微地震监测技术介绍课件
- 格式:ppt
- 大小:22.68 MB
- 文档页数:69
微地震监测技术及应用摘要微地震监测工艺包括近震硏究的定位与地壳构架成像,微地震监测各类定位手段需创建不同II标函数,地震定位悄况的实质为求得II标函数的极小值。
NA拥有不依靠于模型初始值选用,不会收敛与部分极小值,比以往线性近似手段有更大的精度与稳定性。
经过地震信息的震相硏究,走时拾取反演能够得到地震干扰区的地震波速度系统,当前已推行使用在石油、气田勘察开发和页岩开发领域;矿山开挖中矿震、岩爆,煤和瓦斯突出,承压水突水检测;水利项H 施工坝址、边坡可靠性以及天然滑坡检测等诸多方面。
关键词微地震;监测方法;运用;研究1微地震具体定位手段微震监测方法是在地震监测方法的前提下发展起来的,其在原理上和地震监测、声发射监测方法一样,是依靠岩体受力损坏阶段破裂的声、能原理。
近震3D空间微地震定位忽视深度后能视为平面微地震定位情况,使用三点定位儿何手段,在已知三个测量点坐标与地层介质传递速度基础上,经过三点到时就能够明确震源部位[1]。
00是坐标原点,以R, R+AR1, R+AR2分别是半径作圆,三圆交点就是震源,如图1所示。
天然微地震出现频率相对偏低,地震震相容易区别,常体现出单事件特点。
精确的定位手段均是创建在3D空间前提下,常见的微地震震源定位基本手段包括Geiger法、网格检索手段等线性优化途径;还有遗传算法、模拟退火以及邻近算法等非线性优化手段[2]。
2微地震监测运用2」矿山安全开挖微地震监测伴随开挖深度增大,地压、瓦斯以及地下承压水等安全情况突出,微地震监测技术起到关键的作用。
冲击地压属于矿山内损坏行最大的地压问题,出现时大小不同的煤块以较大的速度飞向巷道,对矿山设备以及人员生命的威胁较大,因此对其研究具有重要作用[3]。
统计结构显示,大概50%的矿震是因为沙砾岩等重点层损害造成的,僅有少数矿震造成了冲击地圧情况,表示矿震和冲击地压的差异。
冲击地压与地震一样均是和地球中物理损坏相关联的岩体可黑性现象,其出现时均表现为较短时间内散发大量的应变能。
微地震监测技术矿山微地震监测技术共分为三类:第一类是矿井地震监测系统,用于监测矿震,特点是监测大震级破裂事件,定位精度500米左右,主要采用地震行业的技术和设备;第二类是分布式微地震监测系统,用于监测小型矿震,特点是可监测小震级破裂事件,定位精度50-100米左右。
一般适合采区尺度的震动监测。
第三类是高精度微地震监测系统,用于监测小震级冲击地压和岩层破裂,定位精度达到10米以内,适合采掘工程尺度。
微地震是一种小型的地震(mine tremor or microseismic)。
在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。
由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件(Cook,1976)。
开采坑道周围的总的应力状态.是开采引起的附加应力和岩体内的环境应力的总和。
岩爆是岩石猛烈的破裂,造成开采坑道的破坏(Cook,1976;Ortlepp,1984),只有那些能够引起矿区附近的地区都受到破坏的地震事件才叫做冲击地压或煤爆、“岩爆”。
对地下开采诱发的地震活动性的研究表明,矿震不一定全都发生在开采的地点,且不同地区的最大震级也不相同,但矿震深度一般对应于开采挖掘的深度。
每年在一些矿区的地震台网能记录到几千个地震事件,只有几个是岩爆。
在由开采引起的地震事件的大的系列里,岩爆只是其中很小的一个分支。
对矿山地震、微地震及冲击地压的观测具有一致性,但应用到实际生产中必须区别对待。
第一个监测地震活动的台网,20年代末期建在上西里西亚(上西里西亚煤盆的德国一侧,现属于波兰)。
台网由四个子台组成,其中一个子台放在Rozbark煤矿的井下,装有Mainka水平向地震仪。
这个台网不断改进,坚持运转直到二战以后(Gibowicz,1963),直到60年代中期,被安装在地表和地下的现代化地震台站代替。
在南非,于1939年设计并布设了五个机械式地震仪,在地面组成台阵,主要为矿震定位(Gane等,1946)。
微震监测技术在地下工程中的应用摘要:微震监测技术是一种高科技信息化的地下工程动力监测技术。
随着设备硬件技术、信号处理技术和数字化技术的快速发展,微震监测技术的应用在国际上也越来越多,目前国内出现了对该技术的应用研究热。
本文介绍了微震技术的特点及微震技术在地下工程安全监测中的作用。
根据微震监测技术在国内外的应用,概括了该技术在地下工程安全监测和防灾减灾监测的若干方面的应用。
0 引言微地震监测技术(Microseismic Monitoring Technique,简称MS)基于声发射学和地震学,现已发展成为一种新型的高科技监控技术。
它是通过观测、分析生产活动中产生的微小地震事件,来监测其对生产活动的影响、效果及地下状态的地球物理技术。
当地下岩石由于人为因素或自然因素发生破裂、移动时,产生一种微弱的地震波向周围传播,通过在破裂区周围的空间内布置多组检波器并实时采集微震数据,经过数据处理后,采用震动定位原理,可确定破裂发生的位置,并在三维空间上显示出来。
1 微震监测在工程中的应用历史[2]微地震监测技术在地下工程中的应用最早始于上世纪初的南非约翰内斯堡地区的金矿开采诱发的地震监测。
南非对微地震的早期监测是采用常用的地震监测仪器,20多年后,60年代大规模的矿山微震研究在南非各主要金矿山展开,并随之在l970-1980年代以来各采金矿山先后建立了矿山微震监测台站。
到上世纪中叶,在波兰、美国、前苏联、加拿大等采矿大国都先后开展了矿山地震研究,且随着电子技术和信号处理技术的发展,多通道的微地震监测技术也开始得到应用,最突出的有以美国斯波坎的Electrolab公司为代表研制和生产多通道微震监测技术和设备,并在美国的金属矿山得到应用,微震监测技术在非矿山行业之外的核能、地下油气存储库、地下隧道工程等领域也得到应用,如加拿大原子能地下实验室就采用了微震监测系统口。
近年来,利用微震监测技术进行地下灾害救助等方面,也得到应用。
KJ551 煤矿微地震监测系统简介KJ551煤矿微地震监测系统是北京科技大学与北京安科兴业科技有限公司自主研发的高精度微地震监测系统,适用于煤矿、金属矿的矿震、冲击地压(岩爆)、煤与瓦斯突出、底板突水、顶板溃水、煤(矿)柱破裂等矿山灾害的监测和预警。
KJ551微地震监测系统采用了先进的光纤传输技术,最满足大型矿井的信号传输要求,监测范围也大大增加。
该系统可监测到三维破裂场,采用专用软件,即可对监控对象任意切片,不仅能提供矿岩破裂程度的各种参数,还能提供即时图像,实现了实时监测的CT 功能,为工程技术人员提供可靠有价值的信息。
KJ551煤矿微地震监测系统结构示意图一、主要技术参数1、系统组成微震监测系统包含用于采集和记录井下震动信息的硬件和软件,其中硬件包含微震监测主站(KJ551-F)、微震监测子站(KJ551-F1)、矿用本安型拾震传感器(GZC60)、地面监控主机、数据处理计算机、工控机、信号传输电缆、信号传输光缆、本安装置、井下不间断电源等;软件包含微震数据采集软件、微震数据定位和能量计算软件、微震信号分析软件(可实现滤波、频谱计算、去噪、小波分析)、微震结果三维展示软件、远程监控软件等。
2、系统功能(1)岩体震动信号的采集、记录和分析;(2)微震信号的定位和能量计算;(3)波形分析,包括对采集信号的滤波、去噪、小波分析、微积分等分析;(4)多通道显示和对比分析;(5)基于INTERNET的远程监控与数据处理(微震数据处理中心提供数据分析和处理服务);(6)微震结果三维展示,可实现微震定位结果的平面、剖面、空间的精确显示,实现基于时间范围、能量范围、区域范围的各种筛选展示,实现微震数据结果的各种统计分析。
3、系统特点KJ551微震监测系统为具有完全自主知识产权的新一代微震监测系统,具有以下特点:(1)基于以太网的信号传输模式监测信号的传输采用非常成熟的以太网技术,基于IP/TCP协议,保证了传输速度和传输质量,且井下主机可直接并入工业环网,不必铺设专用信号电缆和光缆,节省初期投资;(2)可扩展性强KJ551微震监测系统的井下监测分站可以实现多级并联同时工作的方式,每台分站12通道,最多可扩展至10台级联,共120通道,完全满足了大型矿山的监测需求;(3)可靠的拾震传感器拾震传感器选用无源自感应震动传感模块,灵敏度达到180V·m/s,可感受到微弱的震动信号,保证了记录信息的真实性和可靠性;(4)丰富的软件系统配备了微震数据采集软件、微震数据定位和能量计算软件、微震信号分析软件(可实现滤波、频谱计算、去噪、小波分析)、微震结果三维展示软件、远程监控软件等软件,每个软件自成体系,人机界面友好,操作简单。
平1井自造斜点开始应用FEW D进行地质导向施工。
当钻至井深1814m(垂深1627.9m)时,从测井曲线上观察到电阻率有明显的变化(升高),预计即将进入油层,根据当时的井斜角、地层倾角和电阻率的探测深度,计算得出再钻进至井深1850m左右钻遇油层。
基于上述判断,及时地调整井斜角至设计入靶井斜角,结果在井深到达1850m(垂深1629.8m)时,伽马值明显下降,电阻率明显升高,2条测井曲线呈现背向而驰的趋势,表明已经钻入油层。
预算数据与实际结果十分吻合。
水平段施工是该井的难点所在,为了在旋转钻进时达到稳斜的目的,在螺杆钻具的上边加了欠尺寸扶正器,由于在入靶点前及时地将井眼轨迹的入靶姿态调整到最佳位置。
进入水平段后的施工顺利,利用FEW D的测井曲线,控制轨迹在伽马测量值65~80API(油层显示较好)之间。
当钻至1966m时,测井曲线形态发生明显变化,伽马值升高至110API,电阻率下降至6~7Ωm,而2条曲线在此之前都没有异常显示,地质判断钻遇断层,完成水平段控制任务,该井于2013m完钻。
实际水平段长度116m,穿越油层长度116m,油层穿透率达100%。
营31-平1井,与邻井对比,日产油量是邻井的4.1倍。
4 结论与建议(1)胜利油田经过研究、现场应用试验,在利用FEW D地质导向技术开发薄油藏和剩余的边底水构造油藏,在工程设计、钻井技术、测量技术各方面的技术研究工作取得了较大成果,基本形成了薄层水平井技术的一整套钻井施工工艺技术模式和测量工艺模式,能够满足0.8~1.2m薄油藏开发的需要,已具有推广应用的价值。
(2)进一步研究薄油藏水平井施工工艺,建立不同地质条件和油藏特征情况下的薄油藏水平井钻井工程设计、施工工艺和轨迹控制模式。
(3)改进现有仪器、工具,缩短测点距井底的距离,最大限度地实现近钻头测量,提高轨迹控制的精度。
(4)进一步研究优化钻具组合,掌握各种钻具组合在不同地层、不同参数下的稳斜效果和造斜能力,优化钻井参数,达到最佳使用效果,提高在油层中的钻穿率。
微震监测综述1. 引言北美页岩气革命改变了全球能源市场格局,非常规油气勘探开发成为全球油气资源领域的新热点,水平井技术、大型压裂技术、微地震监测技术等三项核心技术的应用,加快了世界其他地区致密气、页岩气、煤层气等非常规油气资源的勘探开发。
全球非常规油气产量快速增长,在全球能源供应中的地位日益凸显,2008年全球非常规石油资源规模达449.5Gt,与常规石油资源基本相当;全球非常规天然气资源规模达3921Tm3,是常规天然气资源的8倍,非常规天然气产量快速上升,已占到天然气产量的18%。
油气资源类型特征三角图2.非常规天然气勘探对微震监测技术的需求非常规油气指成藏机理、赋存状态、分布规律及勘探开发方式等不同于现今的常规油气藏勘探的烃类资源。
全球非常规油气资源十分丰富、种类也很多,非常规石油资源主要包括:致密油、页岩油、稠油、油砂、油页岩等,非常规天然气主要包括:页岩气、煤层气、致密气、甲烷水合物等。
其中资源潜力大、分布广、具有开发价值的是页岩气和致密油等。
而中国已经在致密油和页岩气等非常规资源勘探开发中见到良好效果。
我国致密油气层涵盖古生界、中生界、新生界沉积岩;油气藏类型包括:砂岩、碳酸盐、火山岩;分布范围如图所示:西部有准噶尔盆地、柴达木盆地、塔里木盆地等;中部有鄂尔多斯盆地、四川盆地、江汉盆地等;东部有辽海盆地、渤海湾盆地、东海盆地、台西盆地等。
这些致密油气储层具有低孔、低渗特点,极难形成自然产能。
由于成藏特点与北美页岩气类似,可以借助国外经验,实施水平井压裂、多级压裂改造,有效扩大渗流通道,并通过微震监测技术求取裂缝的空间展布范围特征、提取岩石力学参数,为进一步储层改造及开发井位部署提供技术支持。
中国主要致密油分布3. 微震监测技术微震监测技术主要指在油气藏压裂、注水开采等生产过程中,利用压裂、注水诱发的类似天然地震、烈度很低的微地震现象,监测裂隙活动、油气生产层类流体的流动情况,为优化油气藏管理、致密储层勘探开发提供决策依据的微震技术。
GNT International Inc.微地震监测技术北京阳光杰科科技有限公司2012年6月⏹微地震技术三种数据采集方法⏹微地震数据处理⏹微地震解释与应用⏹微地震应用实例微地震监测技术是采集地下岩石破裂所产生的地震波,通过处理、解释以了解地下岩石破裂的位置、破裂程度、破裂的几何形态等的技术;可用于石油工业的压裂监测,以及矿山、大坝、地下结构等的长期监测•由客户数据建立速度模型•标定速度模型•事件可能发生区域的数据叠加•在叠加数据中搜寻裂缝事件•按时间和空间输出事件位置•地震检波器串•径向排列系统, 8-16 臂, 1000 道•灵活和快速的探测用于短期微地震震监测的灵活技术系统设计(平坦地形)系统设计(多山地形)用于调配的四轮摩托为直升机调配准备的地震检波器和电缆录音舱直升机调配用于系统部署的直升机•井筒中储层段放置10-50个3-C 地震检波器•采取初至处理•监测井距压裂井距小于200米•可用于观测多井压裂•用于标定地表系统在靠近作业井较近距离内,井下监测具有较高的精度井下系统探测装置准备井下系统3C 井下地震检波器•埋于100-300英尺(约30-90米)的3-C 检波器•每个排列配备80 –100个检波器•大面积覆盖•长期监测的最佳商业和技术选择用于长期和大范围监测的最具经济有效的方法进行中的浅孔钻探埋入式3C 地震检波器站埋入式3C 地震检波器站预备埋入的3C 地震检波器井下探测区域地表系统探测区域预警系统监测区域大面积油藏监测系统•井筒中靠近储层段放置10-20个3-C 地震检波器•采取初至处理•监测井距压裂井距小于200•可用于观测多井压裂•用于优化地表排列系统•地震检波器串•径向排列系统, 8-16 臂,1000 道•灵活和快速的探测用于短期微地震监测的灵活技术地面排列Typical WellNumber of Wells Monitored1Days of Data Recording2Total Frac Stages4 Average Hours per Stage2 Hours of Frac Data Processed8 (estimated) Depth of Imaging623 m Length of Horizontal Section(s)395 m Number of Geophone Channels801 Number of Arms in Array10 Length of Longest Arm in Array1350 m的3-C 检波器•每个排列配备80 –100个检波器•PSET®数据处理•大面积覆盖•长期监测的最佳商业和技术选择用于长期和大面积监测的最经济有效的方法布设原则:•约1000-2000m左右的圆环内。