遗传材料,进行特定的课题研究。
基因表达载体构建实验原理通俗点来理解,就是我们将一个感兴趣的基因,通过一种手段将其放到一个表达载体上,这个表达载体一般为细菌细胞内特有的一种环状双链DNA分子,称为质粒。
将目标基因连接到质粒上之后,得到的就是一个人为拼接后的重组质粒,我们称之为表达载体。
接下来我们就可以通过转化的方法,将这个重组质粒转化到感受态细菌中,例如trans5α,DH5α,DB3101等等菌株中。
将转化成功的细菌克隆进行培养繁殖,得到的菌液就可以进行长时间冷冻保存了。
待需要使用时,只需要将菌种从-80℃取出,进行复苏并培养,然后进行质粒提取,就可以再次拿到大量的目的基因表达载体,供后续实验使用。
基因表达载体构建实验步骤设计引物,PCR扩增目的基因片段,切胶回收目的基因加A,体系:10 X easy buffer 1uldATP 0.8 ulTaq 酶 0.1ul回收产物 8ul72℃ 40minXcmI 酶切 En-ccdB (50ul)En-ccdB 质粒(200ng/ul) 50ul (1ug)10X NE buffer 50ulH2O 38ulXcmI 酶 2ul 10U37℃ 1h , 65℃ 20min热失活,跑胶回收(约2600bp)加A后的产物与酶切的pEntry-T 连接摩尔比1:1~5:1(10ul体系)加A的回收产物 ul酶切后的En-T ul5XT4 buffer 1ulT4 ligase 0.5 ulH2O 补齐22℃ 1h转化DH5α,涂LB固体培养基(kana),筛选阳性克隆后进行测序验证碱基序列。
第1篇实验目的:本研究旨在通过亚细胞定位技术,确定目标蛋白质在细胞内的具体分布位置,为进一步研究该蛋白质的生物学功能提供实验依据。
实验材料:1. 目标蛋白质表达质粒2. 表达载体(如pEGFP-N1)3. 农杆菌(如GV3101)4. 烟草植株5. 激光共聚焦显微镜6. 其他实验试剂和仪器实验方法:1. 构建表达载体:将目标蛋白质基因与表达载体(如pEGFP-N1)连接,构建融合表达质粒。
2. 农杆菌转化:将构建好的融合表达质粒电转化农杆菌,获得转化子。
3. 农杆菌培养:将转化子接种于YEB液体培养基中,在170rpm/min的条件下培养1小时。
4. 农杆菌悬浮:用接种环将农杆菌从固体培养皿上刮下,接于10ml YEB液体培养基中,悬浮农杆菌。
5. 收集菌体: 4000rpm/min,离心4分钟,去除上清。
6. 重悬菌体:用10mM MgCl2(含120uM AS)悬浮液重悬菌体,调整OD600至0.6左右。
7. 注射烟草:挑选生长状况良好的烟草植株,用去枪头的1ml注射器从烟草叶片下表皮注射,并做好标注。
8. 培养烟草:将注射完成的烟草植株弱光培养2天。
9. 观察与拍照:取标记的农杆菌注射的烟草叶片,制作成玻片,在激光共聚焦显微镜下观察,并拍照。
实验结果:通过激光共聚焦显微镜观察,发现融合表达质粒中的绿色荧光蛋白(GFP)信号在烟草叶片中呈现明显的细胞内分布。
根据GFP信号的位置,可以初步判断目标蛋白质在细胞内的分布情况。
结果分析:1. 细胞核定位:若GFP信号主要分布在细胞核区域,则表明目标蛋白质定位于细胞核。
2. 细胞质定位:若GFP信号主要分布在细胞质区域,则表明目标蛋白质定位于细胞质。
3. 细胞膜定位:若GFP信号主要分布在细胞膜区域,则表明目标蛋白质定位于细胞膜。
根据实验结果,可以初步判断目标蛋白质在烟草细胞中的定位情况,为进一步研究其生物学功能提供实验依据。
讨论:1. 亚细胞定位实验是研究蛋白质生物学功能的重要手段之一。
过表达载体构建的基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!过表达载体构建的基本流程。
1. 选择启动子,选择合适的基因启动子来控制目标基因的表达。
几种新型植物基因表达载体的构建方法摘要:利用基因工程技术手段研究基因功能过程中,构建基因表达载体处于转基因植物的主导地位,采用合适的构建方法会使实验效果事半功倍。
植物基因表达载体的构建方法除了传统构建法、Gateway 技术、三段T-DNA 法、一步克隆法等,还有近年来出现的几种新型的载体构建方法:基于竞争性连接原理快速构建小片段基因表达载体;Micro RNA 前体PCR 置换法适用于构建小分子RNA 表达载体;重组融合PCR 法特别适用于插入片段中含有较多限制性酶切位点的载体构建;利用In-Fusion 试剂盒可以将任何目的片段插入一个线性化载体的某个区域;构建多片段复杂载体可采用不依赖序列和连接的克隆方法(Sequence and ligation-independent cloning, SLIC) 法;Gibson 等温拼接法。
本文将在总结分析前人工作的基础上,分析这6种新方法的特点,期望通过这几种新的方法给植物基因工程表达载体的构建提供新的思路。
关键词: Micro RNA 前体PCR 置换法,In-Fusion 试剂盒法,重组融合PCR 法,Gibson 等温拼接法,Golden Gate 拼接法基因克隆、载体构建是植物功能基因组研究中的常规步骤[ 1 ]。
而载体构建是基因工程和分子生物学研究中常用的基础技术。
随着植物基因工程技术的发展,适合于不同研究目的各种载体系统应运而生,其中在转基因植物中最常用的是质粒载体。
传统的载体构建方法在进行构建多片段拼接的复杂载体时,需要精心选择酶切位点[ 2 ],有时还需要构建多个中间载体,操作比较麻烦,费时费力,因此寻找简单、高效、快捷的载体构建方法具有重要的现实意义。
从1969 年Arber 等发现了限制性内切酶,载体的构建方法逐步发展,从传统构建方法到三段T-DNA、Gateway 等技术延伸出了许多新的载体构建方法。
本文结合自己的实验工作选择介绍了近年来其中几种新型的具有代表性的植物表达载体构建的方法,对其应用的方向、优缺点作出了评估,期望给植物基因工程表达载体的构建提供新的思路。
如何构建载体1启动子的选用和改造外源基因表达量不足往往是得不到理想的转基因植物的重要原因。
由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题。
目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子。
在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达。
然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育。
为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视。
已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子。
例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等。
这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础。
例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径。
在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想。
对现有启动子进行改造,构建复合式启动子将是十分重要的途径。
例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高。
吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利)。
在植物基因工程研究中,这些人工组建的启动子发挥了重要作用。
2增强翻译效率为了增强外源基因的翻译效率,构建载体时一般要对基因进行修饰,主要考虑三方面内容:2.1添加5`-3`-非翻译序列许多实验已经发现,真核基因的5`-3`-非翻译序列(UTR)对基因的正常表达是非常必要的,该区段的缺失常会导致mRNA的稳定性和翻译水平显著下降。
例如,在烟草花叶病毒(TMV)的126kDa蛋白基因翻译起始位点上游,有一个由68bp核苷酸组成的Ω元件,这一元件为核糖体提供了新的结合位点,能使Gus基因的翻译活性提高数十倍。
目前已有许多载体中外源基因的5`-端添加了Ω翻译增强序列。
Ingelbrecht等曾对多种基因的3`-端序列进行过研究,发现章鱼碱合成酶基因的3`-端序列能使NPTII基因的瞬间表达提高20倍以上。
另外,不同基因的3`-端序列增进基因表达的效率有所不同,例如,rbcS3`-端序列对基因表达的促进作用比查尔酮合酶基因的3`-端序列高60倍。
2.2优化起始密码周边序列虽然起始密码子在生物界是通用的,然而,从不同生物来源的基因各有其特殊的起始密码周边序列。
例如,植物起始密码子周边序列的典型特征是AACCAUGC,动物起始密码子周边序列为CACCAUG,原核生物的则与二者差别较大。
Kozak详细研究过起始密码子ATG周边碱基定点突变后对转录和翻译所造成的影响,并总结出在真核生物中,起始密码子周边序列为ACCATGG时转录和翻译效率最高,特别是-3位的A对翻译效率非常重要。
该序列被后人称为Kozak序列,并被应用于表达载体的构建中。
例如,有一个细菌的几丁质酶基因,原来的起始密码周边序列为UUUAUGG,当被修饰为ACCAUGG,其在烟草中的表达水平提高了8倍。
因此,利用非植物来源的基因构建表达载体时,应根据植物起始密码子周边序列的特征加以修饰改造。
2.3对基因编码区加以改造如果外源基因是来自于原核生物,由于表达机制的差异,这些基因在植物体内往往表达水平很低,例如,来自于苏云金芽孢杆菌的野生型杀虫蛋白基因在植物中的表达量非常低,研究发现这是由于原核基因与植物基因的差异造成了mRNA稳定性下降。
美国Monsanto公司Perlak等人在不改变毒蛋白氨基酸序列的前提下,对杀虫蛋白基因进行了改造,选用植物偏爱的密码子,增加了GC含量,去除原序列下影响mRNA稳定的元件,结果在转基因植株中毒蛋白的表达量增加了30~100倍,获得了明显的抗虫效果。
3消除位置效应当外源基因被移人受体植物中之后,它在不同的转基因植株中的表达水平往往有很大差异。
这主要是由于外源基因在受体植物的基因组内插入位点不同造成的。
这就是所谓的"位置效应"。
为了消除位置效应,使外源基因都能够整合在植物基因组的转录活跃区,在目前的表达载体构建策略中通常会考虑到核基质结合区以及定点整合技术的应用。
核基质结合区(matrix association region,MAR)是存在于真核细胞染色质中的一段与核基质特异结合的DNA序列。
一般认为,MAR序列位于转录活跃的DNA环状结构哉的边界,其功能是造成一种分割作用,使每个转录单元保持相对的独立性,免受周围染色质的影响。
有关研究表明,将MAR置于目的基因的两侧,构建成包含MAR-gene-MAR结构的植物表达载体,用于遗传转化,能明显提高目的基因的表达水平,降低不同转基因植株之间目的基因表达水平的差异,减少位置效应。
例如,Allen等人研究了异源MAR(来自酵母)和同源MAR (来自烟草)对Gus基因在烟草中表达的影响,发现酵母的MAR能使转基因表达水平平均提高12倍,而烟草本身的MAR能使转基因的表达水平平均提高60倍。
使用来源于鸡溶菌酶基因的MAR也可起到同样作用。
另一可行的途径是采用定点整合技术,这一技术的主要原理是,当转化载体含有与寄主染色体同源的DNA片段时,外源基因可以通过同源重组定点整合于染色体的特定部位。
实际操作时首先要分离染色体转录活性区域的DNA片段,然后构建植物表达载体。
在微生物的遗传操作中,同源重组定点整合已成为一项常规技术,在动物中外源基因的定点整合已获得成功,而在植物中除了叶绿体表达载体可实现定点整合以外,细胞核转化中还很少有成功的报道。
4构建叶绿体表达载体为了克服细胞核转化中经常出现的外源基因表达效率低,位置效应及由于核基因随花粉扩散而带来的不安全性等问题,近几年出现的一种新兴的遗传转化技术--叶绿体转化,正以它的优越性和发展前景日益为人们所认识并受到重视。
到目前为止,已在烟草、水稻、拟南芥、马铃薯和油菜(侯丙凯等,等发表)5种植物中相继实现了叶绿体转化,使得这一转化技术开始成为植物基因工程中新的生长点。
由于目前多种植物的叶绿体基因组全序列已被测定,这就为外源基因通过同源重组机制定点整合进叶绿体基因组奠定了基础,目前构建的叶绿体表达载体基本上都属于定点整合载体。
构建叶绿体表达载体基本上都属于定点事例载体。
构建叶绿体表达载体时,一般都在外源基因表达盒的两侧各连接一段叶绿体的DNA序列,称为同源重组片段或定位片段(Targeting fragment)。
当载体被导入叶绿体后,通过这两个片段与叶绿体基因组上的相同片段发生同源重组,就可能将外源基因整合到叶绿体基因组的特定位点。
在以作物改良为目的的叶绿体转化中,要求同源重组发生以后,外源基因的插入既不引起叶绿体基因原有序列丢失,又不致于破坏插入点处原有基因的功能。
为满足这一要求,已有的工作都选用了相邻的两个基因作为同源重组片段,例如rbcL/accD,16StrnV/rpsl2rps7,psbA/trnK,rps7/ndhB。
当同源重组发生以后,外源基因定点插入在两个相邻基因的间隔区,保证了原有基因的功能不受影响。
最近,Daniel等利用烟草叶绿体基因trnA和trnI作为同源重组片段,构建了一种通用载体(universal vector)。
由于trnA和trnI的DNA序列在高等植物中是高度保守的,作者认为这种载体可用于多种不同植物的叶绿体转化。
如果这种载体的通用性得到证实,那么这项工作无疑为构建方便而实用的新型叶绿体表达载体提供了一个好的思路。
由于叶绿体基因组的高拷贝性,定点整合进叶绿体基因组的外源基因往往会得到高效率表达,例如McBride等人首次将Bt CryIA(c)毒素基因转入烟草叶绿体,Bt毒素蛋白的表达量高达叶子总蛋白的3%~5%,而通常的核转化技术只能达到0.001%~0.6%。
最近,Kota等将Bt Cry2Aa2蛋白基因转入烟草转入烟草叶绿体,也发现毒蛋白在烟草叶子中的表达量很高,占可溶性蛋白的2%~3%,比细胞核转化高出20~30倍,转基因烟草不仅能抗敏感昆虫,而且能够百分之百地杀死那些产生了高抗性的昆虫。
Staub等最近报道,将人的生长激素基因转入烟草叶绿体,其表达量竟高达叶片总蛋白的7%,比细胞核转化高出300倍。
这些实验充分说明,叶绿体表达载体的构建和转化,是实现外源基因高效表达的重要途径之一。
5定位信号的应用上述几种载体优化策略主要目的是提高外源基因的转录和翻译效率,然而,高水平表达的外源蛋白能否在植物细胞内稳定存在以及积累量的多少是植物遗传转化中需要考虑的另一重要问题。
近几年的研究发现,如果某些外源基因连接上适当的定位信号序列,使外源蛋白产生后定向运输到细胞内的特定部位,例如:叶绿体、内质网、液泡等,则可明显提高外源蛋白的稳定性和累积量。
这是因为内质网等特定区域为某些外源蛋白提供了一个相对稳定的内环境,有效防止了外源蛋白的降解。
例如,Wong等将拟南芥rbcS亚基的转运肽序列连接于杀虫蛋白基因之前,发现杀虫蛋白能够特异性地积累在转基因烟草的叶绿体内,外源蛋白总的积累量比对照提高了10~20倍。
最近,叶梁、宋艳茹等也将rbcS亚基的转运肽序列连接于PHB 合成相关基因之前,试图使基因表达产物在转基因油菜种子的质体中积累,从而提高外源蛋白含量。
另外,Wandelt等和Schouten等将内质网定位序列(四肽KDEL的编码序列)与外源蛋白基因相连接,发现外源蛋白在转基因植物中的含量有了显著提高。
显然,定位信号对于促进蛋白质积累有积极作用,但同一种定位信号是否适用于所有的蛋白还有待于进一步确定。
6内含子在增强基因表达方面的应用内含子增强基因表达的作用最初是由Callis等在转基因玉米中发现的,玉米乙醇脱氢酶基因(Adhl)的第一个内含子(intron1)对外源基因表达有明显增强作用,该基因的其他内含子(例如intron8,intron9)也有一定的增强作用。
后来,Vasil等也发现玉米的果糖合成酶基因的第一个内含子能使CAT表达水平提高10倍。