三相鼠笼电机气隙对性能的影响分析
- 格式:doc
- 大小:266.26 KB
- 文档页数:13
技术资料大型鼠笼电动机转子断条的原因分析、监(检)测及处理方法2021-04大型鼠笼电动机转子断条的原因分析、监(检)测及处理方法大中型高压异步电动机是火力发电厂,炼钢厂、石油化_橡胶厂等工矿企业生产中使用的重要电气设备, 广泛用于拖动磨`煤机、煤机空气压缩机、风机、水泵等设备运行。
随着生产的发展, 大中型高压异步电动机的数量在不断增加, 然而这类电动机在运行中出现的鼠笼转子导条断裂故障不同程度地危及到机组运行的可靠性和经济性。
如果故障初始时不及时发现并加以修复, 故障扩展很快, 甚至导致事故停机。
断条严重时还能甩出来, 从而损坏定子线圈, 会给修理带来困难。
因此, 如能在转子断条故障初期检测出来, 并及时修复处理, 可以有效地避免意外停机及恶性事故的发生。
异步电功机鼠笼转子断条问题一直是电机制造厂家及用户关心和致力解决的难题。
国内外的专家、学者都在积极寻找有效解决鼠笼转子断条问题的方法, 并为此做了大量富有成效的工作。
本文结合生产关际, 对高压异步电动机鼠笼转子断条问题进行综合分析研究。
一、鼠笼转子断条故障的现象及特征大中型高压异步电机的转子采用铜条与两边端环焊接的鼠笼结构, 具有结构简单, 坚固耐用、效率较高的特点。
但是这类电动机一般采用全压下的直接起动, 起动电流较大, 特别是拖动高转动惯量的风机和重载且负荷脉动的球磨机时, 起动电流可高达额定电流的5~7 倍, 加之机组的起动频繁, 导致鼠笼转子导条端环开焊或导条损伤断裂故障的增加。
不能正常运行, 经常会出现下列故障现象:1.电动机起动转矩降低, 起动时间延长。
断条故障点多的电动机在空载起动时也会发出时高时低的嗡嗡声, 机身出现振动, 并且定转子之间有火花产生;2.电动机满载运行时, 定子三相电流波动且不平衡, 三相电流表指针出现周期性摆动;3.负载运行的电动机转速明显下降, 转子发热厉害, 电动机温升增高, 导条断裂处有火花;4.电动机运行时的振动和噪声加剧, 严重的转子断条电动机会发出咯哒咯哒的异常噪声;5.停机抽出转子检查, 会发现转子导条在端环焊口接缝处断裂, 并且导条断裂处的铁心表面常呈蓝色的氧化痕迹。
8 三相感应电动机本章我们将简化RMxprt 一些基本操作的介绍,以便介绍一些更高级的使用。
有关RMxprt 基本操作的详细介绍请参考第一部分的章节。
8.1基本理论三相感应电机的定子绕组通常连接到对称的三相电源上。
定子绕组由p 对极组成,在空间成正弦分布,定子电流产生旋转磁场。
转子绕组一般为鼠笼型,其极数与定子绕组保持一致。
转子导条中感应的电流反过来又产生一个旋转磁场,这两个旋转磁场在电机气隙中相互作用产生合成磁场。
气隙合成磁场与转子导条电流相互作用产生电磁转矩,使转子按磁场旋转的方向旋转,同时有一个大小相同方向相反的转矩反作用于定子上。
定子绕组分为p 组线圈,每一组都按三相对称分布,在电机中占据πD/2p 空间,此处D 为气隙直径。
因而气隙磁场有p 个周期,定子绕组具有p 对极。
三相感应电动机的特性是基于等效电路进行分析的。
电机三相对称,其中一相的等效电路如图8.1所示。
2/s图 8.1 一相的等效电路图8.1中,R 1和R 2分别为定子电阻和转子电阻;X 1为定子漏电抗包括槽漏抗、端部漏抗和谐波漏抗;X 2为转子漏电抗,包括槽漏抗、端部漏抗、谐波漏抗和斜槽漏抗。
由于漏磁场有饱和现象,X 1和X 2为非线性参数。
等效电路中的各项参数均与定子电流、转子电流有关。
由于集肤效应R 2和X 2均为由图8.2所示的分布参数等效电路导出的等效值,且随转子滑差s 变化。
所有转子参数都折算到定子侧。
X sBot R sBot /s图 8.2 一相的分布参数等效电路在激磁回路中,X m 为激磁电抗,R Fe 为铁心损耗所对应的电阻。
X m 是经过线性化处理的非线性参数,其数值随主磁场的饱和程度而变化。
外施相电压U 1时,可方便地由电路分析得出定子电流I 1和折算到定子侧的转子电流 I 2。
电磁功率P m 可由下式确定:s R I 3P 222m = (8.1)电磁转矩 T m 为ωmm P T = (8.2)式中ω为同步转速,单位:rad/s轴端输出机械转矩为fw m 2T T T -= (8.3) 式中T fw 为风阻和摩擦转矩输出功率为222T P ω=(8.4) 式中ω2=ω(1–s )为转子转速,单位:rad/s输入功率为s 1Cu Fe 2Cu fw 21P P P P P P P +++++= (8.5) 式中,P fw 为风摩损耗,P Cu2为转子铜损耗,P Fe 为铁心损耗,P Cu1为定子铜损耗,P s 为杂散损耗。
实验一三相鼠笼式异步电动机点动、自锁控制和正反转控制实验一、点动、自锁控制实验实验目的1. 通过对三相鼠笼式异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。
2.通过实验进一步加深理解点动控制和自锁控制的特点。
原理说明1. 继电─接触控制在各类生产机械中获得广泛地应用,凡是需要进行前后、上下、左右、进退等运动的生产机械,均采用传统的典型的正、反转继电─接触控制。
交流电动机继电─接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环。
(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类。
(3) 消弧系统─在切断大电流的触头上装有灭弧罩,以迅速切断电弧。
(4) 接线端子,反作用弹簧等。
2. 在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。
要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。
使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。
为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。
3. 控制按钮通常用以短时通、断小电流的控制回路,以实现近、远距离控制电动机等执行部件的起、停或正、反转控制。
按钮是专供人工操作使用。
对于复合按钮,其触点的动作规律是:当按下时,其动断触头先断,动合触头后合;当松手时,则动合触头先断,动断触头后合。
4. 在电动机运行过程中,应对可能出现的故障进行保护。
采用熔断器作短路保护,当电动机或电器发生短路时,及时熔断熔体,达到保护线路、保护电源的目的。
实验一三相鼠笼式异步电动机点动、自锁控制和正反转控制一、实验目的1. 通过对三相鼠笼式异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。
2. 通过对三相鼠笼式异步电动机正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。
3. 加深对电气控制系统各种保护、点动控制、自锁、互锁等环节的理解。
4. 学会分析、排除继电--接触控制线路故障的方法。
二、原理说明1. 继电─接触控制在各类生产机械中获得广泛地应用,凡是需要进行前后、上下、左右、进退等运动的生产机械,均采用传统的典型的正、反转继电─接触控制。
交流电动机继电─接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环。
(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类。
(3) 消弧系统─在切断大电流的触头上装有灭弧罩,以迅速切断电弧。
(4) 接线端子,反作用弹簧等。
2. 在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。
(1)自锁。
要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。
(2)互锁。
使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。
为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。
○1电气互锁为了避免接触器KM1(正转)、KM2(反转)同时得电吸合造成三相电源短路,在KM1(KM2)线圈支路中串接有KM1(KM2)动断触头,它们保证了线路工作时KM1、KM2不会同时得电(如图30-1),以达到电气互锁目的。
三相异步电动机的拆装技能训练交流电动机拆装与检修任务1三相异步电动机的拆装学时14布置任务知识1.电机的结构2.熟悉基本拆装步骤。
学目 3.掌握三相异步电动机的接线方式与通电步骤。
习标 4. 了解简单常规检测的方法。
目能技能目标:标力 1 .熟练掌握三相异步电动机的拆装工艺。
目2.掌握三相异步电动机的接线方式与检测。
标现有一小型三相笼型异步电动机,对其进行拆分与重装。
具体任务如下:1、按照实训步骤对三相笼型异步电动机进行拆装、检查,并在装配后通电试验。
任务描述信息单欧姆挡的使用(1)选择合适的倍率。
在欧姆表测量电阻时,应选适当的倍率,使指针指示在中值附近。
最好不使用刻度左边三分之一的部分,这部分刻度密集很差。
(2)使用前要调零。
(3)不能带电测量。
(4)被测电阻不能有并联支路。
(5)测量晶体管、电解电容等有极性元件的等效电阻时,必须注意两支笔的极性。
(6)用万用表不同倍率的欧姆挡测量非线性元件的等效电阻时,测出电阻值是不相同的。
这是由于各挡位的中值电阻和满度电流各不相同所造成的,机械表中,一般倍率越小,测出的阻值越小。
万用表使用时应该水平着放。
红表笔插在+孔内,黑表笔插入-孔内。
测试电流就用电流档,而不能误用电压档、电阻挡,其他同理,否则轻则烧万用表内的保险丝,重则损坏表头。
事先不知道量程,就选用最大量程尝试着测量,然后断开测量电路再换档,切不可在线的情况下转换量程。
有表针迅速偏转到底的情况,应该立即断开电路,进行检查。
最后还有一个规矩,就是约定用完后的万用表要把量程开关拨到交流电压最高档,以防别人不慎测量220V市电电压而损坏。
三、钳形电流表钳形电流表就是将可以开合的磁路套在载有被测电流的导体上测量电流值的仪表。
通常用普通电流表测量电流时,需要将电路切断停机后才能将电流表接入进行测量,这是很麻烦的,有时正常运行的电动机不允许这样做。
此时,使用钳形电流表就显得方便多了,可以在不切断电路的情况下来测量电流。
三相异步电动机的故障分析及维修方法一、三相异步电动机结构特点及损坏分析三相异步电动机是由固定部分—定子和转动部分—转子组成的,定子与转子之间留有相对运动所必须的空气隙。
定子是电动机的静止部分,主要由定子铁心、定子绕组和机座等部件组成。
定子铁心它作为电动机的磁路,一般由0.35~0.5mm的硅钢片叠压而成,钢片的表面涂有绝缘漆,内圆表面冲有均匀分布的槽,槽内嵌放定子绕组。
定子绕组的作用是通入三相交流电流,产生旋转磁场。
通常绕组是用高强度漆包线绕制成各种型式的线圈,嵌入定子槽内。
机座是固定定子铁心和定子绕组,并以两个端盖支承转子,同时起到保护整个电动机和发散电动机运行中所产生热量的作用。
转子是电动机的旋转部分,主要由转子铁心、转子绕组、转轴、端盖等部件组成。
转子铁心它作为电动机的磁路是由0.35~0.5mm的硅钢片叠压而成,固定在转轴上。
转子表面冲有均匀分布的槽,槽内嵌放转子绕组。
转子绕组用以切割定子磁场,产生感应电势和电流,并在旋转磁场作用下使转子转动。
转轴用以传递转矩,支撑转子的重量,一般由钢及合金经过机械加工而成。
端盖一般为铸铁件装在机座的两侧,起支撑转子的作用。
三相异步电动机主要有下面两方面损坏情况:1、滚动轴承安装不正确造或润滑脂不合适,造成轴和轴承发生磨擦,使轴磨损严重而损坏。
2、定子绕组损坏。
主要原因是电机过载、匝间、相间、短路、对地击穿等造成定子绕组损坏。
二、三相电动机的定期检修为了避免和减少三相异步电动机突然损坏事故,三相异步电动机需要定期保养和检修。
如遇有电动机过热和定子绕组绝缘太低时,须立即进行检修。
三相异步电动机的检修方法是:将电动机进行解体,对各零件先进行清理,再对它们作表观检查,是否有异常。
然后对关键部位的尺寸进行测量,对电机绕组作电气检查。
1、机械检查检查电机的外壳和端盖是否有裂缝现象,如有裂缝应进行焊接和更换。
检查转子由一侧到另一侧的轴向游隙,测量时将长500~600mm的塞尺,塞入定、转子之间,按4个或8个等分位置来测量气隙,然后取其平均值。
三相异步电动机结构的各部件起什么作用?异步电动机的结构主要由两个基本部分组成,即定子(静止部分)和转子(旋转部分)。
一.定子它由定子铁心、定子绕组和机座等部分组成。
(1)定子铁心。
它是电动机磁路的一部分,由0.35~0.5mm厚表面涂有绝缘漆或氧化膜的薄硅钢片叠压而成,固定在机座内。
定子铁心的内圆冲有均匀分布的槽口,用来嵌放三相定子绕组。
绕组与铁心之间是互相绝缘的。
(2)定子绕组。
由于它是能量转换的“枢纽”,又称电枢绕组。
它是异步电动机的电路部分,通入三相电源后,就会产生三相旋转磁场。
三相定子绕组是 3个彼此独立、按一定方式连接的对称绕组,它们按一定的空间角度依次嵌在定子槽内。
为了便于变换接法,绕组6个端头都引到接线盒内。
(3)机座。
它一般由铸铁或铸钢制成。
其作用是固定定子铁心和定子绕组。
机座两端的两个端盖,以支承转子轴。
二.转子它是异步电动机的旋转部分,电动机的工作转矩就是从转子轴上输出的。
它由转子铁心、转子绕组和转轴3部分组成。
(1)转子铁心。
它是电动机磁路的一部分,是由圆形薄硅钢片叠装而成。
在硅钢片外圆上冲有均匀分布的槽口,用来嵌放转子绕组。
转子铁心压装在轴上。
(2)转子绕组。
它又分为笼型和线绕式两种。
目前中小型异步电动机的笼型转子,一般都用熔化的铝浇入转子铁心槽内,并将两个端环(短路环)与冷却用风扇浇铸在一起而成。
由于转子绕组形状像鼠笼,故称为笼型异步电动机。
线绕式转子绕组和定子绕组相似,也是三相对称绕组,一般都接成星形。
3个出线端通过转轴内孔分别接到与转轴固定的3个铜制互相绝缘的滑环上(集电环),滑环靠电刷与外接变阻器电路相连接,接入变阻器主要是为了改善电动机的起动性能或调节电动机的转速。
(3)转轴。
它主要是支承转子及传递转矩,并保证定、转子之间各处均匀的空气隙。
空气隙也是电机磁路的一部分,空气隙越小,功率因数越高,空载电流越小。
一般中小型电动机的气隙0.2~1.5mm。
2/2二、三相异步电动机的结构(一)定子(静止部分)1、定子铁心作用:电机磁路的一部分,并在其上放置定子绕组。
三相鼠笼电机气隙对性能的影响分析王道元摘要:感应电机的气隙大小直接影响电机运行的各项性能指标,是电机设计和优化过程中最为关注的参数之一。
本文以一个三相笼型异步电动机为例,首先在MaxwellAnsof t 电磁分析软件中建立感应电机有限元仿真模型,然后得出了在不同气隙大小情况下对气隙磁密、相反电动势、功率因数、附加损耗、效率和启动转矩的影响。
关键词:感应电机;气隙大小;功率因数;效率;The Influence of Air-gap on the Performance Analysis of Induction Motor Abstract:Air-gap of induction motor which directly influences the performance of motor, is one of the most important indexes when design and optimizing motors. This paper sets up a model of three-phase squirrel-cage asynchronous motor,The Ansoft Maxwell software was used to have created a finite element simulation model of induction motor. Under different air-gap length, the air-gap magnetic field, back electromotive force, power factor,supplement losses, power efficiency and starting torque were influenced.Key words:induction motor; air-gap length; power factor; power efficiency1 引言鼠笼电机因其转子绕组形状像一个鼠笼而得其名。
由于其结构简单,价格低廉,运行可靠,坚固耐用,易于控制等优点,是应用最为广泛的电机之一。
而电机的气隙大小则对电机的性能和运行可靠性影响很大。
因此,气隙对电机运行的影响研究日益重要。
气隙的大小取决于定子内径、轴的直径和转子铁心的长度。
由于电机定、转子冲片的开槽和转子的旋转,气隙磁场并不是我们想要的理想正弦波磁场,所以气隙并不是越小越好或是越大越好,应该有最佳值。
因此。
电机气隙长度的选取显得极为重要,为此,需要直接进行电机电磁场的数值计算和分析[]31-。
本文采用有限元法对三相笼型异步电动机电磁场进行数值计算,分析、计算了三相笼型异步电动机不同的气隙长度与气隙磁密、相反电动势、功率因数、附加损耗、效率和起动转矩的关系。
2 气隙长度的确定[]4通常气隙δ选取得尽可能地小,以降低空载电流,因为感应电机的功率因数ϕcos主要取决于空载电流。
但是气隙不能过小,否则除影响机械可靠性外,还会谐波磁场及谐波漏抗增大,导致启动转矩和最大转矩减小,谐波转矩和附加损耗增加,进而造成较高温升和较大噪声。
气隙δ的数值基本上决定于定子内径、轴的直径和转承间的转子长度。
因为机座、端盖、铁心等在加工和装配时都有一定偏差;而轴的直径和轴承间的距离决定了轴的挠度;定转子装配在一起后。
定子铁心内圆和转子外圆的不同心度决定了气隙的不均匀度,其值对电机运行性能有很大影响。
气隙的大小要综合上述两个方面,并根据生产经验和所设计电机的特点加以确定。
对于功率较小的电机,可用经验公式来求δ()m 单位为: ()31i 1074.03.0-⨯+=i l D δ (1) 式中 1i D —定子内经,单位为m ;i l —铁心长度,单位为m 。
对于大、中型电机。
16~22=p ,可用经验公式来求δ()m 单位为: 3110291-⨯⎪⎪⎭⎫ ⎝⎛+≈p D i δ (2) 式中 1i D 单位为m .3 有限元仿真分析在仿真分析中,一个完整的分析过程包括:创建模型、赋予材料属性、添加激励与边界条件、网格剖分、求解设置、求解和结果后处理。
Ansoft Maxwell 的磁场分析包括静磁场分析、涡流磁场分析、瞬态磁场分析。
为了方便对电机各部分损耗进行对比分析, 本文采用Ansoft Maxwell 中的Magnetic/Transient 分析模块。
3.1 电机模型及参数三相异步电动机的工作原理:三相电源给定子绕组供电,产生以同步转速旋转的磁场,磁场相对于转子绕组转动,在转子绕组中感应电动势。
转子绕组闭合,有电流流过,转子电流在磁场中受力并产生电磁转矩,带动转子和负载旋转。
而本文所采用的是三相单鼠笼异步电动机,模型结构如图1所示。
图1 三相鼠笼异步电动机模型电机主要参数如表1所示。
表1 电机主要参数参数单位数值额定功率kW 11额定电压V 380 相数 3极对数 2定子外径mm 260定子内经mm 170铁芯长度mm 155定/转子槽数36/26额定转速r/min 1462转子外径mm 169转子内径mm 603.2 仿真结果本文所设计的是三相笼型异步电机,气定转子间的气隙是非均匀的,通过有限元仿真可求的电机在不同气隙长度下的相反电动势、效率、功率因数和转矩。
电机效率曲线如图2所示:如图2 电机效率曲线如图2横坐标是电机的输入功率,纵坐标是电机的效率,从图中可以看出,随着气隙的不断变大,电机的效率越低。
因为气隙越大,磁阻越大,在磁势一定的情况下,磁通变小,那么电机的效率就会降低。
[]8如图3 电机功率因数曲线如图3所示是电机功率因数曲线,横坐标是电机的输入功率,纵坐标是电机的功率因数。
从图中可以看出,随着气隙的逐渐变大,电机的功率因数逐渐减小[]7。
因为随着气隙增大,损耗变大,从而导致功率因数减小。
如图4 相反电动势计算波形如图4所示是相反电动势计算波形,横坐标表示时间,纵坐标表示相反电动势。
在电机启动初期,气隙越大相反电动势逐渐减小,但是随着逐渐趋于稳定时,相反电动势不再随气隙大小而变化[]6。
如图5 气隙长度为1mm如图6 气息长度为1.5mm如图7 气隙长度为2mm如图5、图6、图7所示是启动转矩曲线,从图形可以看出,随着时间的推移,转矩逐渐趋于稳定,由于转矩与转速成反比,当转速达到额定值时,电机的启动转矩也就将趋于稳定。
所以转矩最后趋于稳定。
然而随着气隙的逐渐增大,转矩变小,转速增大[]5。
从计算结果可以看出,气息对转矩和反电动势有影响,同时对效率和功率因数均有较大的影响。
气隙长度越小,反电动势越大,效率和功率因数也得到提高[]9。
但是气隙越小也会影响启动转矩,使启动转矩下降,从而影响电机性能。
因此气隙长度的选择需要综合考虑,本文三相鼠笼异步电动机所选择的定转子气隙长度是1mm。
4 结束语本文采用有限元法对三相鼠笼异步电动机电磁场进行数值计算,计算了电机在不同气隙长度下的相反电动势、功率因数、效率和起动转矩;并对本文设计的三相11 kW三相鼠笼异步电动机的空载相反电动势进行了数值计算和实验研究,结果表明气隙长度的选取对自起动实心转子永磁同步电动机的起动转矩、效率、功率因数等参数具有较大的影响,电机设计时应综合考虑各方因素来选择合适的电机气隙长度[]4。
参考文献:[1] 汤蕴璆.电机内的电磁场[M ].北京:科学出版社, 1996: 145 -164.[2] 唐任远.现代永磁电机理论与设计[M ].北京:机械工业出版社, 1997: 61 -92.[3] BoulesN. Prediction of no -load flux density distribution in PM machines [J]. IEEE Trans. On Industrial Application, 1985, 21(4): 520 -526.[4]陈世坤著.电机设计【M].第2版.机械工业出版社,2000.[5] 陈文彪,李伟力,谢颖.游梁式抽油机专用高起动转矩节能电机的起动性能计算[J].防爆电机, 2005(2): 4 -7.[6] 乔鸣忠,张晓锋,李槐树.考虑定子斜槽及转子运动永磁推进电机反电势及定位力矩的数值计算[J].武汉理工大学学报(交通科技与工程版)2004(5): 645 -648.[7] Moallern M, Ong C.M. Predicting the Torque of a Switched Reluctance Machine from itsFinite Element Field Solution[C]. IEEE Transactions on Energy Conversion. 1990,5(4).[8] Wang J.P, Lieu D.K, Lorimer W.L, Hartman A. Comparison of Lumped Parameter and FiniteElement Magnetic Modeling in a Brushless DC Motor[C]. IEEE Transactions on Magnetics.1997,33(5).[9] Osama A.Mohammed, S.Liu, Z.Liu. A Phase Variable Model of Brushless DC MotorsBased on Finite Element Analysis and Its Coupling with External Circuits[C],IEEETRANSACTIONS ON MAGNETICS, 2005,41(5).。