第7章自然伽马测井
- 格式:ppt
- 大小:1.99 MB
- 文档页数:39
⾃然电位、⾃然伽马测井基本原理⾃然电位测井⽅法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。
这个电位是⾃然产⽣的,故称为⾃然电位。
使⽤图1所⽰电路,沿井提升M电极,地⾯仪器即可同时测出⼀条⾃然电位变化曲线。
⾃然电位曲线变化与岩性有密切关系,能以明显的异常显⽰出渗透性地层,这对于确定砂岩储集层具有重要意义。
⾃然电位测井⽅法简单,实⽤价值⾼,是划分岩性和研究储集层性质的基本⽅法之⼀。
图 1⾃然电位测井原理⼀、井内⾃然电位产⽣的原因井内⾃然电位产⽣的原因是复杂的,但对于油井,主要有以下两个原因:地层⽔的含盐量(矿化度)与泥浆的含盐量不同,地层压⼒和泥浆柱压⼒不同,在井壁附近产⽣了⾃然电动势,形成了⾃然电场。
1.扩散电动势(Ed)的产⽣如图2所⽰,在⼀个玻璃容器中,⽤⼀个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放⼈⼀只电极,此时表头指针发⽣偏转。
此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的⾃然趋势,即⾼浓度溶液中的离⼦受渗透压的作⽤要穿过渗透性隔膜迁移到低浓度溶液中去,这⼀现象称为离⼦扩散。
在扩散过程中,由于Cl-的迁移率⼤于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,⾼浓度溶图2扩散电动势产⽣⽰意图液中Na+相对增多,形成正电荷聚集。
这就在两种不同浓度的溶液间产⽣了电动势,所以可测到电位差。
离⼦在继续扩散,⾼浓度溶液中的Cl-,由于受⾼浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;⽽⾼浓度溶液中的Na+,由于受⾼浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。
当接触⾯附近的电荷聚集使正、负离⼦的迁移速度相等时,电荷聚集就停⽌了,但离⼦还在继续扩散,溶液达到了动平衡,此时电动势将保持⼀定值:这个电动势是由离⼦扩散作⽤产⽣的,故称为扩散电位(Ed),也称扩散电动势,可⽤下式表⽰:EE dd=KK dd lg cc1cc2式中EE dd为扩散电位系数,mv;cc1,cc2为溶液盐类的浓度,g/L。
自然电位测井方法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。
这个电位是自然产生的,故称为自然电位。
使用图1所示电路,沿井提升M电极,地面仪器即可同时测出一条自然电位变化曲线。
自然电位曲线变化与岩性有密切关系,能以明显的异常显示出渗透性地层,这对于确定砂岩储集层具有重要意义。
自然电位测井方法简单,实用价值高,是划分岩性和研究储集层性质的基本方法之一。
图 1自然电位测井原理一、井内自然电位产生的原因井内自然电位产生的原因是复杂的,但对于油井,主要有以下两个原因:地层水的含盐量(矿化度)与泥浆的含盐量不同,地层压力和泥浆柱压力不同,在井壁附近产生了自然电动势,形成了自然电场。
1.扩散电动势(Ed)的产生如图2所示,在一个玻璃容器中,用一个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放人一只电极,此时表头指针发生偏转。
此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿过渗透性隔膜迁移到低浓度溶液中去,这一现象称为离子扩散。
在扩散过程中,由于Cl-的迁移率大于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,高浓度溶图2扩散电动势产生示意图液中Na+相对增多,形成正电荷聚集。
这就在两种不同浓度的溶液间产生了电动势,所以可测到电位差。
离子在继续扩散,高浓度溶液中的Cl-,由于受高浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;而高浓度溶液中的Na+,由于受高浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。
当接触面附近的电荷聚集使正、负离子的迁移速度相等时,电荷聚集就停止了,但离子还在继续扩散,溶液达到了动平衡,此时电动势将保持一定值:这个电动势是由离子扩散作用产生的,故称为扩散电位(Ed),也称扩散电动势,可用下式表示:EE dd=KK dd lg cc1cc2式中EE dd为扩散电位系数,mv;cc1,cc2为溶液盐类的浓度,g/L。
自然伽马测井名词解释
自然伽马测井是一种采用伽马射线来测量地层岩石物性的测井
方法。
在这个过程中,使用伽马探测器来测量地下岩石内的自然伽马辐射,并将其转换成对应的计数率。
这些计数率可以帮助地质学家确定地层的岩性、厚度和密度等信息。
以下是自然伽马测井中一些常见的名词及其解释:
1. 伽马射线(Gamma Ray):一种高能电磁波,由放射性核衰变产生。
在自然伽马测井中,伽马射线可以用来测量地层的放射性特性,从而确定地层类型和分界面。
2. 自然伽马辐射(Natural Gamma Radiation):指来自地下岩石的自然放射性元素(如铀、钍、钾等)所发出的伽马射线。
自然伽马测井利用这种辐射来识别地层特征。
3. 计数率(Count Rate):指测量仪器在一定时间内记录到的伽马射线计数数目。
计数率越高,表示所测地层中放射性物质的含量也越高。
4. 电阻率(Resistivity):指材料对电流通过的阻力。
自然伽马测井中,电阻率可以用来确定地层的导电特性。
通过与伽马计数率结合使用,可以帮助地质学家确定地层的矿物组成和岩性。
5. 伽马探测器(Gamma Ray Detector):一种专门用于检测伽马射线的探测器。
常见的探测器包括NaI(Tl)闪烁体探测器、BGO晶体探测器等,这些探测器可以测量伽马射线的能量和计数率,并将其转换成电信号输出。
总的来说,自然伽马测井是一种重要的地球物理勘探方法,广泛应用于油气勘探、地质调查和环境监测等领域。
了解自然伽马测井中的相关名词及其解释,有助于深入理解这一技术,并更好地应用于实际工作中。
自然伽马测井原理
自然伽马测井(Natural Gamma Ray Logging)是一种用于地质勘探和地层解释的测井方法。
其原理是通过测量地层中存在的天然伽马射线强度来获取地层的放射性元素含量,进而推断地层的成分和性质。
伽马射线是一种能够穿透物质的高能电磁辐射,常常与放射性同位素的衰变过程相关。
地层中的放射性元素如钾、铀和钍会以不同的比例存在,它们的核衰变会释放出伽马射线。
这些伽马射线的能量和强度与地层中的放射性元素含量有关。
在自然伽马测井中,测井仪器将伽马射线传感器降入井中,通过探测上下井段的伽马射线强度差异来识别地层。
伽马射线强度通常以计数率 (counts per second,cps) 的形式进行测量。
通
过观察伽马射线计数率的变化,可以确定地层中放射性元素的含量及其分布。
自然伽马测井可以提供许多地层信息。
例如,钾元素主要存在于黏土矿物中,可用于判断地层的砂岩和页岩含量。
铀和钍元素主要存在于砂岩中,可以用于识别砂岩体。
此外,自然伽马测井还可用于确定地层的厚度和边界、识别化石层、建立地质模型等。
需要注意的是,自然伽马测井的应用需要考虑伽马射线的穿透能力和侵入深度等因素。
不同元素对伽马射线的敏感度也不同,因此对于复杂地层,可能需要结合其他测井方法进行综合解释。
总之,自然伽马测井是一种重要的地质勘探工具,通过测量地层中的伽马射线强度,可以获取地层的放射性元素含量和地质信息,为勘探工作提供有价值的数据支持。
自然伽马测井原理自然伽马测井是一种常用的地球物理勘探技术,它通过测量地层中的自然伽马辐射来获取地层的物性参数,对地质构造和油气藏进行识别和评价。
自然伽马测井原理是基于地层中放射性元素的存在,这些元素会发出自然伽马辐射,通过测量这种辐射的强度和能量分布,可以了解地层的岩性、厚度、孔隙度等信息,为油气勘探和开发提供重要的地质信息。
自然伽马辐射是地球物理测井中常用的一种测井方法,它利用地层中含有的放射性元素(如钾、钍、铀等)所产生的自然伽马辐射进行测量。
这些放射性元素在地层中的含量和分布会影响自然伽马辐射的强度和能谱特征,因此可以通过测量自然伽马辐射来推断地层的性质。
自然伽马测井常用的测量工具是自然伽马测井仪,它能够实时测量地层中的自然伽马辐射,并将数据传输到地面进行分析和解释。
自然伽马测井原理的核心是利用地层中放射性元素的存在来获取地层的物性参数,通过测量自然伽马辐射的强度和能谱特征,可以获取地层的厚度、密度、孔隙度等信息。
在实际应用中,自然伽马测井可以用于识别地层的岩性,划分地层的界面,评价地层的孔隙度和渗透率,识别油气层和水层等。
因此,自然伽马测井在油气勘探和开发中具有重要的应用价值。
自然伽马测井原理的实现依赖于自然伽马辐射的测量和解释。
自然伽马辐射的测量需要使用自然伽马测井仪,它能够实时测量地层中的自然伽马辐射,并将数据传输到地面进行分析。
自然伽马辐射的解释则需要借助地质、物理和数学等知识,通过对自然伽马辐射数据的处理和解释,可以获取地层的物性参数,并进行地质分析和油气勘探评价。
总的来说,自然伽马测井原理是基于地层中放射性元素的存在,利用自然伽马辐射来获取地层的物性参数,为油气勘探和开发提供重要的地质信息。
通过自然伽马测井,可以实现对地层岩性、厚度、孔隙度等参数的快速获取,为油气勘探和开发提供重要的技术支持。
自然伽马测井原理的应用将进一步推动油气勘探和开发技术的进步,为油气田的发现和开发提供重要的技术手段和支持。
思考题第一课自然电位测井SP?*1.分析自然电位的成因,写出扩散电动势、扩散吸附电动势、总电动势表达式。
答:自然电场的产生(原理)扩散电动势、扩散吸附电动势、过滤电动势1.扩散电动势产生原因:泥浆和地层水矿化度不同——电化学过程——电动势——自然电场产生过程:溶液浓度不同——离子扩散——离子迁移率不同——两边分别富集正、负离子 (延缓离子迁移速度)——产生电动势(直到正负离子达到动态平衡为止 ) 公式:2.扩散吸附电动势产生原因:泥浆和地层水矿化度不同——产生阳离子交换——产生电动势——自然电场产生过程:溶液浓度不同——带电离子扩散——阳离子交换——孔隙内溶液阳离子增多——浓度小的一方富集正电荷,浓度大的一方富集负电荷产生电动势(扩散吸附)公式:3.过滤电动势产生原因:泥浆柱与地层之间的压差造成离子的扩散。
一般在近平衡钻井情况下不考虑。
总电动势公式:*2.不同Cw、Cmf情况下自然电位测井曲线有哪些特征?1.当Cw>Cmf:(Rmf>Rw,E<0)负异常(淡水泥浆)2.当Cw<Cmf:(Rmf<Rw,E>0)正异常(咸水泥浆)3.当Cw=Cmf:(Rmf=Rw, E=0)无异常,自然电位测井失效*4.自然电位测井曲线在油田勘探开发中应用于哪些方面?1.划分渗透层(半幅点法,砂泥岩剖面较常用)2.估算泥质含量3.地层对比依据: 1)相同沉积环境下沉积的地层岩性特征相似; 2)同一段地层有相同或相似的沉积韵律组合; 3)由1)和2)决定同层、同沉积(相)的SP曲线特征一致。
4.确定、划分沉积相5.确定油水层及油水界面(△USP油小于△USP水)6.识别水淹层(依据 Cw <或> Cwz) 渗透层水淹后SP基线偏移,偏移量与Cw/Cwz(注入)有关7.确定地层水电阻率Rw3.影响自然电位测井的因素有哪些?1.Cw/Cmf影响(地层水矿化度/泥浆滤液矿化度)当Cw>Cmf:(Rmf>Rw,E<0)负异常(淡水泥浆).当Cw<Cmf:(Rmf<Rw,E>0)正异常(咸水泥浆)当Cw=Cmf:(Rmf=Rw, E=0)无异常,自然电位测井失效2 .岩性影响砂泥岩剖面泥岩(纯泥岩)——基线纯砂岩——SSP(h>4d)当储层Vsh 增大,自然电位幅度△USP(变小)<SSP 靠近泥岩基线3..温度影响温度对离子运动,离子扩散速率有影响不同深度地层温度不同4.地层水、泥浆滤液中含盐性质影响(溶液中离子类型不同,迁移速率不同,直接影响Kd、Kda)5.地层电阻率影响(当地层电阻率较大时,其影响不容忽视。
自然伽马测井原理自然伽马测井是一种测量地层中放射性元素含量的方法,通过测量地层中的自然伽马辐射强度,可以推断出地层的物性参数,如密度、孔隙度、渗透率等。
本文将介绍自然伽马测井的原理、仪器、应用及优缺点。
一、原理自然伽马辐射是指地球表面及地下物质中,由于天然放射性元素(如钾、铀、钍)的存在而产生的辐射。
这种辐射可以穿透物质,被探测器捕获后转化为电信号,再通过信号处理系统转化为伽马射线强度。
地层中的自然伽马辐射强度与地层中放射性元素的含量有关,因此可以通过测量自然伽马辐射强度来推断地层中放射性元素的含量,从而推断出地层的物性参数。
二、仪器自然伽马测井仪器主要由辐射源、探测器、信号处理系统和数据采集系统等部分组成。
辐射源通常是钚-铍源或铯-137源,探测器通常是锂离子探测器或硅探测器,信号处理系统通常是多道分析器或微机处理器,数据采集系统通常是电缆或无线传输系统。
三、应用自然伽马测井广泛应用于石油、天然气、地热、水文等领域,主要用于以下几个方面:1.测量地层中放射性元素的含量,推断地层的物性参数,如密度、孔隙度、渗透率等。
2.判断地层中矿物成分的类型和含量,如石英、长石、云母、方解石等。
3.判断地层中的岩性类型,如砂岩、泥岩、灰岩、页岩等。
4.判断地层中的构造类型,如断层、褶皱、岩浆侵入等。
5.判断地下水的分布和含量,预测水文地质条件。
四、优缺点自然伽马测井具有以下优点:1.测量范围广,可以测量地层中放射性元素的含量,推断地层的物性参数,如密度、孔隙度、渗透率等。
2.测量速度快,可以在钻井过程中进行实时测量,提高钻井效率。
3.测量精度高,可以达到0.1%的测量精度。
4.测量成本低,仪器价格相对较低,使用成本也较低。
但自然伽马测井也存在以下缺点:1.受地层中其他元素的影响,如矿物质、水等,容易受到干扰。
2.无法直接测量地层中的水含量和流速,需要通过其他方法进行补充。
3.无法测量地层中的化学元素含量,如碳、氢、氧等。
自然伽马测井原理
自然伽马测井是一种常用的测井方法,它利用地层中天然放射性元素的辐射来获取地层信息。
自然伽马测井原理是基于地层中放射性元素的特性,通过测量地层中放射性元素的辐射强度来推断地层的性质。
本文将介绍自然伽马测井的原理及其在油田勘探中的应用。
地层中的放射性元素主要包括钍、钾和铀等,它们的放射性衰变会产生伽马射线。
当伽马射线穿过地层时,会与地层中的原子核发生相互作用,导致伽马射线的能量发生变化。
通过测量伽马射线的能量变化,可以推断地层中的放射性元素含量,从而得知地层的性质。
自然伽马测井的原理是基于伽马射线在地层中的衰减规律。
地层中的不同岩石对伽马射线的吸收能力不同,因此伽马射线在地层中的传播会受到地层岩石成分的影响。
通过测量伽马射线的衰减情况,可以推断地层的厚度、密度和岩性。
自然伽马测井在油田勘探中有着重要的应用价值。
首先,通过自然伽马测井可以获取地层的放射性元素含量,从而判断地层的含
油气性。
含油气层通常具有较高的放射性元素含量,因此可以通过自然伽马测井来识别潜在的油气层。
其次,自然伽马测井可以提供地层的密度和岩性信息,有助于评价地层的储集性能和渗透性。
最后,自然伽马测井还可以用于识别地层中的放射性矿物,对于矿产勘探具有重要意义。
总之,自然伽马测井原理是基于地层中的放射性元素的辐射特性,通过测量伽马射线的能量变化和衰减规律来推断地层的性质。
在油田勘探中,自然伽马测井具有重要的应用价值,可以帮助地质工作者更好地理解地下地层的情况,为油气勘探和开发提供重要的地质信息。