嫦娥三号软着陆过程
- 格式:pdf
- 大小:1.18 MB
- 文档页数:3
《嫦娥三号自主避障软着陆控制技术》篇一一、引言随着人类对太空探索的深入,月球探测任务逐渐成为航天领域的重要一环。
嫦娥三号作为我国探月工程的重要一环,其自主避障软着陆控制技术是确保任务成功的关键技术之一。
本文将详细探讨嫦娥三号在自主避障软着陆控制技术方面的应用及所取得的成果。
二、嫦娥三号任务背景及意义嫦娥三号是我国探月工程的重要一步,其任务目标是实现月球表面的软着陆,并开展相关科学实验。
在这一过程中,自主避障软着陆控制技术起到了至关重要的作用。
此技术的成功应用,不仅为我国探月工程积累了宝贵经验,同时也为后续的深空探测提供了重要的技术支撑。
三、自主避障软着陆控制技术的核心原理嫦娥三号的自主避障软着陆控制技术主要基于先进的导航系统和精确的飞行控制算法。
导航系统通过获取月球表面的地形数据,为飞行器提供实时的环境信息。
飞行控制算法则根据这些信息,实时计算并调整飞行器的轨迹,确保其在着陆过程中能够避开障碍物,实现精确的软着陆。
四、技术实现过程及关键环节1. 障碍物探测与地形建模:嫦娥三号搭载的高精度雷达和光学设备,能够实时探测月球表面的地形信息,并建立精确的地形模型。
这一环节为后续的避障和软着陆提供了重要的数据支持。
2. 飞行轨迹规划与调整:基于探测到的地形信息和飞行控制算法,嫦娥三号能够实时规划出最佳的飞行轨迹。
在飞行过程中,根据实际情况,不断调整轨迹,确保能够避开障碍物并实现软着陆。
3. 软着陆控制策略:在接近月球表面时,嫦娥三号需采用精确的软着陆控制策略。
这一策略包括减速、稳定、着陆等多个环节,确保飞行器在着陆过程中能够保持稳定,并实现精确的着陆点。
五、技术成果及应用价值嫦娥三号的自主避障软着陆控制技术取得了显著的成果。
首先,此技术成功实现了嫦娥三号在月球表面的软着陆,为我国探月工程积累了宝贵的经验。
其次,此技术的应用提高了探月任务的成功率,降低了任务风险。
最后,此技术为后续的深空探测提供了重要的技术支撑,推动了我国航天事业的发展。
2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
附件1:问题的背景与参考资料;附件2:嫦娥三号着陆过程的六个阶段及其状态要求;附件3:距月面2400m处的数字高程图;附件4:距月面100m处的数字高程图。
附件1:问题A的背景与参考资料1.中新网12月12日电(记者姚培硕)根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。
嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。
目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。
北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。
1.嫦娥三号软着陆过程简介1.1 着陆准备轨道:着陆准备轨道即在进行改变探测器速度前的准备阶段。
此时探测器还在椭圆轨道上,轨道的近月点是15km远月点是100kn。
为确定探测器着陆点的位置,我们需确定近月点在月心坐标系的位置和软着陆轨道形态。
1.2 主减速段:主减速段主要任务即将探测器的飞行速度降到57m/s。
该段区间是距离月球表面15km到3km采用惯性、激光、微波测距测速制导;使用主发动机来提供动力,姿态发动机来改变主发动机即加速度的方向。
1.3 快速调整段:快速调整段的主要是利用姿态发动机,调整探测器姿态,使其在距离月面3km到2.4km这段区间内完成将水平速度减为0m/s的任务,即使主减速发动机的推力竖直向下进入粗避障阶段。
1.4 粗避障段:粗避障段的范围是距离月面2.4km到100m区间,其主要是分析星光下光学敏感成像图片,启动姿态发动机,粗步避开大的陨石坑,实现在设计着陆点上方100m处悬停,并初步确定落月地点。
1.5 精避障段:精细避障段的区间是距离月面100m到30m要求嫦娥三号悬停在距离月面100m 处,对着陆点附近区域100m范围内拍摄图像,并获得三维数字高程图。
分析三维数字高程图,避开较大的陨石坑,确定最佳着陆地点,实现在着陆点上方30m处水平方向速度为0m/s。
1.6 缓速下降阶段:缓速下降段主要是保证着陆月面的速度和姿态控制精度,要以较小的设定速度匀速垂直下降, 消除水平速度和加速度, 保持着陆器水平位置, 之后关闭发动机。
缓速下降阶段的区间是距离月面30m到4m要求着陆器在距离月面4m处的速度为0m/s,即实现在距离月面4m处相对月面静止,之后关闭发动机,使嫦娥三号自由落体到精确有落月点。
嫦娥三号软着陆各阶段的轨迹如图()所示2.各阶段控制策略2.1主减速段设探测器在近月点处的速度为 V,垂直方向速度为V y ,速度方向与水平方向的夹 角为B 调整发动机方向,使发动机方向沿着垂直轴方向并保持加速度大小不变, 故探测器在此阶段只在垂直方向有加速度,探测器在垂直方向运动了 12000米, 速度减至为56m/s ,因此要满足方程,由此可以解出加速度a 和主减速阶段所需要的时间t2.2快速调整段利用姿态发动机,调整探测器姿态,使其在距离月面 3km 到2.4km 这段区间内完成将水平速度减为0m/s 的任务,即使主减速发动机的推力竖直向下进入粗 避障阶段。
嫦娥三号软着陆轨道设计与控制策略摘要随着人类的进步和科技的发展,人类对太空和月球的探索已经取得了很大的进步。
我国的探月工程项目也一直走在世界前列。
嫦娥三号是我国首次实行外天体软着陆任务的飞行器,在世界上首先实现了地外天体软着陆自主避障。
对于嫦娥三号软着陆过程虽然有很多的研究成果,但这仍然是一个永远值得我们研究的问题。
本文首先分析了嫦娥三号运行轨道的近月点和远月点的速度,然后确定了近月点和远月点的位置。
在这基础上,对嫦娥三号软着陆轨道进行拟合确定,通过制导技术分析六个阶段最优控制策略。
最后,对确定的轨道和最优控制策略进行误差分析和敏感性分析。
在对问题一近月点和远月点位置确定和速度分析时,本文建立了动力学模型,通过万有引力定律求得在近月点的飞行速度为1.67km/s,在远月点的速度为1.63km/s,然后用微元迭代的方法,解得近月点的位置19.51W,32.67N,15km,远月点的位置160.49E,32.67S,100km。
在轨道的确定过程中,为了便于研究,将嫦娥三号软着陆的轨道划分为三个阶段。
第一个阶段是从近月点到距月球表面2400米的高空,在这一阶段的研究中,本文建立了基于软着陆二维动力学模型,然后根据所得到的数据确定轨道,进而用MATLAB拟合出轨道。
第二阶段是从距月球表面2400米到4米,考虑到要避开月球表面障碍物,所以,用MATLAB将附件 3中的图像进行平面和三维作图,从而根据所做出的图像确定出此阶段的运行轨道。
在第三阶段的划分是嫦娥三号从4米处开始做自由落体运动,这个阶段的轨迹是一条直线。
在六个阶段运动过程的最优控制策略研究中,首先运用显示制导法进行六个阶段燃料的最优控制,约束条件是嫦娥三号在每个阶段燃料的使用尽量少。
然后用模拟退火遗传算法对六个阶段的轨道最优化进行设计,得出嫦娥三号着陆过程每个阶段最优轨道控制,通过避障制导技术得出嫦娥三号软着陆六个阶段的最优控制策略。
关键词:二维动力学模型最优控制策略显示制导法一. 问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号任务全过程将经历五个关键飞控阶段第一个阶段是发射阶段。
在这个阶段,嫦娥三号将被发射到太空中。
整个发射过程需要一个强大的火箭来提供推力,以将嫦娥三号送入预定的轨道。
在这个阶段,飞控系统将负责监测和控制火箭的运行情况,确保嫦娥三号成功进入太空。
第二个阶段是轨道校正阶段。
一旦嫦娥三号进入太空后,它将进入一个围绕地球运行的轨道。
在这个阶段,飞控系统将负责对嫦娥三号进行轨道校正,以确保它能够准确地进入月球轨道。
第三个阶段是月球着陆器进入月球轨道阶段。
一旦嫦娥三号进入月球轨道,它将开始准备进入月球表面。
在这个阶段,飞控系统将负责控制嫦娥三号的速度和姿态,确保它能够准确地进入月球表面。
第四个阶段是月面软着陆阶段。
一旦嫦娥三号进入月球表面附近,它将开始着陆准备。
在这个阶段,飞控系统将负责控制嫦娥三号的姿态和速度,确保它能够顺利地着陆在月球表面。
这是一个非常关键的阶段,因为着陆过程需要非常高的精确度和稳定性。
第五个阶段是月球车的部署和操作阶段。
一旦嫦娥三号成功着陆,它将部署月球车,以进行科学勘测和探索工作。
在这个阶段,飞控系统将负责控制月球车的移动和操作,确保它能够准确地执行任务。
飞控系统还将负责监测和管理月球车的能量资源,以确保它能够持续运行。
总结起来,嫦娥三号任务的五个关键飞控阶段包括发射阶段、轨道校正阶段、月球着陆器进入月球轨道阶段、月面软着陆阶段和月球车的部署和操作阶段。
这五个阶段都需要飞控系统的严密监测和精确控制,以确保嫦娥三号能够顺利地完成任务,取得成功。
这是中国航天工程中一个重要的里程碑,也标志着中国航天科技的进步和发展。
嫦娥三号软着陆轨道设计与控制策略一、本文概述Overview of this article随着人类对太空探索的日益深入,月球作为地球的近邻,已成为空间科学研究的热点。
嫦娥三号作为我国月球探测工程的重要组成部分,其成功实施软着陆任务,标志着我国成为世界上少数几个掌握月球软着陆技术的国家之一。
本文旨在探讨嫦娥三号软着陆轨道的设计与控制策略,以期为未来的月球探测任务提供有益的参考和借鉴。
With the increasing depth of human space exploration, the moon, as a close neighbor of the Earth, has become a hot topic in space science research. As an important component of China's lunar exploration project, Chang'e-3 successfully implemented a soft landing mission, marking China as one of the few countries in the world to master lunar soft landing technology. This article aims to explore the design and control strategies of the Chang'e-3 soft landing orbit, in order to provide useful reference and inspiration for future lunar exploration missions.本文将对嫦娥三号软着陆任务进行简要介绍,包括任务目标、着陆环境分析以及技术难点等方面。
接着,文章将详细阐述软着陆轨道的设计原则与优化方法,包括轨道参数的确定、轨道稳定性分析以及轨道优化算法的应用等。
嫦娥三号成功软着陆标志的什么结合阅读材料试着分析其成功的原因从嫦娥三号火箭从酒泉卫星发射中心发射升空以来,这项历史性的任务便一路顺利,直至前不久,它终于成功地着陆在月球的南冕脊上。
它的成功,标志着中国成为拥有返回月壤的能力的第三个国家,也令世人惊叹。
本文将通过结合阅读材料,试着分析嫦娥三号成功着陆的原因。
首先,从科学技术看,嫦娥三号在发射、轨道控制、探测、通讯、落月过程中,中国科学家们就已经作出了巨大的贡献。
嫦娥三号发射所使用的酒泉火箭,是国内成功发射的最大的运载火箭之一;它的轨道控制系统,配备有自动调整喷气式动力轨道控制装置,拥有更多的轨道控制优势;而探测装置也在月球落点附近进行了诸多探测,确保了着陆区域及着陆过程的安全。
此外,还有一系列艰苦的科学实验,比如发射前语音识别等,都为着陆成功做出了不可或缺的贡献。
其次,从资金投入上看,中国在嫦娥三号任务上投入了大量的资金,加上其他一系列的经费投入,使嫦娥三号的任务得以实现。
嫦娥三号是一个大型的空间工程,涉及到了成千上万的科研、设计、建造等环节,耗资数以亿计的财力才能完成,从而使得嫦娥三号计划得以实现。
最后,从团队合作看,嫦娥三号任务的成功,不仅取决于先进的技术和可观的资金,更重要的是科学家们围绕项目所进行的团队合作。
嫦娥三号团队围绕项目,确保绝对安全,从复杂的计划到落月,必须要有一个专业、强大、高效的团队协作才能完成。
期间,科学家们严格按照国防科技委安排,进行计划、系统设计、试验场建造、发射前准备、发射期间的监测、监理以及发射后的卫星追踪和控制等,使得嫦娥三号与中国的梦想被实现。
综上所述,嫦娥三号能够成功着陆月球,是结合科学技术、资金投入以及团队协作等多种因素的综合结果。
嫦娥三号的成功,就是中国科学家们奋斗的结果,更是中国探索太空事业的成就。
它的成功,不仅为中国带来了荣耀,也为世界航天技术的发展注入了新的动力,实践证明了人类对于月球探索的渴望和高超的技术实现,为未来的探索和发展提供了更好的基础。
嫦娥三号软着陆轨道设计与控制策略引言嫦娥三号(Chang'e-3)是中国国家航天局(CNSA)于2013年发射的探月任务。
作为中国首个实现月面软着陆的任务,嫦娥三号的轨道设计与控制策略至关重要。
本文将探讨嫦娥三号的软着陆轨道设计以及相应的控制策略。
一、轨道设计1.1 软着陆的定义软着陆是指在着陆过程中,飞船的速度和加速度较小,从而减小着陆冲击力,降低着陆事故的风险。
嫦娥三号软着陆的主要目标是保证飞船及上面搭载的月球车的安全着陆。
1.2 轨道选择嫦娥三号选择了椭圆轨道进行软着陆。
这是因为椭圆轨道在进入月球表面前可以实现速度和加速度的逐渐减小,从而使得软着陆更加稳定和可控。
1.3 轨道参数设计在确定椭圆轨道之后,嫦娥三号需要确定相应的轨道参数。
这些参数包括轨道离心率、轨道倾角和轨道高度等。
通过科学计算和仿真分析,嫦娥三号确定了具体的轨道参数,以便使得软着陆能够满足任务要求。
二、控制策略2.1 控制模式嫦娥三号软着陆的控制策略采取了主动控制模式。
这意味着在着陆过程中,飞船将根据实时数据进行主动调整,以保证软着陆的稳定和安全。
2.2 触发条件在软着陆的控制策略中,触发条件是十分重要的。
嫦娥三号采取了多个触发条件,包括高度、速度和倾斜度等。
当这些条件满足一定的阈值时,控制系统将自动开始软着陆程序。
2.3 控制手段嫦娥三号软着陆采用了多种控制手段,以确保着陆过程的精确控制。
其中包括推力控制、姿态控制和舵控制等。
这些控制手段能够对飞船的速度、姿态和角度进行实时调整,以实现软着陆的最佳效果。
2.4 控制算法为了实现软着陆的精确控制,嫦娥三号采用了高级的控制算法。
这些算法包括PID控制、模糊控制和神经网络控制等。
通过这些算法,嫦娥三号能够根据实时数据进行精确的控制,并及时作出调整,以确保软着陆的成功。
结论嫦娥三号软着陆轨道设计与控制策略在实现月面软着陆任务中起到了重要的作用。
通过适当的轨道设计和精确的控制策略,嫦娥三号成功实现了月球表面的软着陆,并为未来的探月任务提供了宝贵的经验。
嫦娥工程三步走的实施步骤介绍嫦娥工程是中国国家航天局推进的一项重大太空探测项目,旨在实现中国的月球探测任务。
该项目的实施步骤分为三步走策略,即嫦娥一号、嫦娥二号和嫦娥三号。
本文将详细介绍嫦娥工程三步走的实施步骤。
嫦娥一号嫦娥一号是中国国家航天局于2007年10月24日发射升空的一颗月球轨道探测器,是嫦娥工程的第一步。
嫦娥一号的主要任务是进行月球环绕探测,并实现探测器自主研究、效果评估和工程试验。
嫦娥一号的实施步骤如下: - 设计和研发:国家航天局组织专业团队进行嫦娥一号的设计和研发工作,包括轨道探测器的结构、仪器设备和通信系统等。
- 发射升空:嫦娥一号在中国境内的发射场进行发射升空,并进入月球轨道。
- 月球环绕探测:嫦娥一号进入月球轨道后,进行环绕探测任务,获取月球表面的影像数据,并通过通信系统将数据传回地面。
嫦娥二号嫦娥二号是中国国家航天局于2010年10月1日发射升空的一颗月球着陆器和巡视器,是嫦娥工程的第二步。
嫦娥二号的主要任务是实现月球软着陆和巡视探测,进行月球表面的勘测和样品采集。
嫦娥二号的实施步骤如下: - 设计和研发:国家航天局组织专业团队进行嫦娥二号的设计和研发工作,包括着陆器和巡视器的结构、仪器设备和通信系统等。
- 发射升空:嫦娥二号在中国境内的发射场进行发射升空,并进入月球轨道。
- 月球软着陆和巡视探测:嫦娥二号成功着陆月球表面后,展开巡视器进行月球表面的勘测和样品采集工作,并通过通信系统将数据传回地面。
嫦娥三号嫦娥三号是中国国家航天局于2013年12月1日发射升空的一颗月球着陆器和巡视器,是嫦娥工程的第三步。
嫦娥三号的主要任务是在嫦娥二号的基础上实现更复杂的月球轨道交会和软着陆,同时携带更多的科学设备和载荷。
嫦娥三号的实施步骤如下: - 设计和研发:国家航天局组织专业团队进行嫦娥三号的设计和研发工作,包括着陆器和巡视器的结构、仪器设备和通信系统等。
- 发射升空:嫦娥三号在中国境内的发射场进行发射升空,并进入月球轨道。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。