微地震监测技术介绍
- 格式:ppt
- 大小:22.35 MB
- 文档页数:67
微地震监测方案地震是地球表面因地壳断裂导致的振动现象,对人类生命和财产造成了巨大的威胁。
而微地震作为地震研究中的一个重要分支,被广泛应用于地震的监测与预警工作中。
本文将介绍一种可行的微地震监测方案。
一、引言地震是一种破坏性极大的自然灾害,而微地震监测则是通过监测和研究微小地震信号,以了解地壳的活动状况,更好地预测和防范大规模地震事件的发生。
因此,制定一套有效的微地震监测方案至关重要。
二、设备和技术1. 声波传感器声波传感器是一种用于检测地震信号的关键设备。
它能够测量地壳中微小地震波的振幅、频率和持续时间,从而判断地壳的活动情况。
2. 数据采集系统数据采集系统是用于收集和记录声波传感器所感知到的地震信号的设备。
采集系统应具备高灵敏度、高采样率和较大存储容量,以确保数据的准确性和完整性。
3. 数据处理软件数据处理软件用于对采集到的地震数据进行处理和分析。
它能够提取出地震信号的关键特征,并进行相关性分析,有助于判断地震的发生原因和趋势。
三、监测范围与布点微地震监测的范围应根据地震活动频率和地理位置进行合理确定。
选择地震频繁的地区进行监测,可以提高监测的准确性和有效性。
布点方面,应充分考虑地震监测站之间的辐射覆盖范围,布设足够数量的监测站点,并确保各监测站点之间的距离适当,以便有效监测地震信号的传播路径。
四、数据分析与处理1. 地震事件识别通过数据处理软件对采集到的地震数据进行分析,识别出地震事件的发生时间、震级和震源位置等关键信息。
这有助于及时了解地震活动的情况,并采取相应的应对措施。
2. 地震波形分析地震波形分析是对地震信号的振幅、频率和持续时间等进行详细分析的过程。
通过对地震波形的分析,可以判断地震的来源、运动性质和可能对周边地区产生的影响。
3. 数据趋势分析通过长期对微地震监测数据的积累和分析,可以发现地震活动的趋势和规律。
这对于预测地震事件的发生概率和可能性有很大的帮助。
五、监测结果的意义与应用微地震监测的结果可以为地震学研究提供重要的数据支持,有助于科学家们对地震活动机制和震源构造的认识。
注水井测试工艺的前沿技术与发展趋势注水井测试是油田开发的重要工作之一,通过注水井的测试可以评估油层储集性能和开采效果,进而指导油田的后续开发和管理工作。
随着油田开发的深入,注水井测试技术也在不断发展,并出现了一些前沿技术。
本文将对注水井测试工艺的前沿技术和发展趋势进行综述,以期为相关领域的研究和实践提供参考。
一、前沿技术介绍1. 微地震监测技术微地震监测技术是一种利用地震波传播的原理来监测井下岩石的变形和破裂情况的技术。
通过在注水井周围布置多个地震监测点,可以实时监测地下岩石的变形和破裂情况,从而判断注水效果和油层储集性能。
2. 网格化测试技术传统的注水井测试通常采用单孔测试的方式,即在每口注水井上依次进行测试。
而网格化测试技术通过在一定范围内布置多口注水井并进行同步测试,可以更全面地了解注水效果和油层储集性能。
还可以通过网格化测试数据的分析,优化注水井的布置和运行参数,提高注水效果。
3. 岩心取心分析技术岩心取心分析技术是在注水井测试的基础上,通过取岩心样品进行物理、化学和流体性质等方面的测试和分析,可以更加全面地了解油层的性质和水驱过程的特点。
岩心取心分析技术能够为油田开发和管理提供更可靠的依据,以提高开采效果。
二、发展趋势展望1. 多物理场耦合模拟技术随着计算机模拟技术的不断发展,基于多物理场耦合模拟技术的注水井测试方法得到了广泛关注。
多物理场耦合模拟技术可以模拟注水井周围的地质、地球物理和流体运动等多种物理场的相互作用过程,通过对注水井周围环境的模拟和分析,可以更准确地评估注水效果和油层储集性能。
2. 智能化监测与优化技术随着传感器技术和人工智能技术的不断发展,注水井测试工艺将向智能化监测和优化方向发展。
智能化监测技术可以实时监测注水井和周围环境的变化,并通过人工智能算法对测试数据进行分析和优化,从而实现注水井的智能化管理和优化控制。
3. 新型注水材料与装备技术通过开发新型注水材料和装备技术,可以进一步提高注水井测试工艺的可靠性和效率。
微震监测技术在地下工程中的应用摘要:微震监测技术是一种高科技信息化的地下工程动力监测技术。
随着设备硬件技术、信号处理技术和数字化技术的快速发展,微震监测技术的应用在国际上也越来越多,目前国内出现了对该技术的应用研究热。
本文介绍了微震技术的特点及微震技术在地下工程安全监测中的作用。
根据微震监测技术在国内外的应用,概括了该技术在地下工程安全监测和防灾减灾监测的若干方面的应用。
0 引言微地震监测技术(Microseismic Monitoring Technique,简称MS)基于声发射学和地震学,现已发展成为一种新型的高科技监控技术。
它是通过观测、分析生产活动中产生的微小地震事件,来监测其对生产活动的影响、效果及地下状态的地球物理技术。
当地下岩石由于人为因素或自然因素发生破裂、移动时,产生一种微弱的地震波向周围传播,通过在破裂区周围的空间内布置多组检波器并实时采集微震数据,经过数据处理后,采用震动定位原理,可确定破裂发生的位置,并在三维空间上显示出来。
1 微震监测在工程中的应用历史[2]微地震监测技术在地下工程中的应用最早始于上世纪初的南非约翰内斯堡地区的金矿开采诱发的地震监测。
南非对微地震的早期监测是采用常用的地震监测仪器,20多年后,60年代大规模的矿山微震研究在南非各主要金矿山展开,并随之在l970-1980年代以来各采金矿山先后建立了矿山微震监测台站。
到上世纪中叶,在波兰、美国、前苏联、加拿大等采矿大国都先后开展了矿山地震研究,且随着电子技术和信号处理技术的发展,多通道的微地震监测技术也开始得到应用,最突出的有以美国斯波坎的Electrolab公司为代表研制和生产多通道微震监测技术和设备,并在美国的金属矿山得到应用,微震监测技术在非矿山行业之外的核能、地下油气存储库、地下隧道工程等领域也得到应用,如加拿大原子能地下实验室就采用了微震监测系统口。
近年来,利用微震监测技术进行地下灾害救助等方面,也得到应用。
微震检测技术原理⼀、引⾔微震检测技术是⼀种新型的⽆损检测技术,它利⽤微震能量来检测和诊断材料或结构的损伤。
这种技术以其⾼灵敏度、⾼分辨率和⾼可靠性⽽受到⼴泛欢迎,尤其在⼯程领域,如⼟⽊⼯程、机械⼯程和航空航天等,微震检测技术被⼴泛应⽤于结构健康监测和损伤识别。
本⽂将对微震检测技术的原理进⾏深⼊探讨。
⼆、微震检测技术的基本原理微震检测技术基于振动的原理,通过测量微⼩振动信号来检测结构内部的损伤。
当结构受到外⼒或温度变化等外部因素影响时,会在结构内部产⽣微⼩的振动。
这些微⼩的振动信号包含了结构的状态信息,包括损伤的位置和程度。
通过精密的传感器和信号处理技术,可以捕捉和解析这些微⼩的振动信号,从⽽确定结构内部的损伤情况。
三、微震检测技术的实施步骤1.信号采集:⾸先,需要使⽤⾼灵敏度的传感器来捕捉结构内部的微⼩振动信号。
这些传感器通常被放置在结构的表⾯或者嵌⼊到结构中。
2.信号处理:采集到的原始信号往往包含了很多噪声和其他⼲扰因素,需要进⾏信号处理来提取有⽤的信息。
这⼀步通常包括滤波、放⼤、模数转换等操作。
3.信号解析:经过处理的信号需要进⼀步解析来提取出结构的状态信息。
这通常涉及到对振动信号的频谱分析、模式识别等操作。
4.损伤识别:根据解析出的信息,结合结构的特性和损伤的先验知识,可以对结构内部的损伤进⾏定位和评估。
5.结果输出:最后,将损伤识别的结果以适当的形式输出,如显示在计算机屏幕上或通过⽆线传输发送到远程服务器。
四、微震检测技术的应⽤范围和优势1.应⽤范围⼴泛:微震检测技术可以应⽤于各种材料和结构的损伤检测,如混凝⼟、钢材、复合材料等。
同时,该技术也可以⽤于实时监测结构的健康状态,预防重⼤事故的发⽣。
2.⾼灵敏度和⾼分辨率:微震检测技术可以对微⼩的振动信号进⾏⾼灵敏度和⾼分辨率的测量,从⽽准确地识别出结构内部的损伤。
3.⽆损检测:微震检测技术是⼀种⾮侵⼊性的检测⽅法,不会对被检测结构造成任何损伤,因此在许多领域中得到了⼴泛应⽤。
装配式建筑施工微震监测技术应用一、引言近年来,随着城市化进程的加速推进,越来越多的装配式建筑开始被广泛应用。
装配式建筑由于其优势迅速成为了施工市场的热门选择,但其施工过程中也伴随着一定的风险。
为了有效监测和掌握装配式建筑施工过程中的微震情况,科学家和工程师们开发出了装配式建筑施工微震监测技术。
二、装配式建筑施工微震监测技术概述1. 装配式建筑施工微震监测技术的定义装配式建筑施工微震监测技术是指利用传感器等设备对装配式建筑施工中产生的微小地震信号进行实时采集、分析和监测的一种技术。
2. 技术原理装配式建筑施工微震监测技术通过在关键位置安放加速度传感器等设备,实时记录并分析由于地基下沉、挤压等因素引起的微小地震波信号。
这些信号可以帮助监测人员判断施工质量和地基情况,及时发现潜在的安全隐患。
三、装配式建筑施工微震监测技术的应用1. 施工质量监测借助装配式建筑施工微震监测技术,可以实时分析施工过程中产生的微震数据。
通过对这些数据的监测和分析,可以帮助监理人员掌握装配式建筑的施工质量,及时发现并解决问题。
比如,在挖掘基坑或现浇楼板的施工过程中,通过对微震信号的记录和分析,可以判断地基是否承受压力合理,并进一步优化施工设计。
2. 地基稳定性评估装配式建筑依赖于地基承载能力来确保其结构安全和稳定。
传统上,地基稳定性评估主要依靠直接观察以及经验判断。
而利用装配式建筑施工微震监测技术进行地基稳定性评估,则能够更为准确地判断地基是否具备足够的稳定性。
通过对微震信号强度、频率等参数进行监测和分析,可以及时发现地基下沉、变形等问题,为施工人员提供重要参考。
3. 安全隐患识别装配式建筑在施工过程中可能面临一些安全隐患,例如结构失稳、地基下沉等。
通过装配式建筑施工微震监测技术,可以在施工过程中及时对这些安全隐患进行识别。
一旦检测到异常的微震信号,监测人员可以立即采取相应措施避免事故的发生。
四、装配式建筑施工微震监测技术的意义和前景1. 提高施工质量利用装配式建筑施工微震监测技术可以有效提高装配式建筑的整体质量水平。
油气田勘探开发中的微地震技术研究油气田是人们生活中不可或缺的能源来源,而其勘探与开发工作是保障能源供给的基石。
随着技术的不断更新迭代,微地震技术成为了油气田勘探开发中的重要工具之一。
本文将从以下几个方面来探讨微地震技术在油气田勘探开发中的应用与研究。
一、微地震技术的简介微地震技术,顾名思义,是一种通过对微小地震事件进行采集、处理和分析来推断地下储层分布与特征的技术。
这种技术的核心就是利用地下岩石在承受外界负荷时的微小位移引发微震事件,通过对这些事件的监测和分析,可以推断相应地下储层结构和参数信息。
微地震技术可以大致分为两大类:一是通过人工激发地下微震,利用接收器对其进行监测;二是自然发生的地震事件,利用接收器对其进行监测。
微地震技术相对于传统勘探方法,优点在于信息量大,精度高,对储层特征更加细致,有助于提高勘探开发效率和成果。
二、微地震技术在油气田勘探开发中的应用微地震技术在油气田勘探开发中可以发挥很大的作用,主要体现在以下几个方面:1.储层定位:微地震技术能够帮助勘探人员确定储层的位置和形态,同时也能够分析储层结构的特征和变化趋势。
这对于油气田的勘探和开发来说是非常关键的,能够避免投资方向的偏离,提升采收率。
2.储量评估:通过微地震技术,可以确定储层的成因类型、构造形态及其上下部与岩性特征,从而帮助评估储量,并制定出相应的开发计划。
微地震技术在这方面的应用可以有效降低资源投入成本,提高产量效率,有助于提高油气田的产出。
3.地下流体运移分析:微地震技术能够对地下水文地质系统进行深入分析,并且判定对应的烃流体状态和运移路径,重点是它可以通过对埋藏地层的微动态响应识别孔隙和裂隙,解决了常规采样和封井检测时的一些难题。
三、微地震技术在油气田勘探开发中的发展与挑战正如任何一种技术,微地震技术也面临着自身的发展与挑战。
首先,高质量的微地震数据需要保证高密度接收器的安装和监测系统的稳定运行;其次,数据处理和解释的复杂性也限制了微地震技术的应用范围和深度;此外,微地震技术受到地震活动频率和灾害风险的限制,无法完全适应所有油气田的勘探开发需求。
平1井自造斜点开始应用FEW D进行地质导向施工。
当钻至井深1814m(垂深1627.9m)时,从测井曲线上观察到电阻率有明显的变化(升高),预计即将进入油层,根据当时的井斜角、地层倾角和电阻率的探测深度,计算得出再钻进至井深1850m左右钻遇油层。
基于上述判断,及时地调整井斜角至设计入靶井斜角,结果在井深到达1850m(垂深1629.8m)时,伽马值明显下降,电阻率明显升高,2条测井曲线呈现背向而驰的趋势,表明已经钻入油层。
预算数据与实际结果十分吻合。
水平段施工是该井的难点所在,为了在旋转钻进时达到稳斜的目的,在螺杆钻具的上边加了欠尺寸扶正器,由于在入靶点前及时地将井眼轨迹的入靶姿态调整到最佳位置。
进入水平段后的施工顺利,利用FEW D的测井曲线,控制轨迹在伽马测量值65~80API(油层显示较好)之间。
当钻至1966m时,测井曲线形态发生明显变化,伽马值升高至110API,电阻率下降至6~7Ωm,而2条曲线在此之前都没有异常显示,地质判断钻遇断层,完成水平段控制任务,该井于2013m完钻。
实际水平段长度116m,穿越油层长度116m,油层穿透率达100%。
营31-平1井,与邻井对比,日产油量是邻井的4.1倍。
4 结论与建议(1)胜利油田经过研究、现场应用试验,在利用FEW D地质导向技术开发薄油藏和剩余的边底水构造油藏,在工程设计、钻井技术、测量技术各方面的技术研究工作取得了较大成果,基本形成了薄层水平井技术的一整套钻井施工工艺技术模式和测量工艺模式,能够满足0.8~1.2m薄油藏开发的需要,已具有推广应用的价值。
(2)进一步研究薄油藏水平井施工工艺,建立不同地质条件和油藏特征情况下的薄油藏水平井钻井工程设计、施工工艺和轨迹控制模式。
(3)改进现有仪器、工具,缩短测点距井底的距离,最大限度地实现近钻头测量,提高轨迹控制的精度。
(4)进一步研究优化钻具组合,掌握各种钻具组合在不同地层、不同参数下的稳斜效果和造斜能力,优化钻井参数,达到最佳使用效果,提高在油层中的钻穿率。
微震监测技术在地下工程中的应用摘要:微震监测技术是一种高科技信息化的地下工程动力监测技术。
随着设备硬件技术、信号处理技术和数字化技术的快速发展,微震监测技术的应用在国际上也越来越多,目前国内出现了对该技术的应用研究热。
本文介绍了微震技术的特点及微震技术在地下工程安全监测中的作用。
根据微震监测技术在国内外的应用,概括了该技术在地下工程安全监测和防灾减灾监测的若干方面的应用。
0 引言微地震监测技术(Microseismic Monitoring Technique,简称MS)基于声发射学和地震学,现已发展成为一种新型的高科技监控技术。
它是通过观测、分析生产活动中产生的微小地震事件,来监测其对生产活动的影响、效果及地下状态的地球物理技术。
当地下岩石由于人为因素或自然因素发生破裂、移动时,产生一种微弱的地震波向周围传播,通过在破裂区周围的空间内布置多组检波器并实时采集微震数据,经过数据处理后,采用震动定位原理,可确定破裂发生的位置,并在三维空间上显示出来。
1 微震监测在工程中的应用历史[2]微地震监测技术在地下工程中的应用最早始于上世纪初的南非约翰内斯堡地区的金矿开采诱发的地震监测。
南非对微地震的早期监测是采用常用的地震监测仪器,20多年后,60年代大规模的矿山微震研究在南非各主要金矿山展开,并随之在l970-1980年代以来各采金矿山先后建立了矿山微震监测台站。
到上世纪中叶,在波兰、美国、前苏联、加拿大等采矿大国都先后开展了矿山地震研究,且随着电子技术和信号处理技术的发展,多通道的微地震监测技术也开始得到应用,最突出的有以美国斯波坎的Electrolab公司为代表研制和生产多通道微震监测技术和设备,并在美国的金属矿山得到应用,微震监测技术在非矿山行业之外的核能、地下油气存储库、地下隧道工程等领域也得到应用,如加拿大原子能地下实验室就采用了微震监测系统口。
近年来,利用微震监测技术进行地下灾害救助等方面,也得到应用。
微地震监测方案1. 简介微地震是指地震震级小于2.0的小型地震活动,这种地震活动虽然震级较低,但是对地下结构的变化可以有敏感的反应。
微地震监测方案旨在通过监测和分析微地震活动,了解地下构造的变化和相关地质过程,为地质灾害预测、资源勘探和地下工程提供依据。
2. 微地震监测原理微地震监测基于地震学原理,主要利用地震仪器记录微量地震活动。
地震仪器一般包括三个主要组件:地震传感器、数据记录仪和数据通信系统。
地震传感器用于感知地面的微动,将地震信号转化为电信号,并传送至数据记录仪。
数据记录仪负责记录和存储地震事件的数据,通常以数字形式进行存储。
数据通信系统用于传输地震数据到地震监测中心,以便后续的数据处理和分析。
3. 微地震监测流程微地震监测流程主要包括地震台网布置、数据采集和处理、数据分析和解释等步骤。
3.1 地震台网布置地震台网布置是微地震监测的第一步,合理的台网布置可以最大程度地提高监测效果。
布置地震台网时需要考虑以下因素:•台站间距:合理的台站间距可以确保覆盖监测区域的地震活动;•台位选择:选择地形开阔、地质稳定的地点,避免干扰;•台网密度:根据监测需求和地质背景确定台网密度。
3.2 数据采集和处理数据采集和处理是微地震监测的核心环节,包括数据收集、数据预处理和数据质量控制等步骤。
•数据收集:通过地震传感器采集地震事件的数据,并传送至数据记录仪;•数据预处理:对原始数据进行滤波、去噪、分段等预处理步骤,确保后续分析的准确性;•数据质量控制:检查数据质量,剔除采集过程中可能产生的异常数据。
3.3 数据分析和解释数据分析和解释是微地震监测的最终目标,通过对数据进行分析和解释,得出地下结构的变化和相关地质过程。
•数据分析:利用地震学理论和分析方法对数据进行分析,获取地震活动的震级、震源参数等重要信息;•数据解释:根据分析结果,结合地质背景和相关资料,解释地震活动与地下构造的关系,深入了解地下构造和相关地质过程。
微地震监测技术及应用随着非常规致密砂岩气、页岩气藏的开采开发,压裂技术在储层改造中起着举足轻重的作用,而微地震监测技术是评价压裂施工效果的关键且即时的技术之一。
根据微地震监测处理高精度地反演微震位置,从而预测压裂裂缝的发展趋势及区域,对压裂施工效果进行跟踪及评判,同时也为后期油气藏的开采和开发提供技术指导。
第一节微地震监测技术原理与发展微地震监测技术是通过观测、分析生产活动中所产生的微小地震事件来监测生产活动的影响、效果及地下状态的地球物理技术,其基础是声发射学和地震学。
与地震勘探相反,微地震监测中震源的位置、发震时刻、震源强度都是未知的,确定这些因素恰恰是微地震监测的首要任务。
微地震是一种小型的地震(mine tremor or microseismic)。
在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。
由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件。
开采坑道周围的总的应力状态。
是开采引起的附加应力和岩体内的环境应力的总和。
一、技术背景岩爆是岩石猛烈的破裂,造成开采坑道的破坏,只有那些能够引起矿区附近的地区都受到破坏的地震事件才叫做冲击地压或煤爆、“岩爆”。
对地下开采诱发的地震活动性的研究表明,矿震不一定全都发生在开采的地点,且不同地区的最大震级也不相同,但矿震深度一般对应于开采挖掘的深度。
每年在一些矿区的地震台网能记录到几千个地震事件,只有几个是岩爆。
在由开采引起的地震事件的大的系列里,岩爆只是其中很小的一个分支。
对矿山地震、微地震及冲击地压的观测具有一致性,但应用到实际生产中必须区别对待。
二、微地震技术的发展基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。
近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。
2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得到快速提升。
微地震监测方案范文微地震监测是指对地震发生前、期间和发生后微小地震事件进行观测和记录的一种地震监测手段。
这些微小地震事件被认为是地震发生前的地壳变形和地下应力释放的微观表现,通过对微地震的监测可以提前预警大地震的可能性,并为地震研究提供重要的数据。
下面是一个关于微地震监测方案的详细介绍:1.建立监测网络:首先,需要在地震活动频繁的地区建立一个微地震监测网络。
这个网络应该由多个监测站点组成,每个站点配备微地震探测设备,如地震仪和加速度计等。
这些设备应该能够记录地震事件的时刻、震级和震源位置等信息。
2.校准和校验设备:所有的微地震设备都需要进行校准,确保其记录的地震信息准确无误。
在监测过程中,还需要定期进行设备的校验,以确保其正常工作并保持高质量的监测。
3.数据采集和存储:监测网络应该能够实时采集地震事件的数据,并将其存储到一个中央数据服务器中。
对于每个微地震事件,应该记录其时刻、震级、震源位置、震源机制等信息。
此外,还可以将地震事件的波形数据进行存储,以便后续的地震波形处理和分析。
4.数据处理和分析:收集到的微地震事件数据需要进行处理和分析,以获取更多的地震信息。
其中,包括对地震事件的定位和震级的估计,以及对地震活动的模式和特征进行研究。
此外,还可以对地震事件的波形数据进行处理,进行地震波传播路径的反演和模拟等。
5.数据解释和应用:根据对微地震监测数据的分析结果,可以对地震活动进行解释和预测。
通过分析微地震活动的变化趋势和特征,可以预测大地震的可能性和概率,并提供预警信息。
此外,通过对地震事件的模式和特征进行研究,可以增进对地震机制和地震活动规律的认识。
6.提高监测精度和可靠性:为了提高微地震监测的精度和可靠性,可以采用多种手段,如增加监测站点的数量、提高设备的灵敏度和分辨率、改进数据处理和分析算法等。
此外,也可以利用其他地震监测手段的数据,如地表形变观测、重力观测和地电观测等,进行多参数的联合监测和分析。
GNT International Inc.微地震监测技术北京阳光杰科科技有限公司2012年6月⏹微地震技术三种数据采集方法⏹微地震数据处理⏹微地震解释与应用⏹微地震应用实例微地震监测技术是采集地下岩石破裂所产生的地震波,通过处理、解释以了解地下岩石破裂的位置、破裂程度、破裂的几何形态等的技术;可用于石油工业的压裂监测,以及矿山、大坝、地下结构等的长期监测•由客户数据建立速度模型•标定速度模型•事件可能发生区域的数据叠加•在叠加数据中搜寻裂缝事件•按时间和空间输出事件位置•地震检波器串•径向排列系统, 8-16 臂, 1000 道•灵活和快速的探测用于短期微地震震监测的灵活技术系统设计(平坦地形)系统设计(多山地形)用于调配的四轮摩托为直升机调配准备的地震检波器和电缆录音舱直升机调配用于系统部署的直升机•井筒中储层段放置10-50个3-C 地震检波器•采取初至处理•监测井距压裂井距小于200米•可用于观测多井压裂•用于标定地表系统在靠近作业井较近距离内,井下监测具有较高的精度井下系统探测装置准备井下系统3C 井下地震检波器•埋于100-300英尺(约30-90米)的3-C 检波器•每个排列配备80 –100个检波器•大面积覆盖•长期监测的最佳商业和技术选择用于长期和大范围监测的最具经济有效的方法进行中的浅孔钻探埋入式3C 地震检波器站埋入式3C 地震检波器站预备埋入的3C 地震检波器井下探测区域地表系统探测区域预警系统监测区域大面积油藏监测系统•井筒中靠近储层段放置10-20个3-C 地震检波器•采取初至处理•监测井距压裂井距小于200•可用于观测多井压裂•用于优化地表排列系统•地震检波器串•径向排列系统, 8-16 臂,1000 道•灵活和快速的探测用于短期微地震监测的灵活技术地面排列Typical WellNumber of Wells Monitored1Days of Data Recording2Total Frac Stages4 Average Hours per Stage2 Hours of Frac Data Processed8 (estimated) Depth of Imaging623 m Length of Horizontal Section(s)395 m Number of Geophone Channels801 Number of Arms in Array10 Length of Longest Arm in Array1350 m的3-C 检波器•每个排列配备80 –100个检波器•PSET®数据处理•大面积覆盖•长期监测的最佳商业和技术选择用于长期和大面积监测的最经济有效的方法布设原则:•约1000-2000m左右的圆环内。
微地震监测技术及应用摘要微地震监测工艺包括近震研究的定位与地壳构架成像,微地震监测各类定位手段需创建不同目标函数,地震定位情况的实质为求得目标函数的极小值。
NA拥有不依靠于模型初始值选用,不会收敛与部分极小值,比以往线性近似手段有更大的精度与稳定性。
经过地震信息的震相研究,走时拾取反演能够得到地震干扰区的地震波速度系统,当前已推行使用在石油、气田勘察开发和页岩开发领域;矿山开挖中矿震、岩爆,煤和瓦斯突出,承压水突水检测;水利项目施工坝址、边坡可靠性以及天然滑坡检测等诸多方面。
关键词微地震;监测方法;运用;研究1 微地震具体定位手段微震监测方法是在地震监测方法的前提下发展起来的,其在原理上和地震监测、声发射监测方法一样,是依靠岩体受力损坏阶段破裂的声、能原理。
近震3D空间微地震定位忽视深度后能视为平面微地震定位情况,使用三点定位几何手段,在已知三个测量点坐标与地层介质传递速度基础上,经过三点到时就能够明确震源部位[1]。
O0是坐标原点,以R,R+ΔR1,R+ΔR2分别是半径作圆,三圆交点就是震源,如图1所示。
天然微地震出现频率相对偏低,地震震相容易区别,常体现出单事件特点。
精确的定位手段均是创建在3D空间前提下,常见的微地震震源定位基本手段包括Geiger法、网格检索手段等线性优化途径;还有遗传算法、模拟退火以及邻近算法等非线性优化手段[2]。
2 微地震监测运用2.1 矿山安全开挖微地震监测伴随开挖深度增大,地压、瓦斯以及地下承压水等安全情况突出,微地震监测技术起到关键的作用。
冲击地压属于矿山内损坏行最大的地压问题,出现时大小不同的煤块以较大的速度飞向巷道,对矿山设备以及人员生命的威胁较大,因此对其研究具有重要作用[3]。
统计结构显示,大概50%的矿震是因为沙砾岩等重点层损害造成的,僅有少数矿震造成了冲击地压情况,表示矿震和冲击地压的差异。
冲击地压与地震一样均是和地球中物理损坏相关联的岩体可靠性现象,其出现时均表现为较短时间内散发大量的应变能。