当前位置:文档之家› 牛顿法的信赖域保护

牛顿法的信赖域保护

牛顿法的信赖域保护
牛顿法的信赖域保护

牛顿插值法的C语言编程

Newton 插值 Newton 插值函数 Newton 插值函数是用差商作为系数,对于01,,,n x x x …这1n +个点,其一般形式为: 00100120101011()[][,]()[,,]()()[,,,]()()() n n n N x f x f x x x x f x x x x x x x f x x x x x x x x x ?=+?+??++???…………对于011,,,n x x x ?…这n 个点, 100100120101012()[][,]()[,,]()()[,,,]()()() n n n N x f x f x x x x f x x x x x x x f x x x x x x x x x ??=+?+??++???…………差商的定义 若已知函数()f x 在点(0,1,2,,)i x i n =???处的函数值()i f x 。则称: 00[]()f x f x =为函数()f x 在点0x 的0阶差商; 100110 [][] [,]f x f x f x x x x ?= ?为函数()f x 关于01,x x 的1阶差商; 120101220 [,][,] [,,]f x x f x x f x x x x x ?= ?为函数()f x 过点012,,x x x 的2阶差商; 依此类推,一般地称 121012101210 [,,,,][,,,,] [,,,,,]k k k k k k k f x x x x f x x x x f x x x x x x x ??????????????= ?为函数()f x 关于01,,,k x x x ???的 k 阶差商。 表1 差商表 i x ()i f x 1阶差商 2阶差商 3阶差商 4阶差商 0x 1x 2x 3x 4x …… 0()f x 1()f x 2()f x 3()f x 4() f x …… 01[,]f x x 12[,]f x x 23[,]f x x 34[,]f x x …… 012[,,]f x x x 123[,,]f x x x 234[,,] f x x x …… 0123[,,,]f x x x x 1234[,,,] f x x x x …… 01234[,,,,]f x x x x x …… 根据Newton 插值函数编写的C 语言编程 根据Newton 插值函数并对照上面的差商表,可编写出Newton 插值法的C 语言程序如下: #include #include #include double NewtonInterpolation(double *x,double *y,int n,double xx,double *pyy) {

插值法数值上机实验报告

插值法数值上机实验报告 实验题目: 利用下列条件做插值逼近,并与R (x) 的图像比较 考虑函数:R x y=1 1+x2 (1)用等距节点X i=?5+i,i=0,1,...,10.给出它的10次Newton插值多项式的图像; π),i=0,1,...,20.给出它的20次Lagrange插值多项式(2)用节点X i=5cos(2i+1 42 的图像; (3)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段线性插值函数的图像;(4)用等距节点X i=?5+i,i=0,1,...,10.给出它的三次自然样条插值函数的图像; (5)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段三次Hermite插值函数的图像; 实验图像结果:

实验结果分析: 1.为了验证Range现象,我还特意做了10次牛顿插值多项式和20次牛顿插值多项式的对比图像,结果如下图(图对称,只截取一半) 可以看出,Range现象在高次时变得更加明显。这也是由于高次多项式在端点处的最值随次数的变大很明显。可以料定高次多项式在两侧端点处剧烈震荡,在更小的间距内急剧上升然后下降,Range现象非常明显。

2.分析实验(2)的结果,我们会惊讶地发现,由于取21个点逼近,原本预料的Range现象会很明显,但这里却和f(x)拟合的很好。(即下图中Lagrange p(x)的图像)。可是上图中取均匀节点的20次牛顿多项式逼近的效果在端点处却很差。料想是由于节点X i=5cos2i+1 42 π ,i=0,1,...,20 取得很好。由书上第五章的 知识,对于函数y=1 1+x ,y 1 2对应的cherbyshev多项式的根恰好为X i= 5cos2i+1 42 π ,i=0,1,...,20 。由于所学限制,未能深入分析。 (3)比较三次样条插值图像和Hermit插值图像对原函数图像的逼近情形。见下图:

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

MAAB计算方法迭代法牛顿法二分法实验报告

姓名 实验报告成绩 评语: 指导教师(签名) 年 月 日 说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一 方程求根 一、 实验目的 用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。并比较方法的优劣。 二、 实验原理 (1)、二分法 对方程0)(=x f 在[a ,b]内求根。将所给区间二分,在分点 2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。否则,继续判断是否0)()(

+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(') (00x f x f 。取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。迭代公式为:=+1 k x -0x )(')(k k x f x f 。 三、 实验设备:MATLAB 软件 四、 结果预测 (1)11x = (2)5x = (3)2x =0,09052 五、 实验内容 (1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超 过3105.0-?。 (2)、取初值00=x ,用迭代公式=+1 k x -0x )(') (k k x f x f ,求方程0210=-+x e x 的近似根。要求误差不超过3105.0-?。 (3)、取初值00=x ,用牛顿迭代法求方程0210=-+x e x 的近似根。要求误差 不超过3105.0-?。 六、 实验步骤与实验程序 (1) 二分法 第一步:在MATLAB 软件,建立一个实现二分法的MATLAB 函数文件如下: function x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); %把a 端点代入函数,求fa fb=feval(fname,b); %把b 端点代入函数,求fb if fa*fb>0 error('两端函数值为同号'); end

牛顿插值法的分析与应用

牛顿插值法的分析与应用 学生: 班级: 学号: : 指导教师: 成绩:

一.定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 二. 牛顿插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 三.算法 步骤1:输入节点(xj ,yj ),精度ξ,计值点xx ,f0→p ,1→T ,1→i ; 步骤2:对k=1,2,……,i 依次计算k 阶均差 f[xi-k,xi-k+1,…,xi] = (f[xi-k+1,…,xi]- f[xi-k,…,xi])/( xi -xi-k ) 步骤3:(1)、若| f[x1,…,xi]- f[x0,…,xi-1]|< ξ,则p 为最终结果Ni-1(x),余项Ri-1= f[x0,…,xi](xx-xi-1)T 。 (2)、否则(xx-xi-1)*T →T ,p+ f[x0,…,xi]*T →p ,转步骤4。 步骤4:若i

数值分析实验报告记录

数值分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为 这里可采用牛顿迭代法的迭代函数。 实验内容:

1.写出该问题的函数代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e;m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法: function y=Secant(x1,x2,e) i=3; m(1)=x1,m(2)=x2; while abs(x2-x1)>=e s1=f(x1); s2=f(x2); t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1)); x1=x2; x2=t; m(i)=t; i=i+1; end

MATLAB计算方法迭代法牛顿法二分法实验报告分析

姓名实验报告成绩 评语: 指导教师(签名) 年月日

说明:指导教师评分后,实验报告交院(系)办公室保存。 实验一 方程求根 一、 实验目的 用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。并比较方法的优劣。 二、 实验原理 (1)、二分法 对方程0)(=x f 在[a ,b]内求根。将所给区间二分,在分点2a b x -= 判 断是否0)(=x f ;若是,则有根 2a b x -= 。否则,继续判断是否0)()(

(1)11x =0.09033 (2)5x =0.09052 (3)2x =0,09052 五、 实验内容 (1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不 超过 3 105.0-?。 (2)、取初值00=x ,用迭代公式=+1k x -0x ) (') (k k x f x f ,求方程0210=-+x e x 的 近似根。要求误差不超过 3 105.0-?。 (3)、取初值00=x ,用牛顿迭代法求方程0210=-+x e x 的近似根。要求误 差不超过 3 105.0-?。 六、 实验步骤与实验程序 (1) 二分法 第一步:在MATLAB 7.0软件,建立一个实现二分法的MATLAB 函数文件agui_bisect.m 如下: function x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); %把a 端点代入函数,求fa fb=feval(fname,b); %把b 端点代入函数,求fb if fa*fb>0 error('两端函数值为同号'); end %如果fa*fb>0,则输出两端函数值为同号 k=0 x=(a+b)/2 while(b-a)>(2*e) %循环条件的限制

关于拟牛顿法的综述

几种拟牛顿算法综述 摘要: 拟牛顿方法是求解无约束优化问题有效而著名的算法。在拟牛顿法中,有根据矫正公式的不同分为几类方法。本文主要针对SR1、SR1的一种修改、BFGS、MBFGS、非单调的CBFGS、LBFGS这几种矫正公式产生方法进行理论阐述,包括其收敛性,收敛速度的证明并检验其在正定二次问题上的等价性。最后通过C#编程语言检验上述方法在收敛速度上的差异性。 关键字:拟牛顿法、矫正公式、收敛性、非线性方程 引言: 考虑无约束问优化题minf(x)(0.1)f是连续可微的函数。牛顿法利用 Newton方法最突出的优点是其收敛速度快,凡是目标函数的Hessian矩阵 较简单的问题都可以采用Newton方法,1- 。对于那些Hessian矩阵复杂的问题而 言,求解Hessian矩阵无疑是一项艰巨的工程,这是很多学者选择采用拟牛顿的方法来解决现实中较复杂的问题的原因所在。拟牛顿法和Newton法的主要区别于求解迭代方向。拟牛顿法的主要思路是通过构造一个矩阵序列*H(k)+去逼近 原问题迭代方向中的Hessian矩阵*G(k)?1+,这很好的避免了复杂矩阵求逆的问题。在算法上很好的降低了计算量,从而提高计算速度。为了寻找与G有某种近似的,我们需要来考察的各种相关关系。为此目的,我们将f(x)的梯度在处作Taylor 展开, (δ)()δ(x) f(x) 当δ充分小时,可得到近似关 δ()δ(δ)() 或δγ,γ 1 1(δ)(0.2) 关系式(1)对二次函数f(x)恒成立,但对于不一定成立。现在我们研究与寻找,使它满足关系式(1)。为讨论与计算上的方便,当得到 1 δ时,δ,γ已知,我们求得 1,它满足关系: 1 δγ (0.3)为了叙述方便,我们引入=?1那么有以下式子成立

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))

本科生实验报告 实验课程数值计算方法 学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一六年五月二〇一六年五月

实验一非线性方程求根 1.1问题描述 实验目的:掌握非线性方程求根的基本步骤及方法,。 实验内容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-1= 0 在区间 [-8,8]上的全部实根,误差限为10-6。 要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较, 第2章算法思想 2.1二分法 思想:在函数的单调有根区间内,将有根区间不断的二分,寻找方程的解。 步骤: 1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与 f(x0) 异号,则根在[x0,mid]之间,否则在[mid,x1]之间。 3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。

2.2 简单迭代法 思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。 步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。 2.计算x1,x1=f(x0). 3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。 4.输出x1,即为方程的近似解。

开始 输入x0,e X1=f(x0)|x1-x0|

Newton迭代法求解非线性方程

Newton迭代法求解非 线性方程

一、 Newton 迭代法概述 构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。牛顿(Newton)法就是一种将非线性方程线化的一种方法。 设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即: )x x )(x ('f )x (f )x (f k k k -+≈ (1-1) 于是我们得到如下近似方程: 0)x x )(x ('f )x (f k k k =-+ (1-2) 设0)('≠k x f ,则方程的解为: x ?=x k +f (x k ) f (x k )? (1-3) 取x ~作为原方程的新近似根1+k x ,即令: ) x ('f ) x (f x x k k k 1k -=+, k=0,1,2,… (1-4) 上式称为牛顿迭代格式。用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。 牛顿法具有明显的几何意义。方程: )x x )(x ('f )x (f y k k k -+= (1-5) 是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。正因为如此,牛顿法也称为切线法。 牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x 时才能保证收敛。若

要保证初值在较大范围内收敛,则需对)x (f 加一些条件。如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式: ) x ('f ) x (f x x k k k 1k λ -=+, ?=,2,1,0k (1-6) 上式中,10<λ<,称为下山因子。因此,用这种方法求方程的根,也称为牛顿下山法。 牛顿法对单根收敛速度快,但每迭代一次,除需计算)x (f k 之外,还要计算 )x ('f k 的值。如果)x (f 比较复杂,计算)x ('f k 的工作量就可能比较大。为了避免计算导数值,我们可用差商来代替导数。通常用如下几种方法: 1. 割线法 如果用 1 k k 1k k x x ) x (f )x (f ----代替)x ('f k ,则得到割线法的迭代格式为: )x (f ) x (f )x (f x x x x k 1k k 1 k k k 1k --+---= (1-7) 2. 拟牛顿法 如果用 ) x (f )) x (f x (f )x (f k 1k k k ---代替)x ('f k ,则得到拟牛顿法的迭代格式为: )) x (f x (f )x (f ) x (f x x 1k k k k 2k 1k -+--- = (1-8) 3. Steffenson 法 如果用 ) x (f ) x (f ))x (f x (f k k k k -+代替)x ('f k ,则得到拟牛顿法的迭代格式为: ) x (f ))x (f x (f ) x (f x x k k k k 2k 1 k -+- =+

牛顿插值法的应用

牛顿插值法在处理磁化曲线和铁损曲线 中的应用 指导老师:李国霞 院系:物理工程学院 专业:物理电子学 姓名:夏委委 学号:201112131526

一、牛顿插值法简介 在科学研究与其他领域中所遇到的许多实际问题中,经常会出现函数不便于处理或计算的情形。有时候函数关系没有明显的解析表达式,需要根据实验数据或其他方法来确定与自变量的某些值相对应的函数值;有时候函数虽有明显的解析表达式,但是使用很不方便。因此,在实际应用中,往往需要对实际使用的函数建立一个简单的便于处理和计算的近似表达式,即用一个简单的函数表达式来近似替代原来复杂的函数。与用近似数代替准确值一样,这也是计算法中最基本的概念和方法之一。近似代替又称为逼近。用多项式逼近列表函数的问题即为多项式插值问题。根据函数)(x f 已有的数据表格来计算函数)(x f 在一些新的点x 处的函数值,这就是插值法所要解决的问题。因此,所谓的插值法就是在所给定的函数表格中间在插入一些所需要的新的点上的函数值。 插值法的基本思想:首先设法根据表格中已有的函数值来构造一个简单的函数)(x y 作为)(x f 的近似表达式,然后再用)(x y 来计算新的点上的函数值作为 )(x f 的近似值。通常可以选用多项式函数作为近似函数)(x y ,因为多项式具有 各阶的导数,求值比较方便。用代数多项式作为工具研究插值问题,通常称为代数插值。 代数插值法问题的完整提法如下:设函数)(x f y =在区间[]b a ,上是连续的,且已知)(x f 在区间[]b a ,上1+n 个互异点处的函数值,即n i x f y i i ,......1,0),(== 其中,)(j i x x j i ≠≠。寻找一个次数不高于 n 的多项式 0111)(a x a x a x a x P n n n n n +++=-- 使满足条件n i x f x P i i n ,,1,0),()( ==称)(x P n 为)(x f 的插值多项式,),,1,0(n i x i =称为插值结点,[]b a ,称为插值区间。 牛顿(Newton)插值是数值逼近中的一个重要部分,它向前继承了拉格朗日(Lagrange)插值,向后引出了埃尔米特(Hermite)插值,可以看作对多项式插值作了一个简单的统一。牛顿插值公式具有形式简单,便于计算等优点。因此,在插值中得到广泛的应用。牛顿插值公式为)()()(x R x P x f n n +=,其中)(x P n 是牛顿插值多项式,)(x R n 为牛顿插值余项,)(x P n 和)(x R n 的表达式如下式所示:

matlab(迭代法-牛顿插值)Word版

实验报告内容: 一:不动点迭代法解方程 二:牛顿插值法的MATLAB实现 完成日期:2012年6月21日星期四 数学实验报告一 日期:2012-6-21

所以,确定初值为x0=1 二:不断迭代 算法: 第一步:将f(x0)赋值给x1 第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步 编写计算机程序: clear f=inline('0.5*sin(x)+0.4'); x0=1; x1=f(x0); k=1; while abs(x1-x0)>=1.0e-6 x0=x1; x1=f(x0); k=k+1; fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1) end 显示结果如下: k=2,x0=0.820735492,x1=0.765823700 k=3,x0=0.765823700,x1=0.746565483 k=4,x0=0.746565483,x1=0.739560873

k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。。。 以下是程序运行截图:

牛顿迭代法实验报告

用牛顿迭代法求非线性方程的根 一、 实验题目 求方程()013=--=x x x f 在5.1附近的根。 二、 实验引言 (1)实验目的 1. 用牛顿迭代法求解方程的根 2. 了解迭代法的原理 3. 改进和修缮迭代法 (2)实验意义 牛顿迭代法就是众多解非线性方程迭代法中比较普遍的一种,求解方便实用。 三、 算法设计 (1)基本原理 给定初始值0x ,ε为根的容许误差,η为()x f 的容许误差,N 为迭代次数的容许值。 1.如果()0='x f 或迭带次数大于N ,则算法失败,结束;否则执行2. 2.计算()() 0001x f x f x x '-=. 3.若ε<-21x x 或()η<1x f ,则输出1x ,程序结束;否则执行4. 4.令10x x =,转向1. (2)流程图

四、程序设计program nndd01 implicit none real,parameter::e=0.005 real,parameter::n=9 real::x1 real::x0=1.5 integer::k real,external::f,y do k=1,9 if (y(x0)==0) then write(*,*)"失败" else x1=x0-f(x0)/y(x0) if (abs(x1-x0)

else x0=x1 end if end if end do end function f(x) implicit none real::f real::x f=x*x*x-x-1 return end function function y(x) implicit none real::y real::x y=3*x*x-1 return end function 五、求解结果 3 1.324718 4 1.324718 5 1.324718 6 1.324718 7 1.324718 8 1.324718 9 1.324718 六、算法评价及讨论 1.在求解在1.5处附近的根,不难发现在输入区间左端值为1时 需要迭代6次,而输入区间左端值为1.5时,却只要4次。初

数值分析课程实验报告-拉格朗日和牛顿插值法

《数值分析》课程实验报告 用拉格朗日和牛顿插值法求解函数值 算法名称用拉格朗日和牛顿插值法求函数值 学科专业xxxxx 作者姓名xxxx 作者学号xxxxx 作者班级xxxxxx xxx大学 二〇一五年十二月

《数值分析》课程实验报告

得到的近似值为。 拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。且当增大插值阶数时容易出现龙格现象。 2.牛顿插值法 在命令窗口输入: x=[ ]; y=[ ]; xt=; [yt,N]=NewtInterp(x,y,xt) z=::2; yz=subs(N,'t',z); figure; plot(z,sqrt(z),'--r',z,yz,'-b') hold on plot(x,y,'marker','+') hold on plot(xt,yt,'marker','o') h=legend('$\sqrt{x}$','牛顿','$(x_k,y_k)$','$x=$'); set(h,'Interpreter','latex') xlabel('x') ylabel('y') 得到结果及图像如下: yt = N = - *t^4 + *t^3 - *t^2 + *t +

得到√的近似值为,插值函数为 N =- *t^4 + *t^3 - *t^2 + *t + , 其计算精度是相当高的。 Lagrange插值法和Newton插值法解决实际问题中关于只提供复杂的离散数据的函数求值问题,通过将所考察的函数简单化,构造关于离散数据实际函数f(x)的近似函数P(x),从而可以计算未知点出的函数值,是插值法的基本思路。 实际上Lagrange插值法和Newton插值法是同一种方法的两种变形,其构造拟合函数的思路是相同的,而实验中两个实际问题用两种算法计算出结果是相同的。

牛顿迭代法的实验报告

牛顿迭代法实验报告 1.功能 本程序采用牛顿法,求实系数高次代数方程 f(x)=a0x n+a1x n-1+…+a n-1x+a n=0(a n≠0)(1) 的在初始值x0附近的一个根。 2.使用说明 (1)函数语句 Y=NEWTON_1(A,N,X0,NN,EPS1) 调用M文件newton_1.m。 (2)参数说明 A n+1元素的一维实数组,输入参数,按升幂存放方程系数。 N整变量,输入参数,方程阶数。 X0 实变量,输入参数,初始迭代值。 NN整变量,输入参数,允许的最大迭代次数。 EPS1实变量,输入参数,控制根的精度。 3.方法简介 解非线性议程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x)=f(x0)+(x-x0)fˊ(x0)+(x-x0)2 !2) (0x f'' +… 取其线性部分,作为非线性方程f(x)=0的近似方程,则有 f(x0)+fˊ(x0)(x-x0)=0 设fˊ(x0)≠0则其解为 x1=x0-f(x0)/fˊ(x0) 再把f(x)在x1附近展开成泰勒级数,也取其线性部分作f(x)=0的近似方程。若f(x1)≠0,则得 x2=x1-f(x1)/fˊ(x1) 这样,得到牛顿法的一个迭代序列 x n+1=x n-f(x n)/fˊ(x n) 4.newton_1.m程序

function y=newton_1(a,n,x0,nn,eps1) x(1)=x0; b=1; i=1; while(abs(b)>eps1*x(i)) i=i+1; x(i)=x(i-1)-n_f(a,n,x(i-1))/n_df(a,n,x(i-1)); b=x(i)-x(i-1); if(i>nn)error(ˊnn is fullˊ); return; end end y=x(i); i 5.程序附注 (1)程序中调用n_f.m和n_df.m文件。n_f.m是待求根的实数代数方程的函数,n_df.m 是方程一阶导数的函数。由使用者自己编写。 (2)牛顿迭代法的收敛速度:如果f(x)在零点附近存在连续的二阶微商,ξ是f(x)的一个重零点,且初始值x0充分接近于ξ,那么牛顿迭代是收敛的,其收敛速度是二阶的,即平方收敛速度。 6.例题 用牛顿法求下面方程的根 f(x)=x3+2x2+10x-20 7.运行结果 >>a=[1,2,10,-20] ; >>n=3; >>x0=1; >>nn=1000; >>eps1=1e-8; >>y=newton_1(a,n,x0,nn,eps1)

牛顿插值法实验报告

牛顿插值法 一、实验目的:学会牛顿插值法,并应用算法于实际问题。 二、实验内容:给定函数 x x f =)(,已知: 414214.1)0.2(=f 449138.1)1.2(=f 483240.1)2.2(=f 516575.1)3.2(=f 549193.1)4.2(=f 三、实验要求: (1)用牛顿插值法求4次Newton 插值多项式在2.15处的值,以此作为函数的近似值)15.2(15.2N ≈。在MATLAB 中用内部函数ezplot 绘制出4次Newton 插值多项式的函数图形。 (2)在MATLAB 中用内部函数ezplot 可直接绘制出以上函数的图形,并与作出的4次Newton 插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor 编辑器,输入Newton 插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C);

%%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到: y =1.4663 wucha =1.0e-06 * -0.4376 -0.3254 -0.3026 0.0888 0.3385 P = - (4803839603609061*x^4)/2305843009213693952 + (7806239355294329*x^3)/288230376151711744 - (176292469178709*x^2)/1125899906842624 + (1624739243112817*x)/2251799813685248 + 1865116246031207/4503599627370496 (2)在MATLAB命令窗口输入: >> v=[0,6,-1,3]; >> ezplot(P),axis(v),grid >> hold on >> x=0:0.1:6; >> yt=sqrt(x);plot(x,yt,':') >> legend('插值效果','原函数') >> xlabel('X') >> ylabel('Y') >>title('Newton插值与原函数比较') 回车即可得到图像1-1。

相关主题
文本预览
相关文档 最新文档