《光纤通信》实验4光纤中的四波混频效应
- 格式:docx
- 大小:1.00 MB
- 文档页数:10
光学Fib效应,通常指的是光纤中的非线性效应。
在光纤通信和光纤激光器等领域,光纤的非线性效应是一个重要的研究课题,因为它们会影响到光信号的质量和传输效率。
以下是一些常见的光纤非线性效应:1. 自相位调制(Self-Phase Modulation, SPM):当光脉冲在光纤中传播时,由于介质的非线性特性,光脉冲的相位会随着强度的变化而变化,这种现象称为自相位调制。
SPM会导致光脉冲的相位谱展宽,从而影响信号的传输质量。
2. 非线性损耗(Nonlinear Loss):在光纤中,当光强度超过一定阈值时,介质会表现出非线性损耗,这通常是由于光引起的介质的折射率变化导致的。
非线性损耗会导致光脉冲的能量随着传输距离的增加而逐渐减少。
3. 增益饱和(Gain Saturation):在光纤激光器中,激光增益介质(如掺杂的光纤)在强光场作用下会表现出饱和特性,即增益随着输入光强度的增加而减少。
这种效应限制了激光器的最大输出功率。
4. 四波混频(Four-Wave Mixing, FWM):当两个或多个不同频率的光波在光纤中传播时,它们会相互作用并产生新的频率成分。
这种效应可以用于波长转换和光信号处理,但也可能引起信号失真。
5. 光纤中的布里渊散射(Brillouin Scattering):这是一种声子与光子相互作用的现象,会导致光脉冲的频率和相位发生变化。
布里渊散射可以用于分布式光纤传感,但也可能对通信信号造成干扰。
6. 非线性折射(Nonlinear Refraction):当光脉冲在光纤中传播时,由于介质的非线性特性,折射率会随着光强度的变化而变化,这会影响光脉冲的传播速度和形状。
这些非线性效应通常在光纤中同时存在,它们的影响可以通过适当的信号调制、光纤设计和管理策略来减轻。
在设计和优化光纤通信系统和光纤激光器时,必须考虑这些非线性效应。
收稿日期:2018-02-05;修订日期:2018-03-03作者简介:郭树怀(1965-),男,副教授,主要从事影像电子学基础、电子电工、医学物理学等方面的研究。
Email:guo-shuhuai@ 通讯作者:乔斌(1981-),男,讲师,主要从事电子信息、计算机教学和网络应用研究。
Email:xtqiaobin@第47卷第7期红外与激光工程2018年7月Infrared and Laser EngineeringCW frequency comb generated by four 鄄wave mixingand cascaded FWMGuo Shuhuai 1,Wang Tianhe 2,Guo Huang 3,Qiao Bin 1*,Wang Xiao 1(1.Xingtai Medial College,Xingtai 054000,China;2.Tianjin Jinhang Research Institute of Technical Physics,Tianjin 300308,China;3.Xingtai Medical Third Affiliated Hospital,Xingtai 054000,China)Abstract:In order to solve the problem of generating optical frequency comb by mode ⁃locked laser seed source,a new method to generate optical frequency comb by continuous light source was presented and the problem of phase mismatch in four ⁃wave mixing and cascaded four ⁃wave mixing with wide spectral range was solved by using dispersion ⁃flattened highly nonlinear optical fiber.We experimentally demonstrated efficient generation of an equalized optical comb with nearly 40nm bandwidth.The comb was generated by low ⁃power,low ⁃cost,continuous ⁃wave seeds(FP-LDs)without needing for pulsed laser sources.The CW frequency comb were generated by four ⁃wave mixing (FWM)and cascaded FWM whose bandwidth of the spectrum was expanded by nearly 10times and the linewidth of the frequency comb was 4.3MHz with 420m zero ⁃slope dispersion dispersion ⁃flattened HNLF.Key words:four ⁃wave mixing;CW frequency comb;linewidth of MHz;zero ⁃slope dispersion dispersion ⁃flattened HNLFCLC number:TN248Document code:ADOI :10.3788/IRLA201847.0706007四波混频和级联四波混频效应产生的连续光频率梳郭树怀1,王天鹤2,郭煌3,乔斌1*,王晓1(1.邢台医学高等专科学校,河北邢台054000;2.天津津航技术物理研究所,天津300308;3.邢台医专第三附属医院,河北邢台054000)摘要:针对产生光频率梳需要锁模激光种子源的难题,创新性提出了用连续光源产生光频率梳,应用色散平坦高非线性光纤解决了宽光谱范围四波混频和级联四波混频效应的相位失配问题。
光放大器类型光纤放大器掺稀土元素放大器非线性效应放大器特性。
泵浦和增益系数光放大器的能源是由外界泵浦提供的。
根据掺杂物能级结构的不同,泵浦可以分为三能级系统和四能级系统。
在两种系统中,掺杂物都是通过吸收泵浦光子而被激发到较高能态,再快速驰豫到能量较低的激发态,使储存的能量通过受激辐射被释放出来放大光信号。
两种泵浦原理示意图泵浦激光发射放大器增益随输出功率的变化放大器噪声所有光放大器在放大过程中都会把自发辐射(或散射)叠加到信号光上,导致被放大信号的信噪比(低,其降低程度通常用噪声指数式中的SNR 是由光接收机测得的,因此所得n F =铒的吸收和辐射特性EDFA 增益特性增益特性表示了放大器的放大能力,其定义为输出功率与输入功率之比。
EDFA的增益大小与多种因素有关,通常为15~EDFA 噪声特性EDFA的输出光中,除了有信号光外,还有自发辐射光,它们一起被放大,形成了影响信号光的噪声源,的噪声主要有以下四种:①信号光的散粒噪声;②被放大的自发辐射光的散粒噪声;③自发辐射光谱与信号光之间的差拍噪声;④自发辐射光谱间的差拍噪声。
以上四种噪声中,后两种影响最大,尤其是第三种噪EDFA基本结构EDFA的内部按泵浦方式分,有三种基本的结构:即同向泵浦、反向泵浦和双向泵浦。
同向泵浦信号光与泵浦光以同一方向从掺铒光纤的输入端注入的结构,也称为前向泵浦。
反向泵浦泵浦光WDM系统中的增益带宽增益平坦增益特性优化噪声系数和饱和输出功率EDFA对光纤传输系统的影响非线性问题光浪涌问题色散问题光纤线路的长期可靠性问题受激拉曼散射原理FRA工作原理在许多非线性介质中,受激拉曼散射将一小部分入射功率由一光束转移到另一频率下移的光束,频率下移量由介质的振动模式决定,此过程称为受激拉曼效应。
量子力学描述为入射光波的一个光子被一个分子散射成为另一个低频光子,同时分子完成振动态之间的跃迁,入射光作为泵29混合拉曼/掺铒光纤放大器拉曼放大器和掺铒光纤放大器各有其独特的特点,将FRA 和EDFA 结合起来构成混合拉曼大器(HFA ),也是提高拉曼放大器性能的一种重要方法。
光通讯中的光非线性效应及其抑制在现代的通信领域中,光通讯已经成为主流的传输方式之一,其优点在于信号传输速度快、传输距离长、传输容量大等。
在光通讯中,光波的非线性效应是一个非常重要的课题,因为这些效应会严重影响到信号的传输质量和传输距离,并且还可能导致信号的失真和滞后。
因此,研究和抑制光波的非线性效应是目前光通讯领域中的一个重点研究方向。
一、光通讯中的非线性效应光波的非线性效应是指当光波在介质中传输时,由于介质中原子、分子等微观粒子的作用以及光波本身的特性,产生的一系列光学效应。
在光通讯中,主要包括四种非线性效应,分别为自相位调制(SPM)、互相位调制(XPM)、四波混频效应(FWM)和光纤失真效应(CD)。
自相位调制是指当光信号在介质中传播过程中,由于光波与介质相互作用而产生的频率调制效应。
这种效应会导致光信号的相位延迟或提前,从而影响信号的传输质量和传输速度。
互相位调制是指当两种不同频率的光信号在同一介质中传播过程中,由于它们之间的相互作用而产生的相位调制效应。
这种效应会导致两个信号之间相互干扰,从而影响信号的传输质量和传输距离。
四波混频效应是指当光信号在光纤中传输时,由于光波之间的相互作用而产生的一种非线性效应。
这种效应会导致光信号之间的频率变化和干扰,从而影响信号的传输质量和传输距离。
光纤失真效应是指当光信号在光纤中传输时,由于光波的色散效应而产生的一种非线性效应。
这种效应会导致光信号的频谱扩展和失真,从而影响信号的传输质量和传输距离。
二、光波的非线性效应的抑制方法由于光波的非线性效应较为复杂,因此对其的抑制方法也比较多样化。
下面简要介绍一些光波非线性效应的抑制方法。
(一)光纤光栅光纤光栅是一种利用光波在光纤中传输过程中的反射、衍射等现象产生的光学反射镜,可以有效地抑制光波的非线性效应。
通过在光纤中加入一段衍射光栅,在光波传输过程中可以减少信号的互相干扰和失真,从而提高信号的传输质量和传输距离。
基于光子晶体光纤四波混频的光波长变换**龚磊,尹飞飞,陈宏伟,陈明华,谢世钟(清华大学电子工程系,北京100084)摘要:研究了光子晶体光纤(PCF)中基于四波混频(FWM)的全光波长变换实现以及相应的变换效能。
使用C-L波段内具有平坦正色散特性的高非线性PCF,对基于FWM效应的光波长变换进行了理论分析,根据相应原理进行了波长变换实验系统的软件仿真,并以此为依据设计实验装置进行了实验验证。
实验结果基本符合相应的理论计算以及系统仿真,在中心波长为1540、1545以及1550 nm的频带范围内分别得到了、和dB的最高转换效率,分别对应18、17和13 nm的3dB转换带宽。
关键词:四波混频(FWM);波长变换;光子晶体光纤(PCF);转换效率; 3 dB带宽1引言从20世纪90年代中期开始,由于波分复用(WDM)方式在光传输网中明显的优越性,其发展非常迅速。
随着WDM器、光放大器和光纤等性能的不断改进,波长信道数在逐步增加。
可想而见,WDM网的带宽虽然很宽,但一根光纤中能够复用的波长数量终归是有限的,所以可用波长数将大大少于节点数目和用户数量。
但如果能够采用波长变换技术,让信号在节点上从一个波长变换到另一个波长,使同一波长在不同的区域中重复使用,这样就解决了波长争用的问题。
因此,波长变换是WDM全光通信网中非常关键的技术。
光波长变换技术总体可分为采用光-电-光和全光波长变换两种方式。
前者较成熟,但面临电子瓶颈问题,传输速率受到限制;相比之下,后者是更有前景的发展方向。
基于四波混频(FWM)原理的波长变换是目前非常有研究前景的全光波长变换技术[1],具有保留了原有信号的相位和幅度信息、信号调制速率较高(可达到40 Gbps)、对偏振敏感程度小、变换后码型不反转以及波长变换跨度较大等优点。
然而,在以往使用普通非线性光纤的试验中,变换效率低和变换信号信噪比(SNR)恶化限制了其应用。
要在光纤中产生足够强的FWM效应,需要光纤具有合理的色散特性以及高非线性,普通光纤难以达到相应的要求。
光纤通信中的非线性光学现象建模与分析引言:光纤通信技术作为现代通信领域的重要组成部分,已经成为人们日常生活中不可或缺的一部分。
光纤通信中,非线性光学现象扮演着至关重要的角色。
本文将就光纤通信中的非线性光学现象建模与分析进行探讨,以期深入了解非线性光学现象的本质和影响,并为光纤通信技术的发展提供指导。
一、非线性光学现象的概念和原理非线性光学现象是指当光的强度较强时,光与光纤介质发生相互作用后的光学响应不再满足线性叠加原理。
具体而言,光通过光纤时,光的强度可能会引起介质的折射率变化和光衍射现象等,进而影响光的传输和处理。
非线性光学效应包括自相位调制(Self-Phase Modulation,SPM)、光学色散(Optical Dispersion, OD)、四波混频(Four-Wave Mixing, FWM)等。
二、非线性光学现象的建模非线性光学现象建模是研究非线性光学现象的基础,通过建立合适的数学模型,可以模拟和预测光信号在光纤中的传输与变化规律。
1. 自相位调制(SPM)建模自相位调制是光信号在强度调制过程中相位随着强度的变化而改变的现象。
自相位调制可以通过非线性薛定谔方程描述。
该方程在非线性光学中起到了至关重要的作用,可以描述光脉冲在光纤中的传输特性。
2. 光学色散(OD)建模光学色散是光在光纤中传输时由于频率变化引起的相位变化。
色散会导致光脉冲展宽和失真,影响光信号的传输质量。
光学色散的建模通常使用和理论模型,如Maxwell-Bloch方程等,其中包括了介质的色散特性。
3. 四波混频(FWM)建模四波混频是指在光纤中,由于非线性效应,多个波长的光信号相互作用,产生新的频率成分。
四波混频是光纤通信中的一个重要问题,其模型主要基于非线性薛定谔方程,通过求解该方程可以预测混频现象的发生与发展规律。
三、非线性光学现象的分析方法除了建模以外,分析非线性光学现象的方法也十分重要。
分析非线性光学现象可以从频域和时域两个层面进行。
一、填空题1.光纤通信中所使用的光纤是截面很小的可绕透明长丝,它在长距离内具有(束缚)和传输光的作用。
2.光具有波粒二像性,既可以将光看成光波,也可以将光看作是由光子组成的(粒子流)。
3.波动光学是把光纤中的光作为经典(电磁场)来处理。
4.光纤色散是指由于光纤所传输的信号是由不同频率成分和不同模式成分所携带的,由于不同频率成分和不同模式成分的传输速度不同,从而导致(信号畸变)的一种物理现象。
5.在数字光纤通信系统中,色散使(光脉冲)发生展宽。
6.波导色散主要是由光源的光谱宽度和光纤的(几何结构)所引起的。
7、光纤的非线性可以分为两类,即受激散射效应和(折射率扰动)。
8.当光纤中的非线性效应和色散(相互平衡)时,可以形成光孤子。
9.单模光纤的截止波长是指光纤的第一个(高阶模)截止时的波长。
10.单模光纤实际上传输两个(相互正交)的基模。
11、光纤通信是以(光波)为载频,以光纤为(传输媒介)的通信方式。
12、目前光纤通信在(1550nm)波段附近的损耗最小。
13、(数值孔径)表征了光纤的集光能力。
14、G.653光纤又称做色散位移光纤是通过改变折射率的分布将(1310)nm附近的零色散点,位移到(1550)nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。
15、G.655在1530-1565nm之间光纤的典型参数为:衰减<(0.25)dB/km;色散系数在(1-6ps/nm·km)之间。
16、克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的(非线性)现象。
17、在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的(调制),这种现象称(交叉相位调制)。
18、当多个具有一定强度的光波在光纤中混合时,光纤的(非线性)会导致产生其它新的波长,就是(四波混频)效应。
19、G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为(0.34dB),后者为(0.2dB)。
东莞理工学院《光纤通信》optisystem软件仿真实验实验4光纤中的四波混频效应(FWM )一、头验目的1、了解影响四波混频效应的产生的因素2、了解抑制或增强四波混频效应的方法二、实验要求图4-1 G653(a)及G.655(b)光纤的传输光谱某FWM的实验结果:如图4-1 (a)为4个3dBm的光信号在G.653光纤中传输了25km 后的光谱,其中入0为1550nm波长,另外三个信号的中心波长分别为1549nm、1547nm、1551.5nm。
由图可见,经过传输后的信号,由于FWM产生了数十个串扰信号,有的叠加在原来信号上,有点落在其他位置上,干扰了原信号及其他位置信号的传输。
图4-1(b)为初始输入的4个光波信号。
1、请根据上述实验数据,分别采用G.653光纤和G655光纤作为传输光纤,对比光信号分别经过G.653光纤和G.655光纤后的FWM效应。
2、假设有两个输入光波信号输入到G.653光纤,其中一个输入信号的波长固定在1550nm,另一个波长在1550nm附近(可调)。
改变输入光功率,两个波长的间隔,光纤长度,观察FWM效应,总结哪些因素将影响FWM效应。
訥LawFnwwrw = 1550 nmPonHw 團3 id 呂eCWLaw IFfWluencv = 1&43 nmCWLase Z Fr-Muencv =nm PWF= mWCWLaSfi- 3FrMueflcv = 1^1.5 wnP GW =mWpnr|:Os® Fibe*Le<*3th = 5 kmG TDUD webcfty ditwrtkwr = VESThird-ordw diipwcton » YESOptical SpoQtryrn An?}yEar_JLength ■ 5 kmStSuU YfibCiEv dLbWliW * YES 亍恤gr曲drs^s^ = YES披长(1 nmf格)($至P0二翌S彼氏(]nnV格)图4-2 仿真实验系统搭建三、思考题:1、G653光纤有什么缺点?为什么要研制G.655光纤?G.655光纤有什么优点?2、如何抑制光纤中的FWM 效应?附录:计算并输出G.653 或G.655 光纤的色散文件clear all ;close all ;WL=linspace(1450,1630,1801);S0=0.06;WL0=1550;D=S0*(WL-WL0); %G.653%S0=0.0467;WL0=1480;D=S0*(WL-WL0);%G.655figure(1)plot(WL,D, 'k' );hold on ; plot(WL,D*0, 'k' );hold on;axis([1450,1630,-20,20]);WL=WL';D=D';da=[WL D]save E:\G652.txt -ascii daLayout 1 Pmr ametersma1: L^belt Layout 1Simulation Jsignal& Spatial effects Noise Signal tracingwir-inMimr —imiMir-immireiimi ■—NameValueUnits ModeSimulation window Set bit rate: NormalReference bit rateNarmal Bit rale40000000000 B its/sNarmatTime window 3 2e-009NcrmetSample rate25COOOO(K>OOCOHzSequence length 128 Bits NormaiSamples per bit 64 NormalHumber of samples8192^formalAdd Paran... I Remove Pai EditPar^m.CW LaserFn&auency = l&M nmPaw® 工 3 dBm Optical Sp*ctnjm AfL>lyz«fOpbcaJ SfNMtrum Ailsyte r_ICWUMf 1Fiwwn^v = 1543 門仃Pcwef = 3 dBm CW laser 2 FrficnuerK^ = 1M7 fin Fdw«f ■舌呂盼□is 弊阿册 da EI 1PNsrn ErieIJ5«f def Opt»»i FfceJ- 1 OptieaJ Ffe&r U34* d£lmd 阻8itnoe 寓上骨暨比件gib ■■ YES Langth * 25 km人如叼仙=02 dEk'km -SrouD veUcWydwerskxn = YES ThinS-oraer d«sp&f&en = YESDi wnififi fte fi>™ > E 2an^^ Fia-tSH--A FiS tS»^ +M53 Ddl 阳 I HuxNumber 白IT 注“ f^ru ■ 4CWU HT 3FiWLienw = 15&1.5 nm Pawe< 二舌 dBmr&j 『S +EJIBNS waveiengih = YES Length = 2S> km AitcfiuJiEivi > 0.2 dB.km 怎gup vtlfe^V diH<i>ion^ Thrrd-flnfer 中牙 Derfiipn = ¥ DtsaersioH data hw = Fr DfcensKTi he 那a 他=Opttal Specuum Anayisf^G.653:nRx=・pc•■匸Optical Spectrum AnalyzerDbl 亡be* On Objects to open properties. M ME Objects- with Mouse Drago.1.54? 1.S5? 1.56?bUnur-l^nxri'h FmlsampledParafnerteroedl<DOptical Spectrum Analyzer_1Dbl Cbck. On Objects, to open praperties. Move Objects- wrth Mouse Drag1.55?lATauv^^nrn1>lh FmlG.655:B Optical Spectrum Analyzer□bl Click On Objeds to 口“口propcrtM^ Move Objects with Mouse Draywfujgs.■■搖@paldEspissMEss誰口Ngffl3Jem.1.54 ? 1.66?Optical Spectrum Analyze^Dbl Clck On Objeds to open pro perl its IM QVU Obit dis wih Mouse iDrng2:CWLarsef iFi»qu»n 匚 y ■ 154 禺 nm Pflwtf - 3(1)改变波长间隔: 1545:目Optical Spectrum AnalyzerObi Cfck On Objects 1Q 叩un propertes. M-ovc Object® with Mouse Drag电Optical Spectrum Analyzer_1Obl 匚Id On Digels to* open proper1^& Move Objects M&use Drsg1.54? 1.55T 1.56?Wml^ngih (mJ1542 :Optical Spectrum AnalyzerOtriClck 5 ObjBizts 1o ope<i pro periled Move 口 bjects. with Mouse Drag旦Optical Spectrum AnalyzeMOU Click On Objects 1D open propertie-a Move 0 bjecU wth M&u&e DnI 如1 MuXNurnittr 护f inpirt p«rtF - 2CWLucfFreaij&fw = iKO nfin Powvr ■: H dB^nCptiud FiberU&&r defirted ^lerence 椚”谢《科出=YES L«narth = 25 kmA IUHU ALW X D2 d&'km G*WP v^isM^iY 段= YiES Firnlkirde! diaperMDH - YES Or5aer«n ctilU tvi&e = F#W 他D- sKubn Hit ra™ ■ E 201*谟咒姜亘哼空冬上苗叵歧真鱼4■光岂卡曲FWUi£兰GS 刃.txtp 鲁ugtaufj^dgw(E B ZJKIADd吊E - 8-I ffi x J t m Q d■1 54 ?1.55?Wavelength tml1 55 ?1.S?Wavelenoth 4mk™l Optical Spectrum AnalyzerOWiCicH Oo Objects ten open propen卿.⑷叫Objects wth 如站趺Ora j兰Optical Spectrijm Analyzer_1EHbl Cick On Obfecta B open propcrtes. M OVE Objects wfth hlDU>s>e 1520:1515:<DfA1.S3? 1 54? 15S7 1 56?Ulm -1 ― iwliBi. ■Tan』-:_■亠-:-■-:二■_:-■0£>s-耳OB—宅caprwl&od1.51 ? 1 .52? 1.53? 4 £4 ? 1.55 ? 1.58?z□寸・oErs1 49 ? 1.51 7 1 S3? 155? 157?sa o3时*一LIRBI X W JL umv *fParamelerlMd石Ns—og・rEHsJkrnod.49? 1 Si ? 1.S3? J.55 ?WAveleiHflh (m)(2)改变光功率:10dbm:1 56?54?5dbm:1.54? 1.55 7 1.56-10dbm:i .55?s.官BPrEQd1 56"egDS®I9话MdSNN-r¥09・wfflprmdd-20dbm:-50dbm:1.54?1:55?pOJeg-ELU巴Ed2選Ns1.56?(3)改变光纤长度:50km:k mINoise Param eterliedJAll Noise Parametrized S Pouvtr (dBm)甸llNotse Parametrized S :Powr(diBm)i-90 ・巾 -50・30-10p a rM s M u d匹£ ①且昼.54 ? 1 .55? 1.560.2km: 1.54?1.55 ?1 .SB?ULhM-ukl^uuvHi divn'l莎至一一站毎UJsEd 需一ons1.54 ?1.55 ?1 .56MrflA-lAlAJWTttl dml。