第十章 渗透汽化(PV)PPT课件
- 格式:ppt
- 大小:1.56 MB
- 文档页数:33
&第十章渗透汽化第一节概述一、渗透汽化的发展概况早在1917年Kober在他发表的一篇论文中第一个使用了渗透汽化(Pervaporation)这个词。
该文介绍了水从蛋白质-甲苯溶液通过火棉胶器壁的选择渗透作用。
但长期以来,由于未找到渗透通量高和选择性好的渗透蒸发膜材料,渗透蒸发过程一直没有得到应用。
直到上世纪50年代以后,对渗透汽化的研究才较广泛展开。
其中Binning等人对渗透蒸发过程进行了较系统的学术研究,发现了渗透蒸发过程潜在的工业应用价值,并于60年代在渗透汽化膜、组件和装置制造上申请了专利。
70年代后期至80年代初,随着对能源危机问题的日益重视,渗透汽化的优点又重新引起学术界和技术界的兴趣,德国GFT公司在欧洲首先建立了乙醇脱水制高纯酒精的渗透蒸发装置。
到90年代初已有100多套渗透蒸发装置相继投入应用。
除了用于乙醇、异丙醇脱水外,还用于丙酮、乙二醇、乙酸等溶剂的脱水。
我国在1984年前后开始对渗透汽化过程进行研究,主要工作集中在优先透水膜的研制与醇水溶液的脱水。
近年来主要开展优先透有机物膜、水中有机物脱除、有机物-有机物分离以及渗透汽化与反应耦合的集中过程的研究。
二、渗透汽化的分类渗透汽化是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。
渗透汽化装置包括预热器、膜分离器、冷凝器和真空泵等四个主要设备。
料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。
按照形成膜两侧蒸汽压差的方法,渗透汽化主要有以下几种形式:1.减压渗透汽化:膜透过侧用真空泵抽真空,以造成膜两侧组分的蒸汽压差。
在实验室中若不需收集透过侧物料,用该法最方便。
2.加热渗透汽化:通过料液加热和透过侧冷凝的方法,形成膜两侧组分的蒸汽压差。
一般冷凝和加热费用远小于真空泵的费用,且操作也比较简单,但传质动力比第一类小。
渗透汽化与蒸汽渗透技术辨析渗透汽化技术(pervaporation, PV)是一种新兴的膜分离过程,利用组分在膜内的溶解速度和扩散速度的不同,在液体混合物中组分蒸汽分压差的推动下实现分离。
该技术已在有机物脱水领域实现了工业化应用,并且对于痕量水或有机物的移除过程具有良好的应用前景。
图1 渗透汽化过程示意图渗透汽化技术最早由Kober于1917年在研究水通过火棉胶器壁从蛋白质/甲苯溶液中选择渗透时提出。
20世纪60年代,渗透汽化技术的研究取得了较大的发展。
我国于20世纪80年代初开始对渗透汽化技术进行研究。
渗透汽化技术的分离原理普遍认为是溶解扩散原理,其机理如图2所示。
图2 溶解扩散示意图蒸汽渗透技术(Vapor permeation,简称VP)是上世纪80年代末由Uragami 等首次提出,其分离原理、设备流程以及所用的膜与PV技术较为相似,容易让初学者对二者产生混淆。
因此,本文主要介绍两种技术的本质区别。
蒸汽渗透技术的原理示意图如图3所示。
图3 蒸汽渗透过程原理示意图从操作上,VP技术是以蒸汽进料,这是与PV技术本质上的不同,而且正是如此,二者在应用过程中所表现出的优势与缺点也有显著的区别。
对于PV过程,由于液相与膜直接接触,因此料液对于膜的影响不容忽视1. 料液容易在膜表面或膜内累积,从而造成污染,使膜的通量和分离因子大幅下降;2. 对于一些粘度较大体系的分离过程,待分离物质首先传递到膜表面再透过致密膜到达膜的另一侧,其中,该组分在液相的扩散速率较慢,从而导致物质在膜表面处的浓度低于主体浓度,使通量和分离因子较理论值下降较大,即浓差极化现象,其本质是组分在液相中的扩散系数较小引起的;3. 对于一些强酸强碱等苛刻条件下的分离过程,膜的结构容易被破坏从而导致PV过程难以进行。
此外,PV过程更多与化学反应或生物过程耦合使用,由于膜器的内部流道狭窄,需要采用外置式设备以扩大膜的分离通量。
若将PV技术与生物过程耦合,则为设备的消毒带来较大困难,实际生产过程中易引入杂菌。
化工实验:渗透汽化实验讲义一. 简单介绍渗透蒸发(简称PV)是近年来发展起来的一种新的膜分离技术,利用膜对液体混合物中各组分的溶解与扩散性能的不同来实现其分离的膜过程。
该过程伴有组分的相变过程。
渗透蒸发是一种无污染,低能耗的膜分离过程具有广泛的应用前景。
1:用亲水膜或荷电膜对醇类或其他有机溶剂进行脱水,典型的应用是处理生化发酵液,处理共沸精馏的液体。
2:利用憎水膜去除水中少量有机物,如卤代烃、酚类等,以及对石油工业中的烃类等有机物质的分离,各种同分异构体的分离。
3:用于有机合成,如对于酯化反应。
由于反应本身是可逆的,在反应物和产物之间有平衡关系,通常为得到更多的反应产物常常加入廉价的反应物质,使平衡向产物移动,提高产率,这牵涉了很多的问题如反应物大量消耗等,若采用渗透蒸发在反应的同时连续的把产物中的水除去,就可以使平衡向右移动,得到更多的产物,这在工业应用中意义重大。
总之:渗透蒸发在分离过程不受汽液平衡的限制,对共沸物系,沸点相近物质、同分异构体混合物、受热易分解物质以及水中微量有机物质的脱除等方面具有独特的优势。
与传统的分离过程相比,它具有高选择性,低消耗,为物理分离机制,操作灵活,不需要额外的添加剂以及易于放大,无污染的等优点.实验原理利用膜对液体混合物中各组分的溶解与扩散性能的不同来实现其分离的膜过程;该过程伴有组分的相变过程。
传质模型:1: 渗透蒸发的串联阻力模型渗透蒸发传质过程主要包括:1:渗透组分首先由料液主体扩散至膜的上游侧料液与膜的界面;2:渗透组分吸附在膜的表面;3:渗透组分扩散通过膜至膜的下游4:透组分在渗透侧脱吸为气相;5:渗透组分由气-膜界面扩散至气相主体(浓度或者压力)。
2:溶解扩散模型Binning 等首先将溶解扩散模型用来描述渗透蒸发过程,并得到了广泛认可. 根据溶解扩散模型,渗透蒸发过程分为以下3 个步骤:1:组分在膜上游侧的溶解;2:组分在膜中的扩散;3:组分在膜下游侧的解吸. 需要注意的是,膜中浓度分布取决于膜的溶胀.溶解扩散模型假设过程温度和压力恒定,膜上(下) 游侧表面溶解(解吸) 过程均达到热力学平衡,过程的推动力为活度梯度或浓度梯度.二、渗透蒸发膜渗透蒸发膜是整个PV过程的关键部分,所以目前国内外的研究大部分都集中在PV膜的开发上面。