当前位置:文档之家› 立体几何高考真题大题 (1)

立体几何高考真题大题 (1)

立体几何高考真题大题 (1)
立体几何高考真题大题 (1)

立体几何高考真题大题

1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o ,且二面角D-AF-E 与二面角C-BE-F 都是60o . (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

【答案】(Ⅰ)见解析;(Ⅱ)19

- 【解析】

试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥

平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r 及平面C B E 的

法向量n r ,再利用cos ,n m n m n m

?=r r r r

r r 求二面角.

试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E .

(Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE .

以G 为坐标原点,GF u u u r

的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空

间直角坐标系G xyz -.

由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,

可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D . 由已知,//F AB E ,所以//AB 平面FDC E .

又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E .

由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角,

C F 60∠E =o

.从而可得(C -.

所以(C E =u u u r ,()0,4,0EB =u u u r

,(C 3,A =--u u u r ,()4,0,0AB =-u u u r

设(),,n x y z =r

是平面C B E 的法向量,则

C 0

0n n ??E =???EB =??u u u r r u u u r r ,

即040x y ?+=??

=??,

所以可取(3,0,n =r

设m r 是平面CD AB 的法向量,则C 0

m m ??A =???AB =??u u u r r u u u r

r ,

同理可取()

4m =r

.则cos ,n m n m n m ?==r r

r r

r r

故二面角C E-B -A

的余弦值为. 考点:垂直问题的证明及空间向量的应用

【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.

2.(2016高考新课标2理数)如图,菱形ABCD 的对角线AC 与BD 交于点O ,

5,6AB AC ==,点,E F 分别在,AD CD 上,54

AE CF ==,EF 交BD 于点H .

将DEF ?沿EF 折到D EF '?

位置,OD '= (Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.

【答案】(Ⅰ)详见解析;

【解析】

试题分析:(Ⅰ)证//AC EF ,再证'D H OH ⊥,最后证'D H ABCD ⊥平面;(Ⅱ)用向量法求解.

试题解析:(Ⅰ)由已知得AC BD ⊥,AD CD =,又由AE CF =得

AE CF

AD CD

=,故//AC EF .

因此EF HD ⊥,从而EF D H '⊥.由5AB =,6AC =

得04DO B ===. 由//EF AC 得

1

4

OH AE DO AD ==.所以1OH =,3D H DH '==. 于是1OH =,22223110D H OH D O ''+=+==, 故D H OH '⊥.

又D H EF '⊥,而OH EF H ?=, 所以D H ABCD '⊥平面.

(Ⅱ)如图,以H 为坐标原点,HF u u u r

的方向为x 轴的正方向,建立空间直角坐标

系H xyz -,

则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-u u u r

()6,0,0AC =u u u r ,()3,1,3AD '=u u u u r .设()111,,m x y z =u r 是平面ABD '的法向量,则0

m AB m AD ??=??'?=??u r u u u r

u r u u u u r

,即11111

340

330x y x y z -=??++=?,

所以可以取()4,3,5m =-u r .设()222,,n x y z =r 是平面'ACD 的法向量,则0

n AC n AD ??=??'?=??r u u u r

r u u u u r

即222260

330

x x y z =??

++=?,

所以可以取()0,3,1n =-r .于

是cos ,25||||m n m n m n ?<>===?u r r

u r r u r r ,

sin ,25

m n <>=u r r .

因此二面角B D A C '--

考点:线面垂直的判定、二面角.

【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α?b ⊥α;③α∥β,a ⊥α?a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.

求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.

3.(2016高考山东理数)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.

(Ⅰ)已知G,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (Ⅱ)已知EF=FB=1

2

AC=,AB=BC .求二面角F BC A --的余弦值.

【答案】(Ⅰ)见解析;

【解析】

试题分析:(Ⅰ)根据线线、面面平行可得与直线GH 与平面ABC 平行;(Ⅱ)立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,

其中解法一建立空间直角坐标系求解;解法二则是找到FNM ∠为二面角

F BC A --的平面角直接求解.

试题解析:

(Ⅰ)证明:设FC 的中点为I ,连接,GI HI , 在CEF △,因为G 是CE 的中点,所以,GI F //E 又,F E //OB 所以,GI //OB

在CFB △中,因为H 是FB 的中点,所以//HI BC , 又HI GI I ?=,所以平面//GHI 平面ABC , 因为GH ?平面GHI ,所以//GH 平面ABC . (Ⅱ)解法一:

连接'OO ,则'OO ⊥平面ABC ,

又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥

以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,

由题意得(0,B

,(C -,过点F 作FM OB 垂直于点M ,

所以3,FM ==

可得F

故((0,BC BF =--=u u u r u u u r

设(,,)m x y z =u r

是平面BCF 的一个法向量.

由0

,0

m BC m BF ??=???=??u r u u u r u r u u u r

可得0

,30

z ?--=??

+=??

可得平面BCF 的一个法向量(m =-u r

因为平面ABC 的一个法向量(0,0,1),n =r

所以cos ,7||||

m n m n m n ?<>==u r r

u r r u r r .

所以二面角F BC A --的余弦值为7

. 解法二:

连接'OO ,过点F 作FM OB ⊥于点M , 则有//'FM OO , 又'OO ⊥平面ABC , 所以FM ⊥平面ABC,

可得3,FM ==

过点M 作MN BC 垂直于点N ,连接FN , 可得FN BC ⊥,

从而FNM ∠为二面角F BC A --的平面角. 又AB BC =,AC 是圆O 的直径,

所以sin 452

MN BM ==

o

从而2

FN =

,可得cos FNM ∠=

所以二面角F BC A --. 考点:1.平行关系;2.异面直线所成角的计算.

【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用

直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等.

4.(2016高考天津理数)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB=BE=2. (Ⅰ)求证:EG ∥平面ADF ; (Ⅱ)求二面角O-EF-C 的正弦值;

(Ⅲ)设H 为线段AF 上的点,且AH=2

3

HF ,求直线BH 和平面CEF 所成角的正弦值.

【答案】 【解析】

试题分析:(Ⅰ)利用空间向量证明线面平行,关键是求出面的法向量,利用法向量与直线方向向量垂直进行论证(Ⅱ)利用空间向量求二面角,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值(Ⅲ)利用空间向量证明线面平行,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与线面角互余关系求正弦值

试题解析:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF u u u r u u u r u u u r

的方

向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,

()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.

(Ⅰ)证明:依题意,()(2,0,0),1,1,2AD AF ==-u u u r u u u r .设()1,,n x y z =u r

为平面ADF 的法

向量,则110

n AD n AF ??=???=??u r u u u r u r u u u r

,即2020x x y z =??-+=? .不妨设1z =,可得()10,2,1n =u r ,又()0,1,2EG =-u u u r ,

可得10EG n ?=u u u r u r

,又因为直线EG ADF ?平面,所以//EG ADF 平面. (Ⅱ)解:易证,()1,1,0OA =-u u u r

为平面OEF 的一个法向量.依题意,

()()1,1,0,1,1,2EF CF ==-u u u r u u u r .设()2,,n x y z =u u r 为平面CEF 的法向量,则220

n EF n CF ??=???=??u u r u u u r u u r u u u r

,即0

20

x y x y z +=??-++=? .不妨设1x =,可得()21,1,1n =-u u r . 因此

有222

cos ,OA n OA n OA n ?<>==?u u u r u u r

u u u r u u r u u u r u u r ,于

是2sin ,3OA n <>=u u u r u u r ,所以,二面角O EF C --

的正弦值为

3

. (Ⅲ)解:由23AH HF =,得2

5AH AF =.因为()1,1,2AF =-u u u r ,所以

2224,,5555AH AF ??==- ???u u u r u u u r ,进而有334,,555H ??

- ???

,从而284,,555BH ??= ???u u u r ,因

222

cos ,21BH n BH n BH n ?<>==-?u u u r u u r

u u u r u u r u u u r u u r .所以,直线BH 和平面CEF

. 考点:利用空间向量解决立体几何问题

5.(2016年高考北京理数)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =

,AC CD ==

(1)求证:PD ⊥平面PAB ;

(2)求直线PB 与平面PCD 所成角的正弦值;

(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM

AP

的值;若不存在,说明理由.

【答案】(1)见解析;(2

(3)存在,

1

4

AM AP = 【解析】

试题分析:(1)由面面垂直性质定理知AB⊥平面PAD ;根据线面垂直性质定理可知PD AB ⊥,再由线面垂直判定定理可知⊥PD 平面PAB ;(2)取AD 的中点O ,连结PO ,CO ,以O 为坐标原点建立空间直角坐标系O xyz -,利用向量法可求出直线PB 与平面PCD 所成角的正弦值;(3)假设存在,根据A ,P ,M 三点共线,设AP AM λ=,根据//BM 平面PCD ,即0=?n BM ,求λ的值,即可求出AM

AP

的值.

试题解析:(1)因为平面PAD ⊥平面ABCD ,AB AD ⊥, 所以⊥AB 平面PAD ,所以PD AB ⊥, 又因为PD PA ⊥,所以⊥PD 平面PAB ; (2)取AD 的中点O ,连结PO ,CO , 因为PA PD =,所以AD PO ⊥.

又因为?PO 平面PAD ,平面⊥PAD 平面ABCD , 所以⊥PO 平面ABCD .

因为?CO 平面ABCD ,所以⊥PO CO . 因为CD AC =,所以AD CO ⊥.

如图建立空间直角坐标系xyz O -,由题意得,

)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.

设平面PCD 的法向量为),,(z y x =,则

0,0,n PD n PC ??=???=??r u u u r r u u u

r 即???=-=--,

02,

0z x z y

令2=z ,则2,1-==y x . 所以)2,2,1(-=.

又)1,1,1(-=,所以

3

3,cos -

=>=

3

3. (3)设M 是棱PA 上一点,则存在]1,0[∈λ使得λ=. 因此点),,1(),,1,0(λλλλ--=-M .

因为?BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=?, 即0)2,2,1(),,1(=-?--λλ,解得4

1=λ.

所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时

4

1

=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.

【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.

6.(2016高考新课标3理数)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,

AD BC P ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的

中点.

(Ⅰ)证明MN P 平面PAB ;

(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.

【答案】(Ⅰ)见解析;

. 【解析】

试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MN AT P ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角. 试题解析:(Ⅰ)由已知得23

2

==

AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,22

1

==

BC TN . 又BC AD //,故TN AM P ,四边形AMNT 为平行四边形,于是AT MN //. 因为?AT 平面PAB ,?MN 平面PAB ,所以//MN 平面PAB .

(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥,且

5)2

(

2

222=-=

-=

BC AB BE AB AE . 以A 为坐标原点,AE uuu r

的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,

由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,2

5

(

N , (0,2,4)PM =-u u u u r ,)2,1,25(-=PN ,)2,1,2

5

(=AN .

设(,,)n x y z =r 为平面PMN 的法向量,则?????=?=?00PN n PM n ,即???

??=-+=-022

5042z y x z x ,可取

(0,2,1)n =r

于是|||cos ,|25

||||n AN n AN n AN ?<>==r u u u r

r u u u r r u u u r 考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.

【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.

7.(2016高考浙江理数)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,

=90ACB ∠o ,BE=EF=FC=1,BC=2,AC=3.

(Ⅰ)求证:EF ⊥平面ACFD ;

(Ⅱ)求二面角B-AD-F 的平面角的余弦值.

【答案】(Ⅰ)证明见解析;(Ⅱ)4

. 【解析】

试题分析:(Ⅰ)先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(Ⅱ)方法一:先找二面角D F B-A -的平面角,再在Rt QF ?B 中计算,即可得二面角D F B-A -的平面角的余弦值;

方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B-A -的平面角的余弦值. 试题解析:(Ⅰ)延长D A ,BE ,CF 相交于一点K ,如图所示. 因为平面CF B E ⊥平面C AB ,且C C A ⊥B ,所以,

C A ⊥平面C B K ,因此, F C B ⊥A .

又因为F//C E B ,F FC 1BE =E ==,C 2B =,所以

C ?B K 为等边三角形,且F 为C K 的中点,则 F C B ⊥K .

所以F B ⊥平面CFD A . (Ⅱ)方法一:

过点F 作FQ ⊥AK ,连结Q B .

因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B-A -的平面角.

在Rt C ?A K 中,C 3A =,C 2K =,得FQ =

在Rt QF ?B 中,FQ =

,F B =cos QF ∠B =

所以,二面角D F B-A - 方法二:

如图,延长D A ,BE ,CF 相交于一点K ,则C ?B K 为等边三角形.

取C B 的中点O ,则C KO ⊥B ,又平面CF B E ⊥平面C AB ,所以,KO ⊥平面C AB . 以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向, 建立空间直角坐标系xyz O . 由题意得

()

1,0,0B ,()C 1,0,0-,(K ,

()1,3,0A --,12?E ??

,1F 2?-

??. 因此,

()

C 0,3,0A =u u u r ,(AK =u u u r ,()2,3,0AB =u u u r

设平面C A K 的法向量为()111,,m x y z =r ,平面ABK 的法向量为()222,,n x y z =r

由C 00

m m ?A ?=??AK ?=??u u u r r u u u r r

,得11113030y x y =???++=??

,取)

1m =-r ;

由00

n n ?AB?=??AK ?=??u u u r r u u u r r

,得2222223030x y x y +=???++=??

,取(3,n =-r .

于是,cos ,4

m n m n m n ?==?r r r r

r r .

所以,二面角D F B-A -

的平面角的余弦值为4

. 考点:1、线面垂直;2、二面角.

【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.

8.(2016年高考四川理数)如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12

AD ,E 为边AD 的中点,异面直线PA 与CD 所成的角为90°. (Ⅰ)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (Ⅱ)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)1

3

. 【解析】

试题分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,而这可以利用已知的平行,易得CD ∥EB ;从而知M 为DC 和AB 的交点;(Ⅱ)求线面角,可以先找到这个角,即作出直线在平面内的射影,再在三角形中解出,也可以利用已知图形中的垂直建立空间直角坐标系,用向量

法求出线面角(通过平面的法向量与直线的方向向量的夹角来求得).

试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.

延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.

所以四边形BCDE是平行四边形.,所以CD∥EB

从而CM∥EB.

又EB?平面PBE,CM?平面PBE,

所以CM∥平面PBE.

(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:

由已知,CD⊥PA,CD⊥AD,PA?AD=A,

所以CD⊥平面PAD.

从而CD⊥PD.

所以∠PDA是二面角P-CD-A的平面角.

所以∠PDA=45°.

设BC=1,则在Rt△PAD中,PA=AD=2.

过点A作AH⊥CE,交CE的延长线于点H,连接PH.

易知PA⊥平面ABCD,

从而PA⊥CE.

于是CE⊥平面PAH.

所以平面PCE⊥平面PAH.

过A作AQ⊥PH于Q,则AQ⊥平面PCE.

所以∠APH 是PA 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH=45°,AE=1, 所以

AH=

2

. 在Rt △PAH 中,

2

, 所以sin ∠APH=AH PH =1

3

. 方法二:

由已知,CD ⊥PA ,CD ⊥AD ,PA ?AD=A , 所以CD ⊥平面PAD . 于是CD ⊥PD .

从而∠PDA 是二面角P-CD-A 的平面角. 所以∠PDA=45°.

由PA ⊥AB ,可得PA ⊥平面ABCD . 设BC=1,则在Rt △PAD 中,PA=AD=2.

作Ay ⊥AD ,以A 为原点,以AD u u u r ,AP uuu r

的方向分别为x 轴,z 轴的正方向,建立

如图所示的空间直角坐标系A-xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),

所以PE u u u r =(1,0,-2),EC uuu r =(1,1,0),AP uuu r =(0,0,2)

设平面PCE 的法向量为n=(x,y,z ),

由0,0,

PE EC ??=???=??u u u u u u u u r u u u r n n 得20,0,x z x y -=??

+=? 设x=2,解得n=(2,-2,1).

设直线PA 与平面PCE 所成角为α,则sin α=||

||||n AP n AP ??u u u u r

u u u r

=13

= . 所以直线PA 与平面PCE 所成角的正弦值为1

3

. 考点:线线平行、线面平行、向量法.

【名师点睛】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),一种方法可根据定义作出这个角(注意还要证明),然后通过解三角形求出这个角.另一种方法建立空间直角坐标系,用向量法求角,这种方法主要是计算,不需要“作角、证明”,关键是记住相应公式即可.

9.(2016高考上海理数)将边长为1的正方形11AAO O (及其内部)绕的1OO 旋

转一周形成圆柱,如图,?AC 长为23

π,?11A B 长为3

π

,其中1B 与C 在平面11AAO O 的

同侧。

(1)求三棱锥111C O A B -的体积;

(2)求异面直线1B C 与1AA 所成的角的大小。 【答案】(1

(2)4

π

. 【解析】

试题分析:(1)由题意可知,圆柱的高1h =,底面半径1r =. 确定1113

π

∠A O B =

.计算111

S ?O A B 后即得.

(2)设过点1B 的母线与下底面交于点B ,根据11//BB AA ,知1C ∠B B 或其补角为直线1C B 与1AA 所成的角.确定C 3π∠OB =

,C 1B =.得出1C 4

π∠B B =. 试题解析:(1)由题意可知,圆柱的高1h =,底面半径1r =.

由?11A B 的长为

3π,可知1113

π

∠A O B =.

11111111111sin 2S ?O A B =O A ?O B ?∠A O B =

111111C 1V 312

S h -O A B ?O A B =?=.

(2)设过点1B 的母线与下底面交于点B ,则11//BB AA , 所以1C ∠B B 或其补角为直线1C B 与1AA 所成的角.

由?C A

长为23π,可知2C 3

π

∠AO =, 又1113

π

∠AOB =∠A O B =

,所以C 3

π

∠OB =

, 从而C ?OB 为等边三角形,得C 1B =. 因为1B B ⊥平面C AO ,所以1C B B ⊥B . 在1C ?B B 中,因为1C 2

π

∠B B =

,C 1B =,11B B =,所以1C 4

π

∠B B =

从而直线1C B 与1AA 所成的角的大小为

4

π. 考点:1.几何体的体积;2.空间的角.

【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量

方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等.

2017年高考立体几何大题(理科)

2017年高考立体几何大题(理科)1、(2017新课标Ⅰ理数)(12分) 如图,在四棱锥P-ABCD中,AB//CD,且90 ∠=∠=. BAP CDP (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,90 ∠=,求二面角A-PB-C的余弦值. APD

2、(2017新课标Ⅱ理)(12分) 如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂 直于底面ABCD ,o 1 ,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成 角为o 45,求二面角M AB D --的余弦值.

3、(2017新课标Ⅲ理数)(12分) 如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD. (1)证明:平面ACD⊥平面ABC; (2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.

4、(2017理)(本小题14分) 如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD,AB=4.

(I)求证:M为PB的中点; (II)求二面角B-PD-A的大小; (III)求直线MC与平面BDP所成角的正弦值.

5、(2017理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其部)以AB 边所在直线为旋转轴旋转120?得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.

立体几何高考真题专项练习2019

立体几何高考真题专项练习2019 1.(2018)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC 的中点. (1)证明:PO⊥平面ABC; (2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离. 2.(2017)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°. (1)证明:直线BC∥平面PAD; (2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.

3.(2016)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置. (Ⅰ)证明:AC⊥HD′; (Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积. 4.(2015)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值.

5.(2014)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离. 6.(2013)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD; (Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积. 7.(2012)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=

(完整版)高三数学立体几何历年高考题(2011年-2017年)

高三数学立体几何高考题 1.(2012年7)如图,网格纸上小正方形的边长为1,粗线画出 的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18 2.(2012年8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π 3.(2013年11)某几何体的三视图如图所示, 则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π 4.(2013年15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______. 5.(2014年8)如图,网格纸的各小格都是正方形,粗实线画出的 事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 6.(2014年10)正四棱锥的顶点都在同一球面上.若该棱锥的高为4, 底面边长为2,则该球的表面积为( ) A.81π4 B .16π C .9π D.27π4 7.(2015年6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 8.(2015年11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )8 9(2016年7)如图,某几何体的三视图是三个半径相等的 圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π 3 , 则它的表面积是 (A )17π (B )18π (C )20π (D )28π 10(2016年11)平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面, ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为 (A )32 (B )22 (C )33 (D )1 3 11.(2017年6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是 12.(2017年16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。

立体几何高考真题大题

立体几何高考真题大题 1.(2016 高考新课标 1 卷)如图 , 在以 A,B,C,D,E,F为顶点的五面体中, 面 ABEF为正方形 ,AF=2FD,AFD 90 ,且二面角D-AF-E与二面角C-BE-F都是 60 . D C F (Ⅰ)证明:平面ABEF平面EFDC; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 2 19 19 【解析】 试题分析:(Ⅰ)先证明 F平面FDC ,结合F平面 F ,可得平面F 平面 FDC .(Ⅱ)建立空间坐标系, 分别求出平面C的法向量 m 及平面 C 的法 向量 n ,再利用 cos n, m n m 求二面角.n m 试题解析:(Ⅰ)由已知可得F DF, F F, 所以F平面 FDC . 又F平面F,故平面 F 平面FDC . (Ⅱ)过 D 作DG F ,垂足为 G ,由(Ⅰ)知 DG平面 F . 以 G 为坐标原点,GF 的方向为 x 轴正方向, GF 为单位长度, 建立如图所示的空间直角坐标系 G xyz . 由(Ⅰ)知DF为二面角D F的平面角,故DF60,则DF 2, DG3,可得1,4,0 ,3,4,0,3,0,0, D0,0, 3 . 由已知 ,// F,所以//平面FDC . 又平面CD平面FDC DC,故//CD , CD// F . 由//F,可得平面FDC ,所以 C F为二面角 C F 的平面角, C F60 .从而可得C2,0,3.

设 n x, y, z 是平面C的法向量,则 n C 0, 即x 3z 0, n0 4 y0 所以可取 n3,0, 3 . 设 m 是平面 m C0 CD 的法向量,则, m0 同理可取 m0, 3, 4 .则 cos n, m n m 2 19. n m19 故二面角C 219的余弦值为. 19 考点:垂直问题的证明及空间向量的应用 【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明, 空间中线面位置关 系的证明主要包括线线、线面、面面三者的平行与垂直关系, 其中推理论证的关键是结 合空间想象能力进行推理, 要防止步骤不完整或考虑不全致推理片面, 该类题目难度不 大 , 以中档题为主.第二问一般考查角度问题, 多用空间向量解决. 2 .( 2016 高考新课标 2 理数)如图,菱形ABCD 的对角线AC 与BD交于点 O , AB 5,AC 6,点 E, F 分别在 AD,CD 上, AE CF 5 ,EF交BD于点H.将4 DEF 沿 EF 折到 D EF 位置,OD10. (Ⅰ)证明: D H平面 ABCD ; (Ⅱ)求二面角 B D A C 的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)295 .25

2018年高考立体几何大题练习

1.(14分)如图,在底面是正方形的四棱锥P ABCD -中,PA ⊥面ABCD ,BD 交AC 于点,E F 是PC 中点,G 为AC 上一点。 (Ⅰ)求证:BD ⊥FG ; (Ⅱ)确定点G 在线段AC 上的位置,使FG //平面PBD ,并说明理由; (Ⅲ)当二面角B PC D --的大小为23 π时,求PC 与底面ABCD 所成 角的正切值。 2.(本小题满分14分) 如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点. (Ⅰ)证明:1A O ⊥平面ABC ; (Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值; (Ⅲ)在1BC 上是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在, 确定点E 的位置. 1 A B C O A 1 B 1

3.如图1,在直角梯形ABCD 中,AD //BC ,D 2 π ∠BA = ,C 1AB =B =,D 2A =,E 是D A 的中点, O 是C A 与BE 的交点.将?ABE 沿BE 折起到1?A BE 的位置,如图2. (I )证明:CD ⊥平面1C A O ; (II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值. 4.(2016·兰州诊断)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,AB ∥ CD ,=21AB BC CD ==,,顶点1D 在底面ABCD 内的射影恰为点C (1)求证:1AD ⊥BC ; (2)若直线1DD 与直线AB 所成的角为3 π ,求平面11ABC D 与平面ABCD 所成角(锐角)的余弦值.

立体几何(高考真题)专题

立体几何(高考真题+模拟新题)专题训练 1、[2011·四川卷]l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3?l 1∥l 3 B .l 1⊥l 2,l 2∥l 3?l 1⊥l 3 C .l 1∥l 2∥l 3?l 1,l 2,l 3共面 D .l 1,l 2,l 3共点?l 1,l 2,l 3共面 2、[2011·南京质检]平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ?α,a ∥β C .存在两条平行直线a 、b ,a ?α,b ?β,a ∥β,b ∥α D .存在两条异面直线a 、b ,a ?α,b ?β,a ∥β,b ∥α 3、[2011·北京崇文一模] 已知m ,n 是两条不同直线,α,β,γ是三个不同平面,则下列命题中正确的为 ( ) A .若α⊥γ,β⊥γ,则α∥β B .若m ∥α,m ∥β,则α∥β C .若m ∥α,n ∥α,则m ∥n D .若m ⊥α,n ⊥α,则m ∥n 4、[2011·宁波二模]已知a ,β表示两个互相垂直的平面,a ,b 表示一对异面直线,则a ⊥b 的一个充分条件是( ) A .a ∥α,b ⊥β B .a ∥α,b ∥β C .a ⊥α,b ∥β D .a ⊥α,b ⊥β 5、[2011·泸州二诊] 如图K40-4,在正三棱柱ABC -A 1B 1C 1中,AB =1.若二面角C -AB -C 1的大小为60°,则点C 到平面C 1AB 的距离为( ) A.34 B.12 C.3 2 D .1 6、[2011·大连一模]已知三棱锥底面是边长为1的等边三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为( ) A.32 B.12 C.33 D.36 7、 [2011·深圳调研] 在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 8、 [2011·沈阳模拟] 设A ,B ,C ,D 是空间不共面的四个点,且满足AB →·AC →=0,AD →·AC → =0,AD →·AB →=0,则△BCD 的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .无法确定 9、大纲理数11.G8[2011·全国卷]已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7π B .9π C .11π D .13π 10、大纲文数12.G8[2011·全国卷] 已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7π B .9π C .11π D .13π 11、课标文数7.G8[2011·湖北卷] 设球的体积为V 1,它的内接正方体的体积为V 2,下列说法中最合适的是( ) A .V 1比V 2大约多一半 B .V 1比V 2大约多两倍半 C .V 1比V 2大约多一倍 D .V 1比V 2大约多一倍半 12、大纲理数6.G5、G11[2011·全国卷]已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A.23 B.33 C.6 3 D .1 12、[2011·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( ) A .2 B. 3 C. 2 D .1 13、课标理数4.G5[2011·浙江卷] 下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 14、大纲理数6.G5、G11[2011·全国卷]已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A.23 B.33 C.6 3 D .1 15、大纲理数9.G11[2011·重庆卷] 高为2 4 的四棱锥S -ABCD 的底面是边长为1的正方形,点 S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( ) A.24 B.2 2C .1 D. 2 16、大纲理数16.G11[2011·全国卷]已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1、CC 1 上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于________. 17、课标理数12.G8[2011·辽宁卷] 已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( ) A .3 3 B .2 3 C. 3 D .1 18、课标理数15.G8[2011·课标全国卷] 已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,B C =23,则棱锥O -ABC D 的体积为________. 18、大纲文数15.G8[2011·四川卷] 如图1-3,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________. 4 19、[2011·北京卷] 如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 别是棱AP ,AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形; (3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由. 20、[2011·北京卷] 如图1-6,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。 : `

} (一) 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- < 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0, {n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 - <

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ \ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 . 《

高考立体几何大题20题汇总情况

高考立体几何大题20 题汇总情况 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(2012江西省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5, BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体C DEFG 的体积。 2012,山东(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中 点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (第20题图) F E C 1 B 1 D 1A 1 A D B C

(2010四川)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; 2010辽宁文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解) (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ? ??? ?E ,F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)??????? ?? ?CB =CD F 是BD 的中点 ? CF ⊥BD ? ??? ?AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD (2009年第16题) 如图,在直三棱柱ABC —A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上, A 1D ⊥ B 1 C . 求证:(1)EF ∥平面ABC (2)平面A 1FD ⊥平面BB 1C 1C 证明:(1)由E ,F 分别是A 1B ,A 1C 的中点知EF ∥BC , 因为EF ?平面ABC ,BC ?平面ABC ,所以EF ∥平面ABC (2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1, 又A 1D ?平面A 1B 1C 1,故CC 1⊥A 1D , 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , CC 1、B 1C ?平面BB 1C 1C 故A 1D ⊥平面BB 1C 1C ,又A 1D ?平面A 1FD , 故平面A 1FD ⊥平面BB 1C 1C (2010年第16题)

立体几何高考真题大题

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o ,且二面角D-AF-E 与二面角C-BE-F 都是60o . (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平 面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r 及平面C B E 的法向量 n r ,再利用cos ,n m n m n m ?=r r r r r r 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E - ,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =o .从而可得(C -. 所以(C E =u u u r ,()0,4,0EB =u u u r ,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r 是平面C B E 的法向量,则 C 0 0n n ??E =???EB =??u u u r r u u u r r , 即040x y ?=?? =??, 所以可取(3,0,n =r .

2014高考理科立体几何大题练习

2014高考理科立体几何大题练习

1.如图1,在Rt ABC ?中,90C ∠=?,36BC AC ==,.D 、E 分别是AC AB 、上的点,且//DE BC ,将ADE ?沿DE 折起到1 A DE ?的位置,使1A D CD ⊥,如图2. (Ⅰ)求证: BC ⊥平面1A DC ; (Ⅱ)若2CD =,求BE 与平面1A BC 所成角的正弦值; (Ⅲ) 当D 点在何处时,1 A B 的长度最小,并求出最小值. 2.如图,四棱锥ABCD P -中,底面 ABCD 为正方形,PD PA =,⊥PA 平面PDC , E 为棱PD 的中点. (Ⅰ)求证:PB // 平面EAC ; (Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值. A B C D E 图图 A B C D E

E C 1 B 1A 1C B A 4. 如图,在直三棱柱111ABC A B C -中,90BAC ∠=?,1 2,AB AC AA ===E 是BC 中点. (I )求证:1//A B 平面1 AEC ; (II )若棱1AA 上存在一点M ,满足11 B M C E ⊥,求AM 的长; (Ⅲ)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.

E D A B C P 5.如图,在三棱锥P-ABC 中,PA=PB=AB=2, 3BC =,90=∠ABC °,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点. (Ⅰ)求证:DE‖平面PBC ; (Ⅱ)求证:AB ⊥PE ; (Ⅲ)求二面角A-PB-E 的大小. 6..如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面

2018年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 ?选择题(共9小题) 1 ?如图,在下列四个正方体中,A, B为正方体的两个顶点,M , N, Q为所在 棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() 2. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, 则该圆柱的体积为() A. n B. C. D. 3. 在正方体ABCD- A i B i CD i中,E为棱CD的中点,贝U( ) A. A i E± DC i B. A i E丄BD C A i E丄BG D. A i E丄AC 4. 某三棱锥的三视图如图所示,则该三棱锥的体积为( A. 60 B. 30 C. 20 D . i0 侧〔左)视圄 C

5?某几何体的三视图如图所示(单位:cm ), 则该几何体的体积(单位:cm 2) 是( ) 6?如图,已知正四面体 D -ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为 AB 、BC CA 上的点,AP=PB ==2,分别记二面角 D- PR- Q , D- PQ- R, D - A .产 aV B B. aV 产 B C ? a< Y D. p< 产 a 7. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A . 90 n B. 63 n C. 42 n D . 36 n 1 .某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三 D . +3 +1

4 角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中 有若干个是梯形,这些梯形的面积之和为( ) A . 10 B. 12 C. 14 D . 16 2. 已知直三棱柱 ABC- A 1B 1C 1中,/ ABC=120, AB=2, BC=CC=1,则异面直线 AB 1与BG 所成角的余弦值为( ) A . B. C. D. 二.填空题(共5小题) 8. 已知三棱锥S-ABC 的所有顶点都在球0的球面上,SC 是球0的直径.若平 面SCAL 平面SCB SA=AC SB=BC 三棱锥S-ABC 的体积为9,则球0的表面 积为 _______ . 9. 长方体的长、宽、高分别为3, 2,1,其顶点都在球0的球面上,则球0的 表面积为 _______ . 10. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18, 则这个球的体积为 ________ . 11. 由一个长方体和两个亍圆柱体构成的几何体的三视图如图,则该几何体的

高考立体几何大题20题汇总

(2012省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积。 2012,(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 201220.(本题满分15分)如图,在侧棱锥垂直底面 的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (2010)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; (第20题图) F E C 1 B 1 D 1A 1 A D B C

2010文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。 2012(18)(本小题满分12分) 如图,直三棱柱/ / / ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的 中点。 (Ⅰ)证明:MN ∥平面/ / A ACC ; (Ⅱ)求三棱锥/ A MNC -的体积。 (椎体体积公式V= 1 3 Sh,其中S 为地面面积,h 为高) 2012,(16)(本小题共14分) 如图1,在Rt ABC ?中,90C ∠=?,D ,E 分别为 AC ,AB 的中点,点F 为线段CD 上的一点,将ADE ? 沿DE 折起到1A DE ?的位置,使1A F CD ⊥,如图2. D F D E B C A 1 F E C B A

2015-2017近三年高考理科立体几何高考题汇编

2015-2017高考立体几何题汇编 2017(三)16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最小值为60°; 其中正确的是________。(填写所有正确结论的编号) 2017(三)19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值. 2017(二)4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π 2017(二)10.已知直三棱柱111ABC A B C -中,120ABC ∠=?,2AB =, 11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为 A . 32 B . 155 C . 105 D . 33 2017(二)19.(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且 垂直于底 面ABCD ,o 1 ,90,2 AB BC AD BAD ABC == ∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值. 2017(一)7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为

(完整版)历年高考立体几何大题试题.doc

2015 年高考立体几何大题试卷 1.【 2015 高考新课标2,理 19】 如图,长方体ABCD A1B1C1D1中,AB=16,BC =10, AA18 ,点E,F分别在 A1 B1,C1D1上, A1 E D1F 4 .过点E,F的平面与此长方体的面相交,交线围成一个正方 形. D F C A E B D C A B ( 1 题图) (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面所成角的正弦值. 2. 【 2015 江苏高考, 16】如图,在直三棱柱ABC A1 B1C1中,已知AC BC , BC CC1,设 AB1的中点为D, B1C BC1 E .求证:(1) DE // 平面 AA1C1C ; (2)BC1AB1. A C B E D A C B ( 2 题图)(3 题图) 3. 【2015 高考安徽,理19】如图所示,在多面体A1 B1 D1 DCBA ,四边形 AA1B1 B , ADD A , ABCD 均为正方形, E 为 B D 的中点,过 A1 , D , E 的平面交CD于F. 1 1 1 1 1 (Ⅰ)证明:EF / / B1C ;(Ⅱ)求二面角 E A1 D B1余弦值.

4.【2015江苏高考,22】如图,在四棱锥P ABCD 中,已知 PA平面ABCD,且四边形 ABCD 为直角梯形,ABC BAD,PA AD 2, AB BC 12 ( 1)求平面PAB与平面PCD所成二面角的余弦值; ( 2)点Q是线段BP上的动点,当直线CQ 与 DP 所成角最小时,求线段BQ 的长 A P D Q B F A D G B C E C ( 4 题图)( 5 题图) 5 .【 2015 高考福建,理 17】如图,在几何体 ABCDE 中,四边形 ABCD 是矩形, AB ^平 面 BEC, BE^ EC,AB=BE=EC=2 , G,F 分别是线段 BE, DC 的中点 . ( Ⅰ ) 求证:GF / /平面ADE; ( Ⅱ ) 求平面 AEF 与平面 BEC 所成锐二面角的余弦值. 6. 【 2015 高考浙江,理17】如图,在三棱柱ABC A1B1C1 - 中,BAC 90o, AB AC 2 ,A1A 4 ,A1在底面ABC的射影为BC的中点, D 为B1C1的中点. (1)证明:A1D平面A1B C; (2)求二面角A1-BD- B1的平面角的余弦值.

立体几何高考真题大题

立体几何咼考真题大题 1. (2016高考新课标1 卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方 形,AF=2FD, NAFD =90:且二面角 D-AF-E 与二面角 C-BE-F 都是 60: (I )证明:平面 ABEF 丄平面EFDC (n )求二面角 E-BC-A 的余弦值. 【答案】(I )见解析;(n ) -2蜃 19 【解析】 试题分析:(I )先证明AF 丄平面E FDC ,结合直F U 平面AB E F ,可得平面ABE F 丄 平面E FDC . (n )建立空间坐标系,分别求出平面E C E 的法向量m 及平面E C E 的法 试题解析:(I )由已知可得 A F 丄DF, A F 丄F E|,所以A F 丄平面E FDC . 又A F U 平面 AE E F ,故平面AEE F 丄平面|E F D C . _ (n )过D 作DG 丄E F ,垂足为G ,由(I )知DG 丄平面[A E 百F . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直 角坐标系G —xyz . 由(I )知N DF E 为二面角D -A F -E 的平面角,故N DF E =60:贝U DF = 2 , DG|=3,可得九(1,4,0 ), B(—3,4,0 ), E(—3,0,0 ), D (0,0, 73 ). 由已知,AE //E F ,所以AE //平面E FDC . 又平面 A ECD n 平面 |E FDC = DC ,故〕AB //CD , CD//EF . 由EE //A F ,可得EE 丄平面I E F DC ,所以N C E F |为二面角C —EE —F 的平面角, 向量n ,再利用cos (n,m ) 求二面角. n ||m |

相关主题
文本预览
相关文档 最新文档