模块化信号调理电路的设计
- 格式:doc
- 大小:1.54 MB
- 文档页数:11
信号调理电路工作原理信号调理电路工作原理信号调理电路是一种用于优化和改善信号质量的电路,它在电子设备中起到至关重要的作用。
在本文中,我们将深入探讨信号调理电路的工作原理。
什么是信号调理电路?信号调理电路是一种用于处理传感器信号、放大信号、滤波信号等的电路。
它可以帮助我们从原始信号中提取所需的信息,并减少噪音和失真。
信号调理电路的组成信号调理电路由多个组件组成,包括:1.放大器:用于放大输入信号的电压或电流。
放大器可以增加信号的幅度,提高信噪比。
2.滤波器:用于去除信号中的杂散噪声和不必要的频率成分。
滤波器根据信号频率特性,通过滤波器形成期望的输出信号。
3.转换器:用于将输入信号从一种形式转换为另一种形式,例如模数转换器将模拟信号转换为数字信号,或者数字模数转换器将数字信号转换为模拟信号。
4.压缩器:用于压缩信号的动态范围,以适应特定应用的需求。
压缩器能够对信号进行动态范围的调整,使得信号在不同场景下得到最佳的表现。
5.校准电路:用于调整和校准传感器输出的电路。
校准电路能够对传感器输出的信号进行校准,以保证准确性和可靠性。
信号调理电路的工作原理信号调理电路的工作原理主要包括以下几个步骤:1.采集信号:首先,信号调理电路会采集传感器或其他信号源发出的原始信号。
这个原始信号可能被噪音、失真等干扰所影响。
2.放大信号:接下来,信号调理电路会使用放大器放大输入信号的幅度。
这样做可以增加信号的强度,提高信噪比,并将信号范围调整到合适的水平。
3.滤波信号:信号调理电路还会使用滤波器来滤除干扰信号和不必要的频率成分。
这可以帮助提取我们所需的特定信号,并减少对后续处理环节的影响。
4.转换信号:根据应用需求,信号调理电路可能会将信号从一种形式转换为另一种形式。
例如,模数转换器可以将模拟信号转换为数字信号,以便进行后续数字处理。
5.压缩信号:如果信号的动态范围太大,信号调理电路可能会使用压缩器来压缩信号的幅度范围。
这样可以确保信号在不同场景下得到适当的展示和处理。
调制解调电路设计
调制解调电路是一种用于传输和接收信号的电子设备。
它的设计和实现旨在将信息从一个地方传输到另一个地方,同时确保信息的准确性和完整性。
在调制解调电路中,调制是将原始信号转换为适合传输的信号形式的过程。
解调则是将传输过来的信号恢复为原始信号的过程。
这两个过程是电信系统中非常重要的环节。
在调制过程中,我们通常使用载波信号来传输原始信号。
载波信号的频率通常比原始信号高得多,这样可以更好地传输信号。
调制的目的是将原始信号的信息嵌入到载波信号中,以便在传输过程中保持信号的完整性。
调制的方式有很多种,常见的有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
每种调制方式都有其特定的应用场景和优势。
选择合适的调制方式取决于信号的特性以及传输的要求。
解调的过程与调制相反,它的目的是从传输过来的信号中恢复出原始信号。
解调电路的设计要根据实际应用场景来确定,不同的解调方式有不同的电路设计要求。
在调制解调电路的设计中,需要考虑的因素有很多。
首先是信号的带宽和频率范围,这决定了选择合适的调制方式。
其次是电路的稳定性和可靠性,这对于长时间的传输非常重要。
还需要考虑功耗和
成本等因素,以便设计出满足实际需求的电路。
调制解调电路是现代通信系统中不可或缺的一部分。
它的设计和实现需要考虑多个因素,以保证信号的准确传输和恢复。
通过合理的电路设计和优化,可以实现高质量的信号传输和接收,为人们的通信提供更好的体验。
压力传感器信号调理电路设计压力传感器是工业自动化中常见的一种传感器,通过其可以测量物体表面的压力及其变化。
在实际工程应用中,传感器采集到的信号需要经过一定的处理和调理,以提高测量精度并减少误差。
本文将介绍一种基于运算放大器的压力传感器信号调理电路的设计方法。
1. 信号调理电路基础信号调理电路通常由四个部分组成:输入级、滤波电路、增益电路和输出级。
其中输入级接收传感器的模拟信号,滤波电路用于去除高频噪声,增益电路可以将信号放大至合适的范围,输出级最终将信号送入控制系统进行处理。
2. 压力传感器信号特性压力传感器输出的信号通常为微小的电压信号,其幅值与被测物体的压力成正比。
由于压力传感器常常需要在恶劣的环境中工作,因此其输出信号往往存在一定的噪声和漂移。
为了减小这些误差,我们需要将信号放大并进行滤波处理。
3. 压力传感器信号调理电路设计流程3.1 输入级设计输入级通常由一个运算放大器和一个 RC 滤波器组成,其中RC 滤波器用于去除高频噪声。
假设传感器输出电压为 V,那么输入级的运算放大器输入电压应设计为 V/2,通过调整 R 和C 的值可以得到合适的截止频率,同时保证输入电阻尽量大,以避免对传感器输出的干扰。
3.2 滤波电路设计滤波电路可以采用低通或带通滤波器,以去除输入信号中的高频干扰。
常见的滤波器类型有二阶 Butterworth 滤波器、Sallen-Key 滤波器以及多极 RC 滤波器。
选择滤波器类型时需要考虑频率响应、阶数、带宽和幅值响应等因素。
3.3 增益电路设计增益电路的作用是将输入信号放大至合适的范围,以方便后续数字化处理或控制。
增益电路可以采用单级或多级放大器,也可以采用可调增益放大器,以便根据实际应用场景灵活调整增益大小。
3.4 输出级设计输出级通常由一个运算放大器和一个反馈电阻网络组成,反馈电阻网络可以通过调整电阻比例实现信号输出的零漂和增益校准。
同时需要考虑输出电压的范围、输出阻抗和功率等因素,以确保输出信号能够被控制系统准确接收。
电路信号调理与处理滤波放大和修正信号的方法电路信号调理与处理:滤波、放大和修正信号的方法近年来,在电子技术的迅猛发展下,电路信号调理与处理的重要性日益凸显。
为了保证电路的稳定性和可靠性,以及提高信号的质量和准确度,人们经常需要对电路信号进行滤波、放大和修正等操作。
本文将介绍几种常见的方法,以期帮助读者更好地理解和应用电路信号调理与处理技术。
一、滤波滤波是电路信号调理与处理中最常见的一种操作。
滤波的目的是去除信号中的噪声和干扰部分,使得输出信号更加纯净和稳定。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
1. 低通滤波器:低通滤波器能够通过低频信号而抑制高频信号。
它被广泛应用于音频和通信系统中,例如音响系统中的低音扬声器和无线电收音机中的调谐器。
2. 高通滤波器:高通滤波器与低通滤波器相反,能够通过高频信号而抑制低频信号。
在视频监控系统和网络通信中,高通滤波器常用于去除低频噪声和干扰。
3. 带通滤波器:带通滤波器能够通过一定范围内的频率信号,而抑制其他频率范围内的信号。
它常用于音频信号的处理和无线电调谐电路。
4. 带阻滤波器:带阻滤波器(也称为陷波器)能够抑制一定范围内的频率信号,而通过其他频率范围内的信号。
它通常用于抑制特定频率的干扰信号。
二、放大放大是指通过电路将输入信号的幅度增加到所需的输出幅度。
放大器常用于音频和视频系统、无线电系统和传感器等领域,以提高信号的强度和灵敏度。
放大器可以按照放大方式和放大器类型进行分类:1. 放大方式:放大器可以采用电压放大、电流放大和功率放大等方式放大信号。
其中,电压放大器最常见,通过调整放大器的电源电压和输入信号电阻,可以实现不同程度的电压放大。
2. 放大器类型:常见的放大器类型包括运算放大器、功率放大器和差分放大器等。
其中,运算放大器被广泛应用于模拟电路的设计中,功率放大器则用于功率放大和功率调节,差分放大器则常用于信号采集和处理中。
电子称重传感器及信号调理电路燕山大学课程设计说明书题目:精密四应变片称重传感器信号调理电路设计学院(系):电气工程学院年级专业: XX学号: XX学生姓名: XX指导教师: XX教师职称: XX燕山大学课程设计(论文)任务书院(系):基层教学单位:学号Xx学生姓名Xx专业(班级)Xx设计题目精密四应变片称重传感器信号调理电路设计设计技术参数设计要求工作量工作计划参考资料指导教师签字基层教学单位主任签字说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
月日燕山大学课程设计评审意见表指导教师评语:成绩:指导教师:年月日答辩小组评语:成绩:组长:年月日课程设计总成绩:答辩小组成员签字:年月日目录第1章摘要 (1)第2章引言 (2)第3章基本原理 (3)第4章参数设计及运算 (5)4.1 结构设计 (5)4.2 电容设计与计算 (8)4.3 其他参数的计算 (10)4.4 测量电路的设计 (12)第5章误差分析 (14)第6章结论 (16)心得体会……………………………………………… (17)参考文献 (18)第1章摘要在分析重力传感器信号特性的基础上,模块化地设计了称重传感器信号的调理电路并对其进行了仿真实验。
结果表明:电路能实时、准确地处理信号,且工作稳定,可靠,重复性好,抗干扰能力强,可实现精密测量的目的。
第2章引言随着现代数据采集系统的不断发展,对高精度信号调理技术的要求也越来越高。
由于传感器输出的信号往往存在温漂、信号比较小及非线性等问题,因此它的信号通常不能被控制元件直接接收,这样一来,信号调理电路就成为数据采集系统中不可缺少的一部分,并且其电路设计的优化程度直接关系到数据采集系统的精度和稳定性。
在称重传感器信号检测中,检测精度受到诸多因素的影响,其中电桥激励电压源的精度和稳定度是影响信号精确度的重要因素之一。
电桥输出与激励电压成正比,因此,激励电压出现任何漂移都将导致电桥输出出现相应的漂移。
高速数据采集系统信号调理电路的设计上海交通大学电子信息与电气工程学院(200030) 乔 巍 杜爱玲 陈 春 叶 生摘 要 文章针对基于微控制器和PC 的高速数据采集系统,在讨论了信号调理电路功能及必要性的基础上,给出了包括信号放大、衰减、隔离和滤波的设计方案,并对滤波电路的拓扑设计进行了研究。
此外,针对广泛存在的电力信号采集与分析,以电能质量为分析、研究对象,给出了基于Sallen 2Key 和状态变量拓扑的滤波方案。
对高速数据采集系统精度的提高和采集设备的保护具有实际意义。
关键词 信号调理 高速数据采集 Sallen 2Key 拓扑 状态变量拓扑 目前,基于微控制器及基于PC 和内插板卡的数据采集系统在很大领域内得到了应用[1]。
数据采集卡和微控制器前端的高速A/D 转换作为信号采集设备非常适合用来测量电压信号。
但是,许多传感器和变送器输出的信号必须经过调理之后,才能进入数据采集卡、高速A/D 转换器或设备,以实现有效精确的测量。
这种前端的预处理,一般就称为信号调理,包括信号放大衰减、滤波、电气隔离和多路技术。
图1为基于PC 和内插板卡的数据采集系统框图[2]。
图1 基于PC 和内插板卡的数据采集系统框图1 信号调理电路的组成1.1 放大衰减电路由于很多信号幅度比较小,所以需要通过放大器来提高测量的精度。
放大器通过匹配信号电平和A/D 转换器的测量范围,来达到提高测量分辨率的目的。
出于这个原因,现在许多数据采集卡都包括了板载放大器。
同样情况,当需要数字化的电压超过了允许输入范围时,衰减就不可缺少了。
1.2 隔离电路数据采集系统中不合适的接地是造成测量问题和数据采集卡损坏的最普遍原因。
对信号进行电气隔离可以防止这些问题的发生。
隔离破坏了接地环路,避免了高的共模电压,并且保护了价格不菲的数据采集设备。
通常的隔离方法有利用光耦、磁或者容性隔离器。
磁或容性隔离器将信号从电压形式调制成频率形式。
频率能够在转回成电压之前以非直接物理连接的方式通过变压器或者电容。
模拟量采集模块4通道 0-10v的电路原理一、概述1. 介绍模拟量采集模块的作用和应用场景模拟量采集模块是指通过电路和传感器将实际的模拟信号转换成数字信号,以便计算机或控制器进行采集和处理。
在工业自动化控制系统中,模拟量采集模块广泛应用于温度、压力、流量等参数的实时监测和反馈控制。
2. 模拟量采集模块的基本结构和特点模拟量采集模块通常由传感器、信号调理电路、A/D转换器和数据接口等部分组成。
其特点是能够实时高精度地采集和转换模拟信号,并通过数字接口将数据传输给上位机或控制器。
3. 本文要讨论的主题和目的本文将重点介绍模拟量采集模块4通道0-10v的电路原理,包括信号调理电路的设计原理和A/D转换原理,以帮助读者更好地理解和应用模拟量采集模块。
二、模拟量采集模块4通道0-10v的电路原理4. 信号调理电路的设计原理模拟量采集模块的信号调理电路是将传感器输出的模拟信号进行放大、滤波和隔离处理,以适应A/D转换器的输入范围,并提高信噪比和抗干扰能力。
对于4通道0-10v的模拟信号,信号调理电路需要对每个通道的信号进行单独处理,以保证采集的准确性和稳定性。
5. A/D转换原理A/D转换器是模拟量采集模块的核心部件,其作用是将模拟信号转换成相应的数字信号,并输出给上位机或控制器进行处理。
在4通道0-10v的电路中,A/D转换器需要具备较高的分辨率和采样率,以保证准确地采集和转换模拟信号。
6. 0-10v的电路原理设计在设计4通道0-10v的电路原理时,需要考虑信号调理电路和A/D转换器的匹配性和稳定性,以及整体电路的抗干扰能力和可靠性。
还需要注意功耗和成本的控制,以满足实际应用的需求。
7. 结论模拟量采集模块4通道0-10v的电路原理设计涉及到信号调理电路和A/D转换器的匹配和稳定性,需要综合考虑多种因素,以保证采集的准确性和稳定性。
还需要根据实际应用的需求进行功耗和成本的控制,以提高整体电路的性能和实用性。
研华信号调理电路信号调理是把来自前端的模拟信号变换为用于数据采集、控制过程、执行计算并显示读出和其他目的的数字信号。
通常前端原始的模拟信号不能直接转换为数字数据,这是因为它们一般都是相当小的电压、电流信号,必须对其进行信号调理。
调理就是放大、缓冲、滤波或定标模拟信号,使其适合于后级模/数转换器(ADC)的输入。
也就是利用内部的电路(如滤波器、转换器、放大器)来改变输入的信号类型并输出之。
因为工业信号有些是高压,过流,浪涌等,不能被系统正确识别,必须调整理清之。
然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。
一般的采集卡上都带有可编程的增益,但具体要不要作信号调理,要视待采信号的特点而定,若信号很小,则要经过放大将信号调理到采集卡能够识别的范围,若信号干扰较大,就要考虑采集之前作滤波了。
放大放大器提高输入信号电平以更好地匹配模拟-数字转换器(ADC)的范围,从而提高测量精度和灵敏度。
此外,使用放置在更接近信号源或转换器的外部信号调理装置,可以通过在信号被环境噪声影响之前提高信号电平来提高测量的信号-噪声比。
衰减衰减,即与放大相反的过程,在电压(即将被数字化的)超过数字化仪输入范围时是十分必要的。
这种形式的信号调理降低了输入信号的幅度,从而经调理的信号处于ADC范围之内。
衰减对于测量高电压是十分必要的。
隔离隔离的信号调理设备通过使用变压器、光或电容性的耦合技术,无需物理连接即可将信号从它的源传输至测量设备。
除了切断接地回路之外,隔离也阻隔了高电压浪涌以及较高的共模电压,从而既保护了操作人员也保护了昂贵的测量设备。
多路复用通过多路复用技术,一个测量系统可以不间断地将多路信号传输至一个单一的数字化仪,从而提供了一种节省成本的方式来极大地扩大系统通道数量。
多路复用对于任何高通道数的应用是十分必要的。
滤波滤波器在一定的频率范围内去处不希望的噪声。
几乎所有的数据采集应用都会受到一定程度的50Hz或60Hz的噪声(来自于电线或机械设备)。
如何使用电路实现信号调制信号调制是一种关键技术,用于在电路通信中传输和处理信息。
它将原始信号转换为适合传输的电信号,并通过解调器将其还原回原始信号。
在本篇文章中,我将介绍如何使用电路实现信号调制。
一、调制的基本原理信号调制的基本原理是将原始信号与载波信号相结合,通过改变载波信号的某些特性,来实现对原始信号的传输。
调制的主要目的是使得信号能够适应信道的特性,提高信号的传输效率和抗干扰能力。
二、调制的常见方法1. 幅度调制(AM):幅度调制是通过改变载波信号的幅度来传输信息。
具体来说,原始信号会改变载波信号的振幅,从而在调制信号中体现出来。
幅度调制常用于调制音频信号,例如调幅广播电台。
2. 频率调制(FM):频率调制是通过改变载波信号的频率来传输信息。
原始信号的波形决定了载波频率的变化情况。
频率调制常用于调制音频信号,例如调频广播电台和音频播放器。
3. 相位调制(PM):相位调制是通过改变载波信号的相位来传输信息。
原始信号的波形决定了载波相位的变化情况。
相位调制常用于数字通信和调制解调器。
三、电路实现信号调制的步骤1. 生成载波信号:首先需要生成一个稳定的载波信号。
这可以通过使用振荡器电路来实现。
振荡器电路会产生连续的正弦波信号,作为载波信号的基准。
2. 生成原始信号:接下来需要生成原始信号,也称为调制信号。
原始信号可以是音频信号、视频信号或其他类型的信号。
生成原始信号的电路通常是根据具体的信号源来设计的。
3. 进行调制:将原始信号与载波信号相结合,通过调制电路来实现信号的调制。
不同的调制方法会采用不同的调制电路。
例如,幅度调制可以使用电路将原始信号的振幅直接改变;频率调制可以使用电路改变载波信号的频率;相位调制可以使用电路改变载波信号的相位。
4. 过滤和放大:调制后的信号通常会经过滤波器进行滤波和放大。
滤波器可以去除不需要的频率成分,以及调整信号的带宽。
放大器可以增加信号的强度,以便更好地传输信号。
一种LVDT信号调理电路的设计作者:李阳程陶然来源:《电脑知识与技术》2019年第10期摘要:该文介绍了一种五线制LVDT信号调理电路的设计方案,其中包括正弦波激励电路、整流电路以及滤波电路。
通过对该电路方案进行功能测试,结果表明该设计方案具有较高的测试精度,并且在理论上可用于其他类型LVDT传感器信号的调理,实用性强。
关键词:LVDT传感器;整流电路;调理电路中图分类号:TP393 文献标识码:A文章编号:1009-3044(2019)10-0246-02開放科学(资源服务)标识码(OSID):1 概述线性可调差动变压器(Linear Variable Differential Transformer,LVDT)是一种常见类型的位移传感器,可将以机械方式耦合的物体的直线运动转换为对应的电气信号,其主要由铁芯、初级线圈和次级线圈等部件组成,在工业控制和航空发动机控制等领域得到了广泛应用[1],其特点是原理和结构简单、性能可靠、精度和灵敏度较高、具有较强的适用性等特点,线性可调差动变压器的输出信号为两个线圈的差动电压信号,能够实时地、高准确性地将机械位移信号转化成电信号。
LVDT传感器信号调理电路一般包括正弦波激励信号、LVDT传感器、全波整流电路以及滤波电路等。
本文介绍了一种五线制LVDT传感器信号调理电路的设计。
2 五线制LVDT传感器五线制LVDT 传感器是一种常用的LVDT传感器,其结构如图1所示,整个传感器主要由铁芯、初级线圈、次级线圈等组成,工作原理为通过次级线圈VA和VB的振幅来计算铁芯的位移。
当铁芯处于中间时,VA 和VB的感应电动势相等,此时输出电压为0。
当铁芯在线圈内部来回移动时,VA和VB的感应电动势不相同,铁芯位移的大小决定了VA和VB差值的大小,同时VA与VB振幅之间的差和铁芯位移大小具有线性关系,所以在实际应用中通过VA和VB感应电动势的振幅差值即可计算出铁芯的在传感器内部的位移变化值[2] [3]。
ASK调制与解调电路设计调制与解调电路是无线通信中的重要组成部分,用于将信息信号转换为适合传输的高频信号,并在接收端将高频信号还原为原始信息信号。
接下来将详细介绍调制与解调电路的设计。
一、调制电路设计:调制电路主要用于将低频信息信号调制到高频载波上进行传输,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
1.AM调制电路设计:AM调制主要包括信号放大、频率变换、调幅和输出滤波等环节。
具体设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,一般使用运放进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调幅:将频率变换后的高频信号经过调幅电路进行调幅,常用的调幅电路有晶体二极管调制器和集成电路调制器等。
(4)输出滤波:将调幅后的信号通过低通滤波器进行滤波,去除高频噪声和杂波。
2.FM调制电路设计:FM调制是将信息信号的频率变化转换为载波频率的变化,并将其用于传输。
FM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调频:将频率变换后的高频信号进行调频,一般采用三角调制电路进行调频。
(4)输出滤波:将调频后的信号经过低通滤波器进行滤波,去除高频噪声和杂波。
3.PM调制电路设计:PM调制是将信息信号的相位变化转换为载波相位的变化,并将其用于传输。
PM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调相:将频率变换后的高频信号进行调相,一般采用集成电路调相器进行调相。
矢量水听器信号调理电路设计I. 引言1.1 研究背景和意义1.2 国内外研究现状1.3 论文主要内容和框架II. 矢量水听器信号分析2.1 矢量水听器原理介绍2.2 矢量水听器信号特点分析2.3 矢量水听器信号分析方法III. 矢量水听器信号调理电路设计3.1 信号放大电路设计3.2 信号滤波电路设计3.3 信号采样电路设计IV. 电路实现与测试4.1 电路PCB设计和制作4.2 电路测试方法和结果分析4.3 矢量水听器信号调理电路性能评价V. 结论和展望5.1 研究结果分析和总结5.2 矢量水听器信号调理电路的应用前景5.3 进一步工作的展望VI. 参考文献附录:电路原理图、PCB设计图等第一章矢量水听器信号调理电路设计之引言1.1 研究背景和意义矢量水听器是一种新型的水听器技术,通过对多个水听器阵列的信号进行加权和叠加,可以获得比传统水听器更高的信噪比和方向性,具有广泛的海洋勘探、水下目标探测和定位等应用价值。
然而,矢量水听器信号存在多普勒频移、噪声和杂波等干扰,因此需要进行精确的信号调理,以提高信号质量和抑制噪声干扰。
因此,研究矢量水听器信号调理电路设计具有重要的理论意义和实际应用价值。
1.2 国内外研究现状目前,针对矢量水听器信号调理的研究主要集中在信号处理算法、信号处理器和数字信号处理等方面。
例如,基于小波变换和自适应滤波的信号处理算法可以有效地去除杂波和提高信号噪声比;基于DSP和FPGA的信号处理器可以实现实时处理和高效率的信号调理,成为研究的重点之一。
1.3 论文主要内容和框架本文将针对矢量水听器信号调理电路的设计进行研究,主要包括以下内容:1)矢量水听器信号分析,介绍矢量水听器原理和信号特点;2)矢量水听器信号调理电路设计,包括信号放大、滤波和采样等关键模块的设计;3)电路实现与测试,对设计的电路进行PCB制作和测试,并对电路的性能进行评价;4)结论和展望,总结研究成果并提出未来研究的方向和重点。
生物电位信号传感器的模块化信号调理电路设计 Winncy Y. DU, Winston JOSE, Jake ASKELAND 圣荷西州立大学机械与航空航天部,加州圣荷西市95116美国 Tel.: +1-408-924-3866, fax: +1-408-924-3995 E-mail: winncy.du@sjsu.edu 收稿:2010年8月5日 /接受:2010年9月14日/出版:2010年9月27日 Abstract: Biosignal conditioning (BC) is critical in biomedical instruments because it directly affects measurement accuracy, reliability, and repeatability. BC also presents a great challenge due to the small amplitude of biosignals and their ease of corruption with noise and other disturbances. This paper describes a modular BC system developed for biopotential sensors that can preserve useful information while removing unwanted noise and interference components. This BC circuit includes an instrumentation amplifier, an active 1st-order high-pass filter with Sallen-Key configuration, a 5th order low-pass Bessel filter, and a 2nd -order Twin-T notch filter. The order of these filters and the associated components in each filter can be easily changed to adapt to different biosignals (modular feature). Data acquisition and sampling were performed using a USB6009 module with a built-in A/D converter. Testing of a real electrocardiogram on the designed signal conditioning circuit demonstrated comparable outputs to commercial devices. Copyright © 2010 IFSA. Keywords: Biosignal conditioning, Modular circuit, ECG signal 摘要:生物信号处理(BC)在生物医学仪器中是非常关键的,因为它直接影响到测量的准确度、可靠性和再现性。由于生物信号的小振幅和容易受到噪声以及其他干扰的特点,对BC也提出了重大挑战。本文描述了一种模块化的生物信号传感器处理电路系统,它是专为生物信号传感器设计的在滤除不必要噪声和干扰成份的同时又能保护其中的有用部分。这个BC电路包括一个仪表放大电路,一个含有Sallen-Key结构的一阶有源高通滤波器,一个五阶低通贝塞尔滤波器,一个二阶双T陷波器。这些滤波器和每个滤波器的相关组件可以很容易改变以适应不同的生理信号(模块化功能)。数据采集和取样是用的带内置A/D转换器的USB6009模块。在所设计的信号调理电路上进行真正的输出真实心电图测试表明其可比商业设备。版权所有© 2010 IFSA。 关键词:生物信号调理,模块化电路,心电图信号
1、简介 生物信号调理(BC)在生物医学仪器和生物传感器中发挥了关键性作用。一个设计很好的的BC电路可以显著提高测量的精度,可靠性和可再现性。然而,BC也面临着一个巨大的挑战,因为:(1)生物信号本质上就是很微弱的(0.001mV-100mV带有1mV的典型值。见图1);(2)他们很容易受到噪声和其他干扰的破坏,例如电源线的干扰,脉冲噪声,静电电位,杂散电容,以及附近的电子设备。(3)生物信号产品可以通过物体移动和肌肉张力获得[2]。图1显示了常见生物电信号的幅度和频率范围[3]。请注意,心电图(ECG)信号是位于生物信号的中间范围,幅度为0.1mV-10mV的范围,频率为0.01Hz-250Hz。因此,心电图信号作为生物信号的典型代表被选作模块BC电路实验和实现的工作模型。 图1常见生物信号的幅度和频率范围[3] [4-[13]的文献报道了关于心电图信号研究的几项工作。Tenedero等 [4]开发了一个带宽为0.05 Hz – 40Hz的心电图电路。其中用到了一个AD620的仪表放大器(IA),由于其低噪音,低输入偏置电流,低失调电压,低功耗和100分贝的高共模抑制比(CMRR)。在仪表放大器(IA)与数据采集单元之间有三个滤波电路:一个隔离放大器(与60Hz的电源线分离,同时保护了病人不会心源性休克),一个截止频率为0.05Hz的高通滤波器和一个截止频率接近100Hz的低通滤波器。心电图信号的ADC(模拟到数字转换)采样速率为500赫兹。富尔福德琼斯等人设计了一种便携式,低功耗心电图系统[5]。一种嵌入式芯片运放(运算放大器)被用到,由于它的低噪声和低功耗。这种运放的CMRR为94分贝。高通滤波反馈可以矫正任何直流时域的变化。其ADC的采样速率为120赫兹。马特维延科[6]使用CY8C27443作为微控制器进行心电信号的采集和处理。控制器嵌入运放的CMRR为60 dB。据笔者,这个低共模抑制比可以接受是由于一个为了减少射频干扰(RFI)而将差分低通滤波器放在IA之前的独特设计,因为RFI在已经经过IA整流的心电图信号中产生的错误将不能被滤除。一个截止频率为2 kHz的高通滤波器放在IA的输出上。缓冲放大器和反相放大器也被用来消除了RFI干扰。 ADC的采样速率为240赫兹。
ECG调理电路经过了德州仪器(TI)[7]和模拟器件公司(AD)[8]两大工业领导者的审查。TI的电路特点突出,一个INA321 IA具备几方面独特的特点:掉电模式,所提供的电流小于1mA时关闭电路(为了节能)。微控制器嵌入式运放,一个反馈回路以维持一个恒定的直流水平。512Hz的采样频率。进一步实施数字滤波以去除电源线噪声并提供了6Hz-30Hz的通频带。在AD的设计,心电图电路采用AD的AduC842(一综合―片上系统‖)进行放大,数字滤波和A / D转换。
2.获得一个ECG信号 心电图(ECG)是一个心脏活动时产生的小型电波,通常是由遍布在全身特定点的电极记录。三根肢体引线通常用于构建一个艾因特霍芬的三角形(见图。2)[15]。一个心电图波形是通过布置在 全身的引线获得,这些引线点布置特点是与心脏等电力间距。这样可以最大化引线之间的电位差[16].。 图2. 艾因特霍芬的三角形和肢体引线布置结构(源自[15]) 三根引线安装方式如下: 导线I:正电极在左臂上(L),负电极在右臂上(R); 导线II:正电极在左腿/脚上(F),负电极在右臂上(R); 导线III: 正电极在左腿/脚(F),负电极左臂上(L)。 VI, VII,和VIII分别表示导线I,II和III的电压。L,R和F分别表示L.R和F点的电压。心脏向量的大小| P |和方向可表示为:[16]:
22III|P|=2V+V/3IIIVV
(1)
22IIII|P|=2V+V/3IIIIVV
(2)
1tan((2)/(3))IIIIVVV (3)
1tan(()/(3))IIIIIIVVV (4)
带宽对于心电信号的记录是非常重要的,美国心脏协会(AHA)建议为12至16岁儿童最小带宽150 Hz,成人最小带宽125 Hz [17]。 用于记录心电信号的电极使用的是银-氯化银(Ag-AgCl)。它有以下重要特点: (1)它是非极化的,这意味着在电极的交界处电流可以自由的流过。没有电子像一极化电极积聚在交界处;(2)产生的噪声比较低―(<10μV的)。Ag – AgCl电极是有一层氯化银附着在一个银盘上。氯离子在人体中的移动(在电解液)。在氯化银层,这些氯离子在银盘上被转换为电子流,而这些电子通过连接线传送出去。这银氯化结构使直流偏置降低到了一个尽可能低的值。导电胶是一个用来减少双重电荷层扰动。 3.信号调理电路的设计与实现 3.1.BC电路的的整体结构 从Ag-AgCl电极获得的典型心电信号幅值为1mV但是它很容易受到噪声的干扰,噪声的主要来源包括呼吸,运动伪影,肌肉收缩,电极接触噪声,电源线干扰,射频干扰和电磁干扰(EMI)。在某些情况下,噪音可以完全覆盖心电图波形,使放大后的信号没用。为了有效地消除不必要的噪音和维护心电图信号的有用成分,下面的生物信号调理计划应运而生: 1.仪表放大器来提高原始心电信号的信号电平; 2.使用高通滤波器来消除电极之间的直流偏置信号; 3.使用低通滤波器消除高频噪声成分; 4.使用陷波器来消除电源线干扰; 5.将滤波后的模拟信号转化为数字信号供电脑显示和/或者以后的数字信号处理和分析。
为了确保BC电路设计可以适应其他不同幅度和频率的生物信号,模块化设计使得其很容易调换,修改或插入开发出来电子器件。BC电路的框图如图3所示。 以下各节将讨论组件功能和特性。
图3.心电调理信号电路的总体框图结构 3.2.AD8220仪表放大器 一个ADI公司的AD8220的仪表放大器(IA)和评估电路板被首先用于放大从左右两只手臂电极获得的差分电位心电信号(图.2引线1)。选用AD8220是因为它有很宽的工作范围以适应噪声环境,10pA的低输入偏置电流,高CMRR减小RFI的影响,并且容易获得[18]。该评估板式用于简单原型。
由于AD8220的电源电压是+5V,增益G被谨慎的设定为19以避免两个输出出现电压饱和,虽然高的增益对于这个IA是允许的。但是在此设定下一个典型的心电信号1.0mV被放大至19.0mV-远远低于电源水平。增益电阻Rg由下式计算获得[19]:
49.449.42.741191kkRgkG