常用时序逻辑功能器件
- 格式:doc
- 大小:274.00 KB
- 文档页数:10
什么是半导体器件常见的半导体器件有哪些半导体器件是指在半导体材料基础上制造的电子器件。
它具有介于导体与绝缘体之间的特性,既能够传导电流,又能够控制电流的大小和方向。
半导体器件广泛应用于电子、通信、计算机、光电等领域,是现代科技发展的基础之一。
半导体器件的种类繁多,涵盖了许多不同的功能和应用。
下面将介绍一些常见的半导体器件:1. 整流器件整流器件用于将交流电转换为直流电,常见的整流器件有二极管和整流桥。
二极管是最基础的半导体器件之一,通过正向电压使电流通路畅通,而反向电压则阻止电流流动。
整流桥由四个二极管组成,可以实现更高效的电流转换。
2. 放大器件放大器件可以将输入信号信号放大输出,常见的放大器件有晶体管和场效应晶体管(FET)。
晶体管通过控制输入电流,改变输出电流的放大倍数,广泛应用于各种放大和开关电路中。
FET则是利用场效应原理,通过控制栅极电压来调节输出电流。
3. 逻辑器件逻辑器件用于实现逻辑运算和数据处理,常见的逻辑器件有门电路、触发器和寄存器。
门电路包括与门、或门、非门等,用于实现与、或、非等逻辑运算。
触发器和寄存器则用于存储和传输数据,实现时序逻辑功能。
4. 可控器件可控器件可以通过控制信号来改变器件的电特性,常见的可控器件有可控硅(SCR)和可控开关。
可控硅是一种具有双向导电性的半导体器件,可以实现高压大电流的控制。
可控开关通过改变输入信号的状态,控制输出电路的导通和断开。
5. 光电器件光电器件将光信号转换为电信号,或将电信号转换为光信号。
常见的光电器件有光电二极管、光敏电阻和光电晶体管。
光电二极管具有较快的响应速度,可用于光电转换和光通信。
光敏电阻对光信号具有较大的灵敏度,常用于光控开关和光敏电路。
光电晶体管通过光控电流来控制电流的通断,常用于光电触发器和光电继电器。
除了以上提到的常见半导体器件,还有诸如二极管激光器、发光二极管(LED)、MOSFET、IGBT等。
这些器件在不同的应用领域发挥着重要的作用,推动着科技的不断进步和创新。
引言计数器是数字系统中用的较多的基本逻辑器件,也是现代最常用的时序电路之一,它不仅能记录输入时钟脉冲的个数,还可以实现分频、定时、产生节拍脉冲和脉冲序列。
例如,计算机中的时序发生器、分频器、指令计数器等都要使用计数器。
计数器的种类不胜枚举,按触发器动作动作分类,可以分为同步计数器和异步计数器;按照计数数值增减分类,可以分为加计数器、减计数器和可逆计数器;按照编码分类,又可以分为二进制码计数器、BCD码计数器、循环码计数器。
此外,有时也会按照计数器的计数容量来区分,如五进制、十进制计数器等等。
1设计构思及理论根据电路的设计要求,要实现二―五―十进制计数,可以先实现十进制计数,然后通过倍频产生五进制计数和二进制计数;也可以先实现二进制计数和五进制计数,然后把它们连接起来进而产生十进制计数。
对比以上两种方法,明显后面的方法比较容易实现,而且实现所需的门电路也比较少,因而选择用第二种方法来进行设计。
1.1 二进制计数的原理二进制计数的原理图如图1.1.1所示,可以用一个T触发器接成一个'T触发器,这样在时钟的作用下,每来一个时钟触发器的输出与前一个状态相反,这样就够成了一个二进制计数器。
图1.1.1 二进制计数原理图图1.1.2 二进制计数波形图1.2 五进制计数的原理五进制计数的原理图如图2.2.1所示,要进行五进制计数,至少要有3个存储状态的触发器,本原理图中选用两个JK 触发器和一个'T 触发器构成五进制计数器,在时钟的作用下就可以进行五进制计数。
图1.2.1 五进制计数原理图图1.2.2 五进制计数波形图2 系统电路的设计及原理说明2.1 系统框图及说明图2.1.1 十进制计数框图图2.1.2 二-五进制计数框图根据设计的要求,在构成十进制计数器时,只需将二进制计数器和五进制计数器级联起来,即将二进制计数器的输出作为五进制计数器的时钟输入接起来就可以实现十进制计数了。
而在进行二-五进制计数时,可以将五进制计数器的输出作为二进制计数器的时钟输入,外部时钟输入到五进制计数器的时钟输入端即可在一个外部输入时钟的控制下分u oClk u ou 1别产生二进制计数和五进制计数了。
《数字电子技术》知识点第1章 数字逻辑基础1.数字信号、模拟信号的定义2.数字电路的分类3.数制、编码其及转换要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 之间进行相互转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= (100101.01)2= ( 25.4)16= (00110111.00100101)8421BCD 4.基本逻辑运算的特点与运算:见零为零,全1为1;或运算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非运算:零变 1, 1变零;要求:熟练应用上述逻辑运算。
5.数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。
要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。
6.逻辑代数运算的基本规则①反演规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y 的反函数Y (或称补函数)。
这个规则称为反演规则。
②对偶规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y ',Y '称为函Y 的对偶函数。
电路中的时序电路及其应用时序电路,是指能够根据输入信号的特点和时刻的先后顺序进行控制和操作的电路。
在现代电子技术中,时序电路的应用广泛,涉及到计算机、通信、数据处理等领域。
本文将从时序电路的基本概念、组成要素以及应用案例三个方面逐一进行论述。
一、时序电路的基本概念时序电路是根据电路输入信号的特性和产生的时序发展过程,在电路中加入相应的逻辑门、触发器、计数器、时钟等组成的。
它能根据输入信号的特点和时刻的先后顺序,对输出信号进行控制和操作,具有存储和记忆功能。
时序电路的设计和实现需要考虑以下几个方面:1. 时钟信号:时序电路中的时钟信号起到了同步作用,指示电路中的操作时刻。
通过时钟信号的控制,时序电路能够按照特定的顺序执行相应的逻辑操作。
2. 输入端:时序电路的输入可以是外部信号,也可以是来自其他电路的输出信号。
输入信号的特性和时刻的先后顺序,是时序电路的设计和操作的基础。
3. 时序逻辑电路:时序逻辑电路是时序电路的核心组成部分。
通过逻辑门、触发器、计数器等器件的组合和连接,实现时序电路的功能。
逻辑电路中的逻辑门决定了输出信号的逻辑关系,而触发器和计数器则能够实现信号的存储和时序的处理。
4. 输出端:时序电路的输出可以是某种状态信号,也可以是控制信号。
输出信号的形式和时刻,取决于时序电路的设计目标和需要实现的功能。
二、时序电路的组成要素时序电路的组成要素包括时钟信号、触发器、计数器和时序逻辑电路。
1. 时钟信号:时钟信号是时序电路中的核心信号,支持时序电路按照特定的时间顺序进行操作。
时钟信号的稳定性和频率精度对于时序电路的正常运行至关重要。
通常,时钟信号由晶体振荡器或稳定的外部时钟源提供。
2. 触发器:触发器是时序电路中重要的存储元件,用于存储、记忆和控制输入和输出信号之间的关系。
常见的触发器包括D触发器、JK 触发器和T触发器等。
触发器的输入端包括时钟信号、预设信号、清零信号和输入信号等,根据输入信号的变化和触发器内部的逻辑电路原理,输出信号状态会发生相应的变化。