当前位置:文档之家› 木质素生物合成途径及其基因调控的研究进展

木质素生物合成途径及其基因调控的研究进展

木质素生物合成途径及其基因调控的研究进展
木质素生物合成途径及其基因调控的研究进展

合成生物学与生物燃料

济南大学研究生课程考查试卷 课程编号:QZ283001课程名称:信息与文献检索学时16 学分 1 学号:20172120470 姓名牛浩学科、领域生物工程 学生类别:全日制专业学位成绩:任课教师(签名) 1、考核形式(采用大作业、论文、调研报告、实验报告等): 课程论文 2、考查(内容、目的等)具体要求: 写一篇与所从事专业相关的综述性论文 字数在3000字左右 书写格式规范,论述清晰,层次分明 3、成绩评定说明(含平时成绩、考核成绩): 平时成绩主要包括考勤和平时作业,考勤共计10分,平时作业共计20分,占总成绩的30%。 期末课程论文共计70分,占总成绩的70%。 总成绩为平时成绩与课程论文成绩的加和,即100分。

合成生物学在生物燃料领域的研究 摘要:本文简要介绍了合成生物学的概念,生物燃料的研究现状、研究前景以及未来可能会遇到的一些挑战。探讨了合成生物学在生物燃料研究中的应用进展包括提高生物质原料的转化特性、开发绿色高效生物催化剂、构建微生物细胞工厂以及设计合成多种生物燃料产品。最后对合成生物学在生物燃料领域的研究做出了展望。 关键词:合成生物学;生物燃料;研究现状;前景;挑战;应用进展 1 合成生物学概述 合成生物学(synthetic biology) 是综合了科学与工程的一个崭新的生物学研究领域。它既是由分子生物学、基因组学、信息技术和工程学交叉融合而产生的一系列新的工具和方法,又通过按照人为需求( 科研和应用目标),人工合成有生命功能的生物分子( 元件、模块或器件)、系统乃至细胞,并自系统生物学采用的“自上而下”全面整合分析的研究策略之后,为生物学研究提供了一种采用“自下而上”合成策略的正向工程学方法[1]。它不同于对天然基因克隆改造的基因工程和对代谢途径模拟加工的代谢工程,而是在以基因组解析和生物分子化学合成为核心的现代生物技术基础上,以系统生物学思想和知识为指导,综合生物化学、生物物理和生物信息技术与知识,建立基于基因和基因组、蛋白质和蛋白质组的基本要素( 模块) 及其组合的工程化的资源库和技术平台,旨在设计、改造、重建或制造生物分子、生物部件、生物系统、代谢途径与发育分化过程,以及具有生命活动能力的生物部件、体系以及人造细胞和生物个体。 2 生物燃料研究现状与挑战 2.1 生物燃料的研究现状 生物燃料主要包括纤维素生物燃料(乙醇、丁醇等)、微藻生物燃料(生物柴油、航空生物燃料等),以及最近两年研究较热的新型优质生物液体燃料(高级醇、脂肪醇、脂肪烃等)和利用新技术路线合成的生物乙醇与生物柴油(蓝藻乙醇、微生物直接利用纤维素水解糖体内合成生物柴油等)等。“可持续性”是生物燃料的核

真核生物基因表达调控

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次。但是,最经济、最主要的调控环节仍然是在转录水平上。 DNA水平的调控 DNA水平上的调控主要指通过染色体DNA的断裂,删除,扩增,重排,修饰(如甲基化与去甲基化,乙酰化与去乙酰化等)和染色质结构变化等改变基因的数量、结构顺序和活性而控制基因的表达。 转录水平的调控 转录水平的调控包括染色质的活化和基因的活化。通过染色质改型,组蛋白乙酰化,染色质变得疏松化及DNA去甲基化以便被酶和调节蛋白作用,基因的表达受顺式作用元件包括启动子及应答元件,转座元件,增强子,抑制子的调控,同时受反式作用因子包括基本转录因子,上游转录因子和转录调节因子等的调控。 转录后调控 转录后调控包括hnRNA的选择性加工运输和RNA编辑 在真核生物中,蛋白质基因的转录产物统称为hn RNA,必须经过加工才能成为成熟的mRNA分子。加工过程包括三个方面:加帽、加尾和去掉内含子。同一初级转录产物在不同细胞中可以用不同方式剪接加工,形成不同的成熟mRNA分子,使翻译成的蛋白质都可能不同。转录后的RNA在编码区发生碱基插入,缺失或转换的现象。

翻译水平的调控 阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译并使成熟的mRNA变为失活状态贮存起来。一些调控作用的micRNAh和siRNA 还可以与mRNA作用降解mRNA,阻止其翻译 此外,还可以控制mRNA的稳定性和有选择的进行翻译。 翻译后调控 直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性。在蛋白质翻译后的加工过程中,还有一系列的调控机制。 1.蛋白质折叠 线性多肽链必须折叠成一定的空间结构,才具有生物学功能。在细胞中,蛋白质的折叠必须有分子伴侣的作用下才能完成折叠。 2.蛋白酶切割 末端切割 有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位。信号肽必须切除多肽链才具有功能。 多聚蛋白质的切割 有些新合成的多肽链含有几个蛋白质分子的序列,切割以后产生具有不同功能的蛋白质分子。

基因调控网络的重构及其疾病学应用

上海交通大学 硕士学位论文 基于基因芯片数据的基因调控网络的重构及其疾病学应用 姓名:蒋强 申请学位级别:硕士 专业:控制理论与控制工程 指导教师:杨根科 20090201

基于基因芯片数据的基因调控网络的重构及其疾病学应用 摘要 随着高通量生物学技术的发展,为以单个分子的结构和功能为研究对象的分子生物学逐渐转变为以分子之间相互作用机理为研究对象的系统生物学。基因调控网络的重构和疾病基因的预测是系统生物学中颇具挑战性的两个课题。 基因调控网络是由一组基因、蛋白质、小分子以及它们之间的相互调控作用所构成的一种生化网络,是生命功能在基因表达层面上的展现。研究基因调控网络的目的是通过建立基因调控网络模型对某一个物种或者组织中的全部基因的表达关系进行整体模拟分析和研究,在系统的框架下认识生命现象。 另一方面,随着疾病学研究的深入开展,人们越来越认识到目前单基因疾病分析方法的局限性,越来越多的研究人员开始从基因的相互关系着手研究人类疾病,更多地关注基因与疾病之间的关联关系。 作为网络分析的基础,论文首先给出了基于谱聚类的复杂网络社团结构剖分算法。然后,提出了基因调控网络的多时延动态贝叶斯模型。在此基础上,论文提出了一种新的两步启发式的模型结构学习算法。接着,论文详细阐述了疾病和基因网络的关系,构建了一个整合的症状-基因网络。随后提出了一种基于症状网络模块化利用一致性分数来预测疾病基因的算法。论文的主要贡献如下: 1.首次证明了数据聚类的谱方法可以最大化网络模块函数Q,并且

提出了一种基于谱聚类的网络社团结构的剖分算法框架; 2.构建了基因调控网络的多时延动态贝叶斯网络模型,提出了一种 新的两步启发式的模型结构学习算法。论文用酵母基因芯片表达 数据重构了酵母细胞周期基因调控网络,以此比较了新方法和传 统的动态贝叶斯方法。 3.论文初步给出了利用症状和基因网络关系来预测疾病基因的方 法框架,构建了一个整合的症状-基因网络,提出了一种基于该 网络模块化利用一致性分数来预测疾病基因的方法。 关键词:基因调控网络,症状-基因对应关系,疾病基因预测,网络模块,社团结构,谱聚类,动态贝叶斯网络,一致性分数

13 生物化学习题与解析--基因表达调控

基因表达调控 一、选择题 (一) A 型选择题 1 .基因表达调控的最基本环节是 A .染色质活化 B .基因转录起始 C .转录后的加工 D .翻译 E .翻译后的加工 2 .将大肠杆菌的碳源由葡萄糖转变为乳糖时,细菌细胞内不发生 A .乳糖→ 半乳糖 B . cAMP 浓度升高 C .半乳糖与阻遏蛋白结合 D . RNA 聚合酶与启动序列结合 E .阻遏蛋白与操纵序列结合 3 .增强子的特点是 A .增强子单独存在可以启动转录 B .增强子的方向对其发挥功能有较大的影响 C .增强子不能远离转录起始点 D .增强子增加启动子的转录活性 E .增强子不能位于启动子内 4 .下列那个不属于顺式作用元件 A . UAS B . TATA 盒 C . CAAT 盒 D . Pribnow 盒 E . GC 盒 5 .关于铁反应元件( IRE )错误的是 A .位于运铁蛋白受体 (TfR) 的 mRNA 上 B . IRE 构成重复序列 C .铁浓度高时 IRE 促进 TfR mRNA 降解 D .每个 IR E 可形成柄环节构 E . IRE 结合蛋白与 IRE 结合促进 TfR mRNA 降解 6 .启动子是指 A . DNA 分子中能转录的序列 B .转录启动时 RNA 聚合酶识别与结合的 DNA 序列 C .与阻遏蛋白结合的 DNA 序列 D .含有转录终止信号的 DNA 序列 E .与反式作用因子结合的 RNA 序列 7 .关于管家基因叙述错误的是 A .在同种生物所有个体的全生命过程中几乎所有组织细胞都表达 B .在同种生物所有个体的几乎所有细胞中持续表达 C .在同种生物几乎所有个体中持续表达 D .在同种生物所有个体中持续表达、表达量一成不变 E .在同种生物所有个体的各个生长阶段持续表达 8 .转录调节因子是 A .大肠杆菌的操纵子 B . mRNA 的特殊序列 C .一类特殊的蛋白质 D .成群的操纵子组成的凋控网络 E .产生阻遏蛋白的调节基因 9 .对大多数基因来说, CpG 序列高度甲基化 A .抑制基因转录 B .促进基因转录 C .与基因转录无关 D .对基因转录影响不大 E .既可抑制也可促进基因转录 10 . HIV 的 Tat 蛋白的功能是 A .促进 RNA po l Ⅱ 与 DNA 结合 B .提高转录的频率

合成生物学在工业微生物菌种优势最小基因组改造中的应用

合成生物学在工业微生物菌种优势最小基因组改造中的应用 随着许多生物体全基因组测序的完成,兴起了最小基因组的研究,即一个能独立生活的生物体最少需要多少个基因。对最小基因组的研究将深入了解生命起源、生物进化和生物代谢调控;并在此基础上,以人类的意愿合成自然界不可能产生的生命体。依据核糖体RNA 序列,现存的生命形式被分为3个域,即真细菌、古细菌和真核生物。这些生物的遗传物质都是核酸,其基因组大小变化很大,从数十万碱基对到几十亿碱基对不等;所含基因数目则为数百乃至数万。而原核生物的基因组较小,基因结构和基因调控网络相对简单。因此最小基因组的研究主要以原核生物为研究对象。 细胞是生命活动的基本单位,细胞生命的3大特征是维持正常代谢平衡、进行繁殖(自我复制)以及进化。所谓最小基因组就是维持细胞三大特征的必需基因数,尽管不同物种间总基因数目变动很大,但维持自由生活细胞的必需基因数目大约为300个左右,相应的基因组大小约为300~400 kb。随着技术的进步,以大规模高通量分析为特征的各种组学应运而生,包括基因组学、转录组学、蛋白组学和代谢组学等,这些新生的研究体系将基因组复制、基因转录、翻译和基因调控网络、蛋白质相互作用和物质能量代谢等不同层次的的信息相互关联,以揭示错综复杂的生命活动。生物信息学、计算生物学和系统生物学就是为整合和诠释这些海量的数据而产生的,其重要性也日益突出。在人类基因组测序完成的后基因组时代,最小基因组的确切大小仍是未解之谜。与此同时,人工建立最小基因组的工作已经开始进行,其中最为突出的成果是“人造细胞”的诞生。 1 鉴定必需基因和最小基因组的方法 在一个生物体包含的全部基因中,有一部分是必需基因,必需基因是现代生物学研究的重中之重。必需基因是指在一定环境条件下,维持某种生物体的生命活动所必不可少的基因。这些基因所编码蛋白质的功能被认为是生命的基础,其突变通常是致死性的。由于细菌自身的特性,细菌特定基因的必要性还取决于环境条件。因为寄主细胞内环境条件稳定,营养供应充足,由此使得细胞内共(寄)生细菌细胞结构和代谢途径通常极度简化,细胞壁退化乃至消失。目前发现细菌Carsonellaruddii的基因组最小,仅为160 kb,基因分布非常致密,有182 个开放阅读框,90%的相邻开放阅读框间有所重叠。总体而言,细菌的必需基因是合成细胞结构成分、信息传递和加工不可或缺的基因。确定必需基因和最小基因组的方法主要有比较基因组学和系统性基因失活法。 1.1 比较基因组学方法 相对而言,原核生物基因组简单,重复序列较少,因此短枪测序法适合于微生物基因组测序。其基本思路是必需基因应该是在细菌基因组中非常保守的基因,而非必需基因则不会在所有基因组中出现。美国国家生物技术信息中心(NCBI)的Mushegian和Koonin通过对流感嗜血杆菌和生殖支原体基因组的比较分析,发现大约256个基因为两者所共有的保守基

分子与合成生物学知识点总结

1.(生命的起源)三界的分类:古细菌、细菌、真核生物 2.小分子:氨基酸、糖类、核苷酸 77% 3.大分子:核酸、蛋白质、脂质 23% 4.古细菌更类似于真核细胞,原核细菌是真正的细菌 5.合成生物学的定义:设计和构建自然界中没有发现的生物功能和生物系统。构造生物零件装置和能量,药物以及科技系统中应用工程原则和数学模型。 组装各领域专业知识的研究领域为了理解,构建,修饰生物系统。 合成生物学的目标:①操纵基因元件,将基础生物分子整合到基因线路上,来创造新性状,表达复杂的生物功能。②从稳定、标准、已经改良好的基因模块来构建生物体系。 合成生物学的目的:改造系统、系统化构建 .合成生物学与其他学科的不同:抽象性、模块性、标准化、设计和模型 6.根据进化树,古细菌和真核生物都来自细菌。 7.生物膜的作用:隔离、储存能量、物质传递、信号传导、阻断毒性 8.内共生学说:古细菌的真核细胞吞噬异样细菌,成为它的线粒体。 吞噬自养细菌,成为它的叶绿体。 9.基因的概念:基因是生物有机体遗传的分子单元 基因在染色体上 是有机体中可以编码多肽和RNA的DNA序列 10.DNA的结构和功能: 遗传信息在DNA链的核苷酸序列中 遗传信息指导合成蛋白质 基因两条链碱基配对以氢键链接 一条链模板、半保留复制5-3、3端游离羟基、糖在外,碱基在内 11.染色体结构与基因表达: 染色质的基本组成单位是核小体 核小体是组蛋白八聚体2H2A 2H2B 2H3 2H4 H1与核小体间DNA链接 染色质改造:连接DNA长度可变,结合DNA结构可变 12.三个重要的DNA序列:端粒、复制起始区、着丝点 13.核小体的N端修饰(共价修饰): DNA甲基化和组蛋白去乙酰化协同作用共同参与转录阻遏。 磷酸化使生物学过程发生 14.转录抑制与异染色质有关 15.第三章总结:间期染色质解旋很难看见 基因表达loop结构处 常染色质结构疏松表达活跃,能编码蛋白质。 异染色质粘稠不编码。如端粒、中心粒、着丝粒 有丝分裂染色体是压缩的,有序的,染色体在细胞核中的存放时空间有序的 16.分子机器:调节DNA的蛋白质 DNA:连接酶、解旋酶(95℃)、拓扑异构酶 钳蛋白、结合蛋白

原核生物的基因调控

原核生物的基因调控 每个物种都有一套完整的遗传信息。遗传信息存在于DNA分子中,每个细胞都有相同的DNA,也确实是讲,每个细胞中都带有完整的遗传信息。在正常情形下,一个个体的各类细胞差不多上按照一定的规律和一定的时空顺序,关闭一些基因,开启另一些基因,并持续地进行严格的调控,以保证个体的发育得以顺利进行。 基因表达(gene expression)确实是指某一基因指导下的蛋白质合成,蛋白质是基因表达的产物,在生活中并非所有基因都一齐表达,而是有些基因进行表达,形成其基因表达的特异产物,以构成细胞结构或代谢所需要的蛋白质或酶类。然而,有许多基因却被关闭,不进行表达,而要在适当的时候才进行表达。基因作用的调控机理相当复杂,至今仍知之不多。但那个领域是当前遗传学研究的热点,随着功能基因组学的飞速进展,研究的进展相当地快。因此,研究成果多集中在原核生物,对高等生物基因表达的调控机制还了解不多。 尽管一种基因编码一种蛋白质,然而不同蛋白质在细胞中的相对数量差不专门大,随着它们的功能而不同,例如,在E.coli细胞中,从总蛋白的不足0.01%--2%,各种蛋白质变化不定。细胞要使其蛋白质合成达到这种差异,能够有两条途径: 第一条途径是细胞操纵从其DNA模板上转录其特异的mRNA的速度,这是一种最经济的方法,能够免去白费从mRNA合成蛋白质的各种元件和材料。这大致是生物在长期进化过程中自然选择的结果。这种操纵通常称之为转录水平(transcriptional level)的调控。大多数基因表达都属于转录水平的调控。 第二条途径是在mRNA合成后,操纵从mRNA翻译成多肽链的速度,包含一些分子装置咨询题,如与核糖体的结合速度等。这种蛋白质合成或基因表达的操纵称为翻译水平(translational level)的调控。这种调控是较少的。 一、转录水平的调控

原核生物基因表达调控概述

原核生物基因表达调控概述 基因表达调控是生物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。 1.基因表达调控意义 在生命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋白质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,而与生物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭而不来表达。 2.原核基因表达调控特点 原核生物基因表达调控存在于转录和翻译的起始、延伸和终止的每一步骤中。这种调控多以操纵子为单位进行,将功能相关的基因组织在一起,同时开启或关闭基因表达即经济又有效,保证其生命活动的需要。调控主要发生在转录水平,有正、负调控两种机制在转录水平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋白质因子及其他小分子配基的相互作用。细菌的转录和翻译过程几乎在同一时间内相互偶联。 细胞要控制各种蛋白质在不同时期的表达水平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是一条经济的途径,可减少从mRNA合成蛋白质的小分子物质消耗,这是生物长期进化过程中自然选择的结果,这种控制称为转录水平调控。(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括一些与翻译有关的酶及其复合体分子缔合的装配速度等过程。这种蛋白质合成及其基因表达的控制称为翻译水平的调控。 二.原核生物表达调控的概念 (1)细菌细胞对营养的适应

细菌必须能够广泛适应变化的环境条件。这些条件包括营养、水分、溶液浓度、温度,pH等。而这些条件须通过细胞内的各种生化反应途径,为细胞生长 的繁荣提供能量和构建细胞组分所需的小分子化合物。 (2)顺式作用元件和反式作用元件 基因活性的调节主要通过反式作用因子与顺式作用元件的相互作用而实现。反式作用因子的编码基因与其识别或结合的靶核苷酸序列在同一个DNA分子上。RNA聚合酶是典型的反式作用因子。 顺式作用元件是指对基因表达有调节活性的DNA序列,其活性只影响与其 自身同处于一个DNA分子上的基因;这种基因DNA序列通常不编码蛋白质, 多位于基因旁侧或内含子中。位于转录单位开始和结束位置上启动子和终止子,都是典型的顺式作用元件。 (3)结构基因和调节基因 结构基因是编码蛋白或RNA基因。细菌的结构基因一般成簇排列,多个结 构基因受单一启动子共同控制,使整套基因或者都不表达。结构基因编码大量功能各异的蛋白质,其中有组成细胞核组织器官基本成分的结构蛋白,有催化活性的酶和各种调节蛋白等。调节基因是编码合成那些参与基因表达调控的RNA和蛋白质的特异性DNA序列。调节基因编码的调节物通过与DNA上的特定位点 结合控制转录是调控关键。 (4)操纵基因和阻遏蛋白 操纵基因是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过并作用于启动子启动转录,阻遏蛋白是负调控系统中由调节基因编码的调节蛋白,它本身或与辅阻遏蛋白物一起合成于操纵基因,阻遏蛋白操纵因子结构基因的转变,阻遏蛋白可被诱导物变构失活,从而导致不可阻遏或去阻遏。

原核生物和真核生物基因表达调控复制、转录、翻译特点的比较

原核生物和真核生物基因表达调控、复制、转录、翻译特点的比较 1.相同点:转录起始是基因表达调控的关键环节 ①结构基因均有调控序列; ②表达过程都具有复杂性,表现为多环节; ③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性; 2.不同点: ①原核基因的表达调控主要包括转录和翻译水平。真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。 ②原核基因表达调控主要为负调控,真核主要为正调控。 ③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。 ④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。 ⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。 真核生物基因表达的调控环节较多: 在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。 在转录水平主要通过反式作用因子调控转录因子与TA TA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。 在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。 在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。 真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。 真核生物和原核生物复制的不同点: ①真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 ②原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 ③真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原

合成生物学中那些不得不说的技术

生物技术132 孟庆猛1309011066 合成生物学中那些不得不说的技术 20 世纪的生物学研究一直着眼于对生物系统的不断分解,解剖至细胞中单个蛋白或基因,研究其结构和功能来解释生命现象。但随着当代分子生物学技术的迅猛发展,以系统化设计和工程化构建为理念的合成生物学成为新一代生物学的发展方向。合成生物学旨在对多种天然的或人工设计的生物学元件进行合理而系统的组合以获得重构的或非天然的“生物系统”,其涵盖的研究内容可以大体分为 3 个层次:一是利用已知功能的天然生物模体(motif)或模块(module)构建成新型调控网络并表现出新功能;二是采用从头合成(de novo synthesis)的方法,人工合成基因组DNA 并重构生命体;第三个层次则是在前两个研究领域得到充分发展之后,创建完整的全新生物系统乃至人工生命体(artificial life)。合成生物学强调利用工程化的设计理念,实现从元件到模块再到系统的“自下而上”设计。利用生物系统最底层的DNA、RNA、蛋白质等作为设计的元件,利用转录调控、代谢调控等生物功能将这些底层元件关联起来形成生物模块,再将这些模块连接成系统,实现所需的功能。这是一门涉及微生物学、分子生物学、系统生物学、遗传工程、材料科学以及计算科学等多个领域的综合性交叉学科。它有别于传统的基因工程,其目的在于组装各种生命元件来建立人工生物体系,让它们能像电路一样在生物体内运行,使生物体能按预想的方式完成各种生物学功能。合成生物学的最高境界是灵活设计和改造生命,重塑生命体。本文就目前合成生物学采用的关键技术和研究应用进展两方面进行综述。 基因组的人工合成技术2010 年5 月20 日,Science 报道了Venter 研究组采用化学方法合成了一个 1.08 Mb 的蕈状支原体基因组,并将其移植入一个山羊支原体受体细胞,从而创造了一个仅由合成基因组控制的新的蕈状支原体细胞。这项成果在合成生物学的发展史中具有里程碑的意义。在此之前,也有许多基因组合成的成功报道。2002 年,纽约州立大学Wimmer 实验室合成了脊髓灰质炎病毒,这是人类历史上第一个人工合成的病毒。多年来,Venter 等一直致力于合成基因组的研究。2003 年,合成了长达5386 bp 的ΦX174 噬菌体基因组,实现了用寡核苷酸合成的方法精确合成了 5 ~ 6 kb 的DNA 序列;2008 年,Venter 实验室又合成了生殖支原体基因组,该基因组全长582970 bp,是已知的生物体中独立生存的最小基因组;2010 年10 月他们又发明了迄今最简单有效的基因合成技术,并以此合成了实验小鼠的线粒体基因组。Dymond 等的研究更进了一步,他们于2011 年报道成功设计合成了酿酒酵母的部分染色体,这是酿酒酵母基因组人工合成计划(SC2.0 Project)取得的第一个成果,该项目的最终目标是人工合成构建酿酒酵母基因组。酵母基因组人工合成将是合成生物学发展史上又一重要的里程碑。DNA 合成是支撑合成生物学发展的核心技术,它不依赖于DNA 模板,可根据已知的DNA 序列直接合成,在基因及生物元件的合成、基因回路和生物合成途径的重新设计组装,以及全基因组的人工合成中发挥重大作用。由于化学合成的DNA 片段长度有限,要合成长的DNA 片段需要先合成短的寡核苷酸,然后再将寡核苷酸进行拼接。因此,基因组合成的基本思路为:①按照原始基因组序列设计合成寡核苷酸;②利用各种方法将寡核苷酸拼接成较长的DNA 序列;③以较长的序列为基础,进一步拼接得到更长的DNA 序列,拼接成完整的基因组;④将合成的基因组移植到细胞中,并验证其功能。

合成生物学的未来展望

合成生物学的未来展望 合成生物学是生物科学在二十一世纪刚刚出现的一个分支学科,近年来合成生物物质的研究进展很快。与传统生物学通过解剖生命体以研究其内在构造的办法不同,合成生物学的研究方向完全是相反的,它是从最基本的要素开始一步步建立零部件。与基因工程把一个物种的基因延续、改变并转移至另一物种的作法不同,合成生物学的目的在于建立人工生物系统(artificial biosystem),让它们像电路一样运行。 传统的生物学是通过解剖来了解生命体以及其内部构造的,而合成生物学恰恰相反,它是从最基本的要素开始一步步建立零部件。重塑生命是合成生物学的核心思想。该学科致力于从零开始建立微生物基因组,从而分解、改变并扩展自然界在35亿年前建立的基因密码。此外,还可以通过人工方式迫使某一细菌合成氨基酸。合成生物学是基因工程中一个刚刚出现的分支学科,它吸引了大批的生物学家和信息工程师致力于此项研究。 一些专家提出应该制造一个配备有生物芯片的细胞机器人,让它在我们的动脉中游荡,检测并消除导致血栓的动脉粥样硬化。还有一些研究人员认为,运用合成生物学还可以制成各种各样的细菌,用来消除水污染、清除垃圾、处理核废料等。恩迪还提出,可制造一种生物机器用来探测化学和生物武器,发出爆炸物警告,甚至可以从太阳中获取能量,用来制造清洁燃料。但是也有一些谨慎的研究人员认为,合成生物学存在某些潜在危险,它会颠覆纳米技术和传统基因工程学的概念。如果合成生物学提出的创建新生命体的设想得以实现,科学家们就必须有效防止这一技术的滥用,防止生物伦理冲突以及一些现在还无法预知的灾难。 合成生物学将催生下一次生物技术革命。目前,科学家们已经不局限于非常辛苦地进行基因剪接,而是开始构建遗传密码,以期利用合成的遗传因子构建新的生物体。合成生物学在未来几年有望取得迅速进展。据估计,合成生物学在很多领域将具有极好的应用前景,这些领域包括更有效的疫苗的生产、新药和改进的药物、以生物学为基础的制造、利用可再生能源生产可持续能源、环境污染的生物治理、可以检测有毒化学物质的生物传感器等。 合生生物学的商业化应用是必然趋势,但多数还要等到几年之后才能实现。即便如此,研究人员已经在利用合成生物体来研制下一代清洁的可再生生物燃料以及某些稀缺的药物。第一代合成微生物是合成生物学的简单应用,它们可能与目前利用DNA重组的微生物类似,其风险评估或许不成问题,因此,对立法者的挑战较少。但随着合成生物学技术不断走向成熟,又可能研制出复杂的有机体,其基因组可能由各种基因序列(包括实验室设计和研制的人工基因序列)重组而成。尽管其风险和风险评估问题与经过基因修饰的生物体引发的问题类似,但对于这类复杂的合成微生物来说,找到上述问题的答案要困难得多。 今后几年,合成生物学将在以下几个方面取得重要进展。 一是更多的合成生物学零件及模块会得到表征及标准化;更复杂、更精细的合成基因线路会在原核生物及真核生物中得以应用。 DNA合成技术是支撑合成生物学发展的重要技术之一,其在基因及调控元件的合成、基因线路和生物合成途径的重新设计组装,以及基因组的人工合成等方面都具有重要的应用。近几年来,DNA合成技术发展很快,成本越来越低。目前,DNA芯片发展有两大趋势:其一是以Affymetrix公司为代表的向高密度基因芯片发展,争取把人类所有基因探针都固定在一块芯片上,其发展将对生物学的基础研究起到革命性的推动,并有可能在将来引发新 的革命;另一种发展是以Nanogen公司为代表的过程集成化趋势,由于在实际临床诊断及军事、司法应用中,大多数情况下并不需要高密度的DNA芯片,而是要求便携式、灵活、速度快和成本低,因此,发展这种高集成、中低密度的DNA芯片可以在近几年进入市场并发挥社会效益。

(生物科技行业类)原核生物的基因调控

第七节原核生物的基因调控 每个物种都有一套完整的遗传信息。遗传信息存在于DNA分子中,每个细胞都有相同的DNA,也就是说,每个细胞中都带有完整的遗传信息。在正常情况下,一个个体的各类细胞都是按照一定的规律和一定的时空顺序,关闭一些基因,开启另一些基因,并不断地进行严格的调控,以保证个体的发育得以顺利进行。 基因表达(gene expression)就是指某一基因指导下的蛋白质合成,蛋白质是基因表达的产物,在生活中并非所有基因都一齐表达,而是有些基因进行表达,形成其基因表达的特异产物,以构成细胞结构或代谢所需要的蛋白质或酶类。但是,有许多基因却被关闭,不进行表达,而要在适当的时候才进行表达。基因作用的调控机理相当复杂,至今仍知之不多。但这个领域是当前遗传学研究的热点,随着功能基因组学的飞速发展,研究的进展相当地快。当然,研究成果多集中在原核生物,对高等生物基因表达的调控机制还了解不多。 虽然一种基因编码一种蛋白质,但是不同蛋白质在细胞中的相对数量差别很大,随着它们的功能而不同,例如,在E.coli细胞中,从总蛋白的不足0.01%--2%,各种蛋白质变化不定。细胞要使其蛋白质合成达到这种差异,可以有两条途径: 第一条途径是细胞控制从其DNA模板上转录其特异的mRNA的速度,这是一种最经济的办法,可以免去浪费从mRNA合成蛋白质的各种元件和材料。这大概是生物在长期进化过程中自然选择的结果。这种控制通常称之为转录水平(transcriptional level)的调控。大多数基因表达都属于转录水平的调控。 第二条途径是在mRNA合成后,控制从mRNA翻译成多肽链的速度,包含一些分子装置问题,如与核糖体的结合速度等。这种蛋白质合成或基因表达的控制称为翻译水平(translational level)的调控。这种调控是较少的。 一、转录水平的调控 单细胞的原核生物对环境条件具有高度的适应性,可以迅速调节各种基因的表达水平,以适应不断变化的环境条件。原核生物主要是在转录水平上调控基因的表达。当需要这种产物时,就大量合成这种mRNA,当不需要这种产物时就抑制这种mRNA的转录,就是让相应的基因不表达。 通常所说的基因不表达,并不是说这个基因就完全不转录为mRNA,而是转录的水平很低,维持在一个基础水平(本底水平)。 1.正调控(positive regulation)和负调控(negative regulation):诱导物与蛋白质结合形成激活子复合物,激活子复合物与基因启动子DNA序列结合,激活基因启动转录,称为正调控。阻遏蛋白分子与基因启动子DNA序列结合,阻碍RNA聚合酶的工作,使基因处于关闭状态,称为负调控。 调节蛋白(regulatory protein)是一些特殊蛋白质,它们决定着何时诱导酶或阻遏酶可以合成。每种调节蛋白影响一种或多种特殊基因的表达。它们有两种基本类型:即正调节蛋白(positive regulator)及负调节蛋白(negative regulator)。这两种调节可以由调节它们的基因之相反效应加以区别。 负调节蛋白或称阻遏蛋白,会使其靶蛋白的合成受到抑制,即不表达,而不管是否需要。阻遏物并非永远能阻止mRNA的合成。否则,它们就将永远抑制其特异蛋白质的合成。许多阻遏物分子能以活性的及无活性的两种形式存在,这要看它们是否与其适当的诱导物或辅阻遏物(corepressor)结合而定,诱导物的结合可使阻遏物失活。例如,当与β-半乳糖苷如乳糖或异乳糖(allolactose,乳糖的代谢物,为天然诱导物)结合时,lac阻遏物即不能与其专一的操纵基因结合。因此,加β半乳糖苷于生长细胞中,以降低lac阻遏蛋白的分子浓度,可使β半乳糖苷酶得以合成。反之,辅阻遏物的结合则将无活性的阻遏物变为有活性的形式。这类突变种称为组

合成生物学最新报告

CBD Distr. GENERAL UNEP/CBD/ COP/12/20 28 August 2014 CHINESE ORIGINAL: ENGLISH 生物多样性公约缔约方大会 第十二届会议 2014年10月6日至17日,大韩民国平昌 临时议程*项目24 合成生物学:最新报告 执行秘书的说明 导言 1. 在第XI/11号决定中,缔约方大会注意到就保护和可持续利用生物多样性新的和正在出现的问题提出的建议。 2. 确认与合成生命、细胞或基因组相关的技术的发展及其对于保护和可持续使用生物多样性潜在的影响的科学不确定性,缔约方大会敦促各缔约方,并邀请其他国家政府依照《公约》序言和第十四条,在根据国内法律和其他相关国际义务处理由合成生物学生成的生物体、组成部分和产品对生物多样性的大量减少或丧失构成的威胁时,采取预防性办法。 3. 缔约方大会还请执行秘书: (a) 邀请各缔约方、其他国家政府、相关国际组织、土著和地方社区及其他利益攸关方根据第 IX/29号决定第11和12段,提交关于有可能给生物多样性的保护和可持续利用造成影响的由合成生物技术生成的组成部分、生物体和产品以及相关社会、经济和文化因素的相关补充资料; (b) 汇编并综合现有相关信息以及连带的信息; (c) 考虑在《公约》及其《议定书》以及其他涉及合成生物技术生成的组成部分、有机物和产品的其他相关协定的适用规定可能存在的差距和重叠之处; (d) 依照第IX/29号决定第13段,将上述信息进行综合,包括分析如何将第IX/29号决定第12段所规定的标准适用这一问题,并提交供同行审查以及随后由科学、技术和工艺咨询附属机构会议在举行缔约方大会第十二届会议之前进行审议。

基因与基因组学(答案)

第四章基因与基因组学(答案) 一、选择题 (一)单项选择题 1.关于DNA分子复制过程的特点,下列哪项是错误的 A.亲代DNA分子双股链拆开,形成两条模板链 B.新合成的子链和模板链的碱基互补配对 C.复制后新形成的两条子代DNA分子的碱基顺序与亲代的DNA分子完全相同 D. 以ATP、UTP、CTP、GTP和TDP为合成原料 E.半不连续复制 *2.建立DNA双螺旋结构模型的是: and Crick and Schwann *3.下列哪个不属于基因的功能 A.携带遗传信息 B.传递遗传信息 C.决定性状 D.自我复制 E.基因突变 分子中核苷酸顺序的变化可构成突变,突变的机制一般不包括: A.颠换 B.内复制 C.转换 D.碱基缺失或插入 E.不等交换 5.下列哪一种结构与割(断)裂基因的组成和功能的关系最小 A.外显子 B.内含子框 D.冈崎片段 E.倒位重复顺序 *6.在一段DNA片段中发生何种变动,可引起移码突变 A.碱基的转换 B.碱基的颠换 C.不等交换 D.一个碱基对的插入或缺失 个或3的倍数的碱基对插入或缺失 7.从转录起始点到转录终止点之间的DNA片段称为一个: A.基因 B.转录单位 C.原初转录本 D.核内异质RNA E.操纵子 8.在DNA复制过程中所需要的引物是; 9.下列哪一项不是DNA自我复制所必需的条件 A.解旋酶多聚酶引物 D. ATP、GTP、CTP和TTP及能量 E.限制性内切酶 10.引起DNA形成胸腺嘧啶二聚体的因素是 A.羟胺 B.亚硝酸溴尿嘧啶 D.吖啶类 E.紫外线 11.引起DNA发生移码突变的因素是 A.焦宁类 B.羟胺 C.甲醛 D.亚硝酸溴尿嘧啶 12.引起DNA分子断裂而导致DNA片段重排的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 13.可以引起DNA上核苷酸烷化并导致复制时错误配对的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 14.诱导DNA分子中核苷酸脱氨基的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 15.由脱氧三核苷酸串联重复扩增而引起疾病的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 16.在突变点后所有密码子发生移位的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 *17.异类碱基之间发生替换的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 18.染色体结构畸变属于 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 *19.由于突变使编码密码子形成终止密码,此突变为 A.错义突变 B.无义突变 C.终止密码突变 D.移码突变 E.同义突变 *20.不改变氨基酸编码的基因突变为 A.同义突变 B.错义突变 C.无义突变 D.终止密码突变 E.移码突变 21.可以通过分子构象改变而导致与不同碱基配对的化学物质为 A.羟胺 B.亚硝酸 C.烷化剂溴尿嘧啶 E.焦宁类 *22.属于转换的碱基替换为 和C 和T 和C 和T 和C *23.属于颠换的碱基替换为 和T 和G 和C 和U 和U (二)多项选择题

合成生物学前沿

1 据美国物理学家组织网12月15日(北京时间)报道,瑞典和西班牙科学家使用转基因酵母细胞制造出了能够互相交流的“生物电路”,未来,科学家有望使用人体细胞构建出更复杂的系统,来检测人体健康状况。相关研究发表在12月9日出版的《自然》杂志上。 作为欧盟“分子计算机”项目的一部分,瑞典哥德堡大学和西班牙巴塞罗那庞培法布拉大学的科学家在哥德堡大学施特芬·霍曼教授的领导下进行了该项研究。 哥德堡大学细胞和分子生物学系肯塔罗·弗瑞卡瓦表示,尽管经过重新编程的细胞不能像真正的计算机做同样的工作,但该研究为使用这样的细胞建立复杂的系统铺平了道路。未来人体健康状况有望通过这种“分子对分子”的交流系统来探测,将疾病消灭在萌芽阶段;或者将其作为生物传感器来探测污染物,分解环境中的有毒物质等。 合成生物学是一个方兴未艾的研究领域,其中的一个应用是设计出自然界中不存在的生物系统。例如,研究人员已经成功地使用转基因细胞构建出许多不同的人工连接装置,诸如电路断路器、振荡器和传感器等。尽管这些人工连接器具有很大的潜力,但迄今为止还存在很多技术限制,主要原因是,分处不同细胞中的人工系统很少能按科学家的期望来工作,因此影响了最终结果。 该研究团队使用酵母细胞制造出了合成电路,细胞之间可通过基因调控进行连接。他们对这些酵母细胞进行了基因修改,使它们能够基于设定的标准来感应周遭环境,并通过分泌出分子向其它酵母细胞发送信号。因此,这些不同的细胞能像乐高玩具的积木块一样连接在一起,产生更复杂的电路。与使用一种转基因酵母细胞制成的结构相比,这种由不同转基因酵母细胞组成的结构能完成更复杂的“电子功能”。 2.据美国物理学家组织网12月14日报道,美国研究人员在使用自动筛选技术寻找新药品时,发现了一种能显著减缓生物钟的分子化合物,将其命名为“白日罪恶”。这一发现有望被用来开发新药品,帮助需要倒时差的空中飞人和严重睡眠障碍患者。相关论文发表于《公共科学图书馆—生物学》(PLoS Biology)。 此项研究由美国加利福尼亚大学圣地亚哥分校生物科学院院长史蒂夫·凯的实验室主导。实验中,他们将生物钟基因加入到可使萤火虫发光的荧光素酶基因中,

浅谈合成生物学的应用

浅谈合成生物学应用 ----24008107 周乐摘要:合成生物学从最基本的生命要素开始研究,目的是建立人工生物体系。合成生物学主要研究4个方面的内容:首先要研究的是细胞网络;二是研究基因线路;三是合成生物材料与物质;四是最小基因组与合成生物。合成生物学无疑会推动生物燃料、特种化学品、农业和药物等方面的进步,目前科学家已经取得一些令人瞩目的成就,但是也存在一些安全问题。这些问题引起了人们的安全隐患和争论。我们应该鼓励和规范合成生物学方面应发挥的作用。 关键词:合成生物学 DNA 细胞争议 Summary Synthetic biology from the most basic element of life began to study to establish artificial biological systems. Synthetic biology research four main aspects: First, to study the cellular network; second is to study genetic line; third is synthetic biological materials and substances; four is the smallest genome and synthetic biology. Synthetic biology will undoubtedly promote biofuels, specialty chemicals, agriculture and medicine's progress, scientists have made some remarkable achievements, but there are some security issues. These issues raises potential safety problems and controversies. We should encourage and regulate synthetic biology play a positive role.

合成生物学的现在和未来

合成生物学的现在和未来 去年7月,科学家们创造出了首个“合成细胞”,一个由电脑编码并在实验室里拼接到一起的化学合成基因组控制的有机体。一年之后,在斯坦福大学(Stanford University)举办的第五届合成生物学年会上(Fifth Annual Synthetic Biology conference),生物学家仍在努力向此领域的下一阶段前进。阻碍他们前进的是生物学本身变幻莫测的特性,还有将创意变成工程有机体所需要的资金和时间。 虽然克雷格·文特研究所(J. Craig Venter Institute)创造出的合成细胞暗示着将来合成生物学可以重新设计活细胞,执行他们梦寐以求的任何任务,尽管这个目标仍然遥远。多数研究集中于诱导微生物执行那些与它们已有机制相似的任务,比如,利用它们在自然界中所采用的相似过程和材料将碳水化合物转变成燃料。 合成生物学竭力使分子生物学更像工程学——用可预测的方法将可预测的材料和部件组合到一起。正如合成细胞所展示给我们的那样,科学家们现在拥有各种工具在电脑上编码一个已有基因序列,利用DNA合成仪合成基因片段,然后将这些片段在实验室里拼接到一起。(这个流程只是合成生物学所采用的众多流程中的一种。)但是仍然很难预测当细胞被改变之后能做些什么。研究人员常常受限于细胞随性生存生长的自然天性,这种情况在很多时候必须要克服,使它们能有效地做一些对我们有用的事情。 一个最大的障碍就是制造和组装初始材料:编码某个特定功能的DNA分子片度并在实验室里合成。创造这样一种DNA片段耗时且昂贵。像任何商品一样,它必须要设计、制造并测试。即使做一个相对较小的改变也会很费力,很耗时,很烧钱。 “合成某些序列要花费两个月时间,”而其他一些根本就合成不了,原因尚不清楚,一家组装DNA部件的新创公司银杏生物工作室(Ginkgo Bioworks)的共同创立者拉赫曼·谢蒂(Reshma Shetty)说到。他还说,公司利用软件自动化操作来设计构建单元和其他部件,并控制液体处理机器人将DNA片段拼接到一起,这些DNA片段是从专业从事DNA合成的公司订购的。目前,正是这最后一步成了主要瓶颈。公司一直在追踪做出这些序列要花费多长时间,怎样才能更快。 哈佛大学的一位系统生物学教授帕梅拉·斯丽芙(Pamela Silver)说,创造新有机体所需的资金和时间限制了创造性。每当合成生物学家们尝试一个新设计,他们都不得不花钱合成DNA,等着它返回,然后将其转入细胞中,再进行测试。斯丽芙说,所有这些都意味着合成生物学们不愿意失败或从中吸取经验教训,这也是可以理解的。 她对大家说:“我仍然坚信这个梦想,有朝一日你们当中有人最终能够坐在电脑前,设计实验,并且在第二天就能得到DNA。”合成生物学若要兑现其承诺,DNA合成就必须“廉价、快速、可预测并且精确,还有对所有人开放,”包括哪些实验室里并没有太多设备和资金的研究人员。 幸运的是,跟DNA测序技术很相似,DNA合成技术成本正在迅速降低。哈佛大学计算基因组中心(the Center for Computational Genomics at Harvard)主任乔治·丘奇(George Church)在他的谈话中提到,DNA合成和测序技术的成本一直在以令人惊讶的速度下降,近来每年降低到 1/10。 合成生物学:正在起飞的技术 2010年06月01日 15:56 东方网-文汇报 美国生物学家克雷格·文特尔、汉密尔顿·史密斯及其同事在5月20日出版的美国《科学》杂志上宣布,他们创造了一个人造生命。更准确地说,他们利用实验室里现成的化学物质,制造出了载有约1000个基因的DNA片断。这是自万物起源以来第一个没有祖先的生命,这个名为"辛西娅"(synthia)的人造生物的诞生,意味着人造生命的时代已经来临。 "科学家对基因修改的研究已有多年,但交换整个基因组则是完全不同的,其他一些研究通常所作的改变是将少量的基因从细菌中分离。现在我们可以从计算机中提取信息开始,可以从数字代码开始,以四个实验瓶中的化学物质(指组成DNA的A,T,G,C)创建新的遗传密码,我想这就是最大的不同。" ——克雷格·文特尔 曲折的创造生命之路 从最基本的生命组件创造一个活生生的有机生命,是文特尔15年前就有的一个雄心勃勃的理想。纵观以往的生命史,生命的实质就是信息的传递,但是首个人造生命的诞生表明,不需要闪电的激活,不需要生命的代代相传,就可以让生命从最基本的组件中诞生,从非生命物质到活生生的生命,相比之下,以往的基因改造只是入门之作,而文特尔在合成生物学上跨出的这一步,才是真正掌握了操纵生命的艺术。

相关主题
文本预览
相关文档 最新文档