基于遗传算法的TSP问题求解与仿真
- 格式:pdf
- 大小:405.46 KB
- 文档页数:5
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A 为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1 模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A 为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。
tsp问题的memetic求解算法TSP问题是指旅行商问题(Traveling Salesman Problem),是一个已知的NP-hard问题。
在TSP问题中,一个旅行商要在一系列城市之间旅行,每个城市之间的距离已知,旅行商需要找到最短的路线,使得每个城市都恰好被访问一次,最后回到起点城市。
Memetic算法是一种将遗传算法(Genetic Algorithm)与局部(Local Search)相结合的元型算法,用于求解最优化问题。
在TSP问题的求解中,Memetic算法可以优化基于遗传算法的随机过程,并通过加入局部操作来进一步提高算法的效率和准确性。
Memetic算法的基本流程如下:1.初始化种群:创建一个初始的候选解集合,每个候选解表示为一个路径序列,通过随机生成一定数量的路径来构建初始种群。
2.遗传算法的操作:通过选择、交叉和变异等操作,生成新的候选解集合。
选择使用适应度函数来评估每个候选解的适应度,并根据适应度进行选择操作。
交叉和变异操作用于生成新的候选解。
3. 局部操作:对每个候选解应用局部操作,以进一步优化候选解。
局部算法可以是简单的2-opt、3-opt等操作,也可以是更复杂的局部算法,如Lin-Kernighan算法等。
4.评估和选择:对新生成的候选解进行评估,并根据适应度函数进行选择操作,保留适应度较高的候选解。
5.终止条件:当满足终止条件时,停止算法,并返回最优解。
Memetic算法的关键之处在于局部操作的设计,局部操作可以根据特定问题的特点进行优化。
对于TSP问题,局部操作可以通过交换两个城市的位置来改进解的质量,以逼近最优解。
通过将遗传算法和局部相结合,Memetic算法能够综合利用全局和局部的优势,减少遗传算法收敛速度慢的问题,并提高算法的求解效率和准确性。
它能够通过遗传算法的全局发现更好的解空间,并通过局部来优化这些候选解,以获得更接近最优解的解。
总结起来,Memetic算法是一种使用遗传算法和局部相结合的元启发式算法,用于求解TSP问题。
用遗传算法求解中国34个省会TSP问题一、TSP问题的描述旅行商问题(TSP)可以具体描述为:已知n个城市之间的相互距离,现有一个推销员从某一个城市出发,必须遍访这n个城市,并且每个城市只能访问一次,最后又必须返回到出发城市,如何安排他对这些城市的访问次序,可使其旅行路线的总长度最短。
现给出中国34个省会数据,要求基于此数据使用遗传算法解决该TSP问题。
中国34省会位置city =1.西藏2.云南3.四川4.青海5.宁夏6.甘肃7.内蒙古8.黑龙江9.吉林10.辽宁 11.北京 12天津 13.河北 14.山东 15.河南 16.山西 17.陕西18.安徽 19.江苏20.上海 21.浙江 22.江西 23.湖北 24.湖南 25.贵州 26.广西27.广东28.福建 29.海南 30.澳门 31.香港 32.台湾 33.重庆 34.新疆像素坐标如下:Columns 1 through 11100 187 201 187 221 202 258 352 346 336 290 211 265 214 158 142 165 121 66 85 106 127 Columns 12 through 22297 278 296 274 265 239 302 316 334 325 293 135 147 158 177 148 182 203 199 206 215 233 Columns 23 through 33280 271 221 233 275 322 250 277 286 342 220 216 238 253 287 285 254 315 293 290 263 226 Column 34 104 77二、遗传算法的介绍2.1 遗传算法遗传算法的基本原理是通过作用于染色体上的基因寻找好的染色体来求解问题,它需要对算法所产生的每个染色体进行评价,并基于适应度值来选择染色体,使适应性好的染色体有更多的繁殖机会,在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始种群;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗产操作后的个体集合形成下一代新的种群,对这个新的种群进行下一轮的进化。
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,?,n);2)非对称旅行商问题(dij≠dji,?i,j=1,2,3,?,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,?,v n}的一个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。
TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距商,要求确定一条经过各城市当且仅当一次的是短路线。
其图论描述为:给定图G= (V, A),其中V为顶点集,A 为各顶点相互连接组成的边集,设(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamihon回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题3j=dji, ni, j=l, 2, 3, - , n);2)非对称旅行商问题(dijHdji, Bi, j=1, 2, 3, - , n)o非对称旅行商问题较碓求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={V H V2, V n - , %}的一个访问顺序为T={l), b, tj, - , tj, - , tj,A其中衣v (i=l, 2, 3,・・・,□),且记t n+l=tl>则旅行商问题的数学模型为:血工Xzr-l TSP是一个典型的组台优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中槪括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和板高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近台并、最近插入、晨远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质長较差,迄今为止巳开发了许多性能较好的改迸型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopficld神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策路2.1模拟退火算法方法1)编码选择:采用描述TSP解的臺常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于站径编码的SA状态产生函数操作,可将其设计为:①互换操作(SV7AP);②逆序操作(INV);③插入操作仃NS)。
TSP的几种求解方法及其优缺点TSP(Traveling Salesman Problem)是一种NP-hard问题,其目标是找到一条路径,使得旅行商经过所有城市并返回原始城市的总距离最小。
由于TSP在实际应用中具有广泛的应用,很多研究者提出了多种方法来解决TSP问题。
本文将介绍几种常见的TSP求解方法及其优缺点。
1.枚举法枚举法是最简单直观的方法,它遍历所有可能的路径,并选择总距离最小的路径作为最优解。
由于TSP问题的解空间随问题规模呈指数级增长,这种方法只适用于规模较小的问题。
枚举法的优点是保证找到最优解,缺点是耗时较长。
2.最近邻法最近邻法从一个起始城市出发,每次选择与当前城市距离最近的未访问城市作为下一个城市。
直到所有城市都被访问一遍,并返回原始城市。
最近邻法的优点是简单易实现,缺点是容易陷入局部最优解,从而得不到整体最优解。
3.插入法插入法从初始路径开始,将未访问的城市不断插入到已访问城市之间,直到所有城市都被访问一遍。
插入方法有多种,比如最短边插入、最长边插入和最佳位置插入等。
插入法的优点是相对于最近邻法来说,可以得到更好的解。
缺点是算法复杂度较高,计算时间较长。
4.遗传算法遗传算法是一种群体智能算法,模拟生物进化的过程,通过遗传操作寻找优秀的解。
在TSP问题中,遗传算法可以将城市路径看作染色体,并通过选择、交叉和变异等操作进行优化。
遗传算法的优点是能够快速找到次优解,并且对于规模较大的问题也适用。
缺点是需要调节大量参数,算法收敛速度较慢。
5.动态规划动态规划是一种由上而下的分治思想,将原问题分解为若干子问题,通过求解子问题的最优解来求解原问题。
在TSP问题中,可以通过建立状态转移方程来求解最优路径。
动态规划的优点是求解过程中可以剪枝,避免重复计算,能够得到精确解。
缺点是算法时间复杂度较高,不适用于大规模问题。
以上是几种常见的TSP求解方法及其优缺点。
不同的方法适用于不同的问题规模和实际应用场景。
TSP问题遗传算法通用Matlab程序程序一:主程序%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序%D是距离矩阵,n为种群个数%参数a是中国31个城市的坐标%C为停止代数,遗传到第 C代时程序停止,C的具体取值视问题的规模和耗费的时间而定%m为适应值归一化淘汰加速指数,最好取为1,2,3,4,不宜太大%alpha为淘汰保护指数,可取为0~1之间任意小数,取1时关闭保护功能,建议取0.8~1.0之间的值%R为最短路径,Rlength为路径长度function [R,Rlength]=geneticTSP(D,a,n,C,m,alpha)[N,NN]=size(D);farm=zeros(n,N);%用于存储种群for i=1:nfarm(i,:)=randperm(N);%随机生成初始种群endR=farm(1,:);subplot(1,3,1)scatter(a(:,1),a(:,2),'x')pause(1)subplot(1,3,2)plotaiwa(a,R)pause(1)farm(1,:)=R;len=zeros(n,1);%存储路径长度fitness=zeros(n,1);%存储归一化适应值counter=0;while counter for i=1:nlen(i,1)=myLength(D,farm(i,:));%计算路径长度endmaxlen=max(len);minlen=min(len);fitness=fit(len,m,maxlen,minlen);%计算归一化适应值rr=find(len==minlen);R=farm(rr(1,1),:);%更新最短路径FARM=farm;%优胜劣汰,nn记录了复制的个数nn=0;for i=1:nif fitness(i,1)>=alpha*randnn=nn+1;FARM(nn,:)=farm(i,:);endendFARM=FARM(1:nn,:);[aa,bb]=size(FARM);%交叉和变异while aa if nn<=2nnper=randperm(2);elsennper=randperm(nn);endA=FARM(nnper(1),:);B=FARM(nnper(2),:);[A,B]=intercross(A,B);FARM=[FARM;A;B];[aa,bb]=size(FARM);endif aa>nFARM=FARM(1:n,:);%保持种群规模为nendfarm=FARM;clear FARMcounter=counter+1endRlength=myLength(D,R);subplot(1,3,3)plotaiwa(a,R)程序二:计算邻接矩阵%输入参数a是中国31个城市的坐标%输出参数D是无向图的赋权邻接矩阵function D=ff01(a)[c,d]=size(a);D=zeros(c,c);for i=1:cfor j=i:cbb=(a(i,1)-a(j,1)).^2+(a(i,2)-a(j,2)).^2;D(i,j)=bb^(0.5);D(j,i)=D(i,j);endend程序三:计算归一化适应值%计算归一化适应值的子程序function fitness=fit(len,m,maxlen,minlen)fitness=len;for i=1:length(len)fitness(i,1)=(1-((len(i,1)-minlen)/(maxlen-minlen+0.0001))).^m;end程序四:交叉和变异的子程序%交叉算法采用的是由Goldberg和Lingle于1985年提出的PMX(部分匹配交叉) function [a,b]=intercross(a,b)L=length(a);if L<=10%确定交叉宽度W=9;elseif ((L/10)-floor(L/10))>=rand&&L>10W=ceil(L/10)+8;elseW=floor(L/10)+8;endp=unidrnd(L-W+1);%随机选择交叉范围,从p到p+Wfor i=1:W%交叉x=find(a==b(1,p+i-1));y=find(b==a(1,p+i-1));[a(1,p+i-1),b(1,p+i-1)]=exchange(a(1,p+i-1),b(1,p+i-1)); [a(1,x),b(1,y)]=exchange(a(1,x),b(1,y));endfunction [x,y]=exchange(x,y)temp=x;x=y;y=temp;程序五: 计算路径的子程序%该路径长度是一个闭合的路径的长度function len=myLength(D,p)[N,NN]=size(D);len=D(p(1,N),p(1,1));for i=1:(N-1)len=len+D(p(1,i),p(1,i+1));end程序六:用于绘制路径示意图的程序function plotaiwa(a,R)scatter(a(:,1),a(:,2),'x')hold onplot([a(R(1),1),a(R(31),1)],[a(R(1),2),a(R(31),2)])hold onfor i=2:length(R)x0=a(R(i-1),1);y0=a(R(i-1),2);x1=a(R(i),1);y1=a(R(i),2);xx=[x0,x1];yy=[y0,y1]; plot(xx,yy) hold onend。
目录1 引言 (1)2 问题描述 (2)3 基于遗传算法TSP算法 (2)3.1 基于遗传算法的TSP算法总体框架 (2)3.2算法的详细设计 (3)3.2.1 解空间的表示方式 (3)3.2.2 种群初始化 (4)3.2.3适应度函数 (4)3.2.4选择操作 (4)3.2.5交叉操作 (5)3.2.6变异操作 (6)3.2.7进化逆转操作 (6)3.3 实验结果分析 (7)4 基于模拟退火算法的TSP算法 (10)4.1 SA算法的实现过程 (10)4.2 算法流程图 (10)4.3模拟退火算法的实现过程 (10)4.4实验结果 (11)5 对两种算法的评价 (14)5.1遗传算法优缺点 (14)5.2 模拟退火算法的优缺点 (15)6结语 (15)参考文献 (17)附录: ............................................................................................................ 错误!未定义书签。
廊坊师范学院本科生毕业论文论文题目:基于遗传算法与模拟退火算法的TSP算法求解10大城市最短旅途论文摘要:TSP问题为组合优化中的经典的NP完全问题.本论文以某旅行社为中国十大旅游城市--珠海、西安、杭州、拉萨、北京、丽江、昆明、成都、洛阳、威海制定最短旅途为例,分别利用基于遗传算法的TSP算法与基于模拟退火算法的TSP算法求解10大城市旅游路线问题.本论文给出了遗传算法与模拟退火算法中各算子的实现方法,并展示出求解系统的结构和求解系统基于MATLAB的实现机制.利用MATLAB软件编程,运行出结果,并对基于遗传算法的TSP算法结果与基于模拟退火算法的TSP算法的结果进行比较,描述其优缺点,并选择最为恰当的TSP算法,实现最短旅途的最优解.关键词:遗传算法;模拟退火算法;TSP;最短路径;Title:TSP Algorithm Based on Genetic Algorithm or Simulated Annealing Algorithm for Solving the Shortest Journey of 10 CitiesAbstract:TSP problem is a classic NP problem about combinatorial optimization.This article takes a travel agency looking for the shortesttrip of ten tourist cities in China-Zhuhai,Xi'an,Hangzhou,Lhasa,Beijing,Lijiang,Kunming,Chengdu,Luoyang and Weihai forinstance,and solves this problem by TSP algorithm based on geneticalgorithm and simulated annealing algorithm.The article gives theimplementations of every operator of genetic algorithm and simulatedannealing algorithm and demonstrates the architecture and theimplementation mechanism of the solving system based on MATLAB.Iprogram and operate the results by MATLAB software,and compare theresults based on genetic algorithm and simulated annealingalgorithm.And describe their advantages and disadvantages so thatchoose the most appropriate TSP algorithm to achieve the optimalsolution for the shortest path.Keywords:genetic algorithm;simulated annealing algorithm;TSP;the shortest path1 引言TSP问题为组合优化中的经典问题,已经证明为一NP完全问题[1],即其最坏情况下的时间复杂性随着问题规模的扩大,按指数方式增长[2],到目前为止不能找到一个多项式时间的有效算法.TSP问题可描述为:已知n个城市相互之间的距离,某一旅行商从某个城市出发访问每个城市一次且仅一次,最后回到出发城市,如何安排才使其所走路线最短.TSP问题不仅仅是一个简单的组合优化问题,其他许多的NP完全问题可以归结为TSP问题,如邮路问题、装配线上的螺帽问题和产品的生产安排问题等,使得TSP问题的有效求解具有重要的意义.本文中的TSP算法主要采用遗传算法与模拟退火算法.遗传算法是一种进化算法,其基本原理是仿效生物界中的“物竞天择,适者生存”的演化法则[3].遗传算法把问题参数编码为染色体,再按照所选择的适应度函数,利用迭代的方式进行选择、交叉、变异以及进化逆转等运算对个体进行筛选和进化,使适应值大的个体被保留,适应值小的个体被淘汰[4],新的群体继承了上一代的信息,又优于上一代,这样反复循环,直至满足条件,最后留下来的个体集中分布在最优解的周围,筛选出最优个体作为问题的解.模拟退火算法的出发点是基于物理中固体物质的退火过程与一般的组合优化问题之间的相似性[5],该算法是一种优化算法,其物理退火过程由三部分组成,分别为:加温过程、等温过程、冷却过程.其中,加温过程对应算法设定初温,等温过程对应算法的Metropolis[6]抽样过程,冷却过程对应控制参数的下降.这里能量的变化就是目标函数,要得到的最优解就是能量最低态[7].Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis 准则以一定的概率接受恶化解,这样就使算法跳离局部最优的陷阱.2 问题描述本案例为某旅行社为中国十大旅游城市,分别为珠海、西安、杭州、拉萨、北京、丽江、昆明、成都、洛阳、威海,根据全程路径最短为目的,制定最优的旅游顺序依次游玩这十个城市.这类问题就由TSP算法来解决,寻找出一条最短遍历这10个城市的路径.利用google地图找到城市坐标,下表为这十个城市的位置坐标如表2-1所示.表2-1 10个城市的位置坐标3 基于遗传算法TSP算法3.1 基于遗传算法的TSP算法总体框架TSP问题的遗传算法包括编码设计、种群初始化、适应度函数选择、终止条件设定、选择操作设定、交叉操作设定以及变异操作设定和进化逆转操作.为简化TSP问题的求解,假设每个城市和其它任意一个城市之间都以欧氏距离[8]直接相连.遗传算法TSP问题的流程图如图2-1所示.。
遗传算法例子2篇遗传算法是一种受自然演化启发的优化算法,可以用来解决各种优化问题。
它通过模拟自然选择、遗传和突变等进化过程来不断搜索最优解。
在实际应用中,遗传算法可以被用于求解函数优化、组合优化、约束优化等问题。
下面我将为你介绍两个关于遗传算法的例子。
第一篇:基于遗传算法的旅行商问题求解旅行商问题(Traveling Salesman Problem, TSP)是计算机科学中经典的组合优化问题之一。
其目标是找到一条最短路径,使得一个旅行商可以经过所有城市,最终返回起始城市。
这个问题在实际应用中经常遇到,比如物流配送、电路布线等。
遗传算法可以用来求解旅行商问题。
首先,我们需要定义一种编码方式来表示旅行路径。
通常采用的是二进制编码,每个城市用一个二进制位来表示。
接下来,我们需要定义适应度函数,也就是评估每个个体的优劣程度,可以使用路径上所有城市之间的距离之和作为适应度值。
在遗传算法的执行过程中,首先创建一个初始种群,然后通过选择、交叉和变异等操作对种群进行迭代优化。
选择操作基于适应度值,较优秀的个体有更高的概率被选中。
交叉操作将两个个体的基因片段进行交换,以产生新的个体。
变异操作则在个体的基因中引入一些随机变动。
通过不断迭代,遗传算法能够逐渐找到一个接近最优解的解。
当然,由于旅行商问题属于NP-hard问题,在某些情况下,遗传算法可能无法找到全局最优解,但它通常能够找到质量较高的近似解。
第二篇:遗传算法在神经网络结构搜索中的应用神经网络是一种强大的机器学习模型,它具备非常大的拟合能力。
然而,在设计神经网络结构时,选择合适的网络层数、每层的神经元数量和连接方式等是一个非常复杂的问题。
传统的人工设计方法通常需要进行大量的尝试和实验。
遗传算法可以应用于神经网络结构搜索,以实现自动化的网络设计。
具体来说,遗传算法中的个体可以被看作是一种神经网络结构,通过遗传算法的进化过程可以不断优化网络结构。
在神经网络结构搜索的遗传算法中,个体的基因表示了网络的结构和参数。
TSP的⼏种求解⽅法及其优缺点TSP的⼏种求解⽅法及其优缺点⼀、什么是TSP问题旅⾏商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定⼀条经过各城市当且仅当⼀次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A 为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定⼀条长度最短的Hamilton回路,即遍历所有顶点当且仅当⼀次的最短距离。
旅⾏商问题可分为如下两类:1)对称旅⾏商问题(dij=dji,Πi,j=1,2,3,?,n);2)⾮对称旅⾏商问题(dij≠dji,?i,j=1,2,3,?,n)。
⾮对称旅⾏商问题较难求解,我们⼀般是探讨对称旅⾏商问题的求解。
若对于城市V={v1,v2,v3,?,v n}的⼀个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅⾏商问题的数学模型为:minL=。
TSP是⼀个典型的组合优化问题,并且是⼀个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接⽐较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极⾼的实际应⽤价值。
⼆、主要求解⽅法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插⼊、最远插⼊、最近添加、贪婪插⼊等。
但是,由于构造型算法优化质量较差,迄今为⽌已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退⽕算法2)禁忌搜索算法3)Hopfield神经⽹络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1 模拟退⽕算法⽅法1)编码选择:采⽤描述TSP解的最常⽤的⼀种策略——路径编码。
2)SA状态产⽣函数的设计:对于基于路径编码的SA状态产⽣函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插⼊操作(INS)。
遗传算法求解TSP问题的具体方法及其时间复杂性研究邢冲(上海交通大学计算机系学号5010339138)摘要:首先介绍遗传算法解决TSP问题的基因表示方法以及相应的几种交叉变异方法。
然后研究不同的方法与参数设置对于路径最优解,路径平均值以及所用处理器时间的影响,主要研究方向是在尽可能短的时间内求出TSP问题的次优解。
得出结论:使用路径基因表示法,选择较大的变异率(0.3左右),使用倒置变异算法进行求解,能够得到较好的次优值(处理器时间:2000,100个城市,大致可以达到相距最优值1%-2%的效果),同时速度比较快。
此研究针对那些只需次优解,但对时间要求比较高的问题有一定指导意义。
关键字 :遗传算法TSP 联赛排序次优解时间复杂度引言:TSP(Travelling Salesman Problem) 是一个著名的NP组合优化问题. 旅行商需要以尽可能少的路程遍历所有城市,回到出发点.TSP具有很大的广泛性,无论是城市交通问题,航空问题,还是集成电路制造问题都需要解决相应的TSP 问题.对于TSP问题,穷举的时间复杂度为N!(N为城市数量) , 随着N增加时间以指数级增加,对于如今的硬件技术这样的时间复杂度是难以接受的. 而利用遗传算法(GA)求解TSP是个不错的选择.GA是一种模拟生命进化的算法;它利用适者生存的进化原则,通过演化逐步逼近问题的最优解.本文将讨论使用GA求解TSP 问题的各种具体方法和及其参数设置的影响.1.基因的表示方法TSP问题可以选择城市序列作为基因。
首先对城市进行编号,比如10个城市0,1,……,9旅行序列:4-1-2-3-0-5-9-8-7-6则基因为(4 ,1, 2, 3, 0, 5, 9, 8, 7, 6)。
这样的表示方法需要解决交叉的问题,普通的交叉方法会引起不合理的基因,比如父代一:(0,1,2,3,4,5,6,7,8,9)父代二:(9,8,7,1,2,3,4,5,6,0)子代的可能结果:(一点交叉,交叉位置假设5)(0,1,2,3,4,3,4,5,6,0)(9,8,7,1,2,5,6,7,8,9)这样的子代结果显然是不符合TSP问题要求的,而且这样方法使得不合理基因在子代中占绝对优势比例,为了解决这一问题,尝试以下两种方法:改变基因编码,使用Grefenstette等提出的一种新的巡回路线编码(以下简称G法)。
TSP的几种求解方法及其优缺点旅行商问题(TSP)是一个组合优化问题,目的是找到一条最短的路径,使得旅行商能够访问一系列城市并返回起始点。
TSP由于其复杂性而被广泛研究,已经发展出了许多求解方法。
本文将讨论几种主要的TSP求解方法,包括贪婪算法、局部算法、遗传算法和蚁群算法,并分析它们的优缺点。
1.贪婪算法贪婪算法是一种基于贪心策略的求解方法。
它从一个起始城市开始,每次选择距离当前城市最近的未被访问过的城市作为下一步的目标城市,直到所有的城市都被访问过。
贪婪算法的优点是简单易于理解和实现,并且在处理小规模问题时效果显著。
然而,贪婪算法没有考虑全局最优解,很容易陷入局部最优解,不能保证找到最优解。
2.局部算法局部算法是一类启发式算法,它通过不断优化当前解来逐步接近最优解。
其中最典型的是2-opt算法,它通过交换路径中的两个顶点位置来改进解的质量。
局部算法的优点是可以找到局部最优解,且计算时间较短。
然而,局部算法容易陷入局部最优解,而且计算开销随问题规模增加而增加,且不能保证找到全局最优解。
3.遗传算法遗传算法是一种模拟生物进化的随机算法。
它通过模拟遗传、交叉和变异等基因操作来生成和改进解。
遗传算法的优点是可以处理大规模问题,且不容易陷入局部最优解。
同时,遗传算法能够在空间中探索多个解,提高解的多样性。
然而,遗传算法的计算开销相对较高,需要大量的迭代和种群更新。
此外,遗传算法的性能与参数设置相关,需要进行调整。
4.蚁群算法蚁群算法是一种模拟蚂蚁觅食行为的算法。
它通过模拟蚂蚁在路径上释放信息素的过程,来引导蚂蚁选择路径。
蚁群算法的优点是能够找到较好的解并具有一定的自适应性。
它适用于处理大规模问题,且能够处理问题中的不确定性。
然而,蚁群算法的计算开销较高,并且参数设置对结果影响较大。
综上所述,TSP的求解方法包括贪婪算法、局部算法、遗传算法和蚁群算法等。
每种方法都有自己的优点和缺点。
选择适合问题规模、问题特征和求解时间的方法是关键。
1.遗传算法解决TSP 问题(附matlab源程序)2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市3.只能访问一次,最后又必须返回出发城市。
如何安排他对这些城市的访问次序,可使其4.旅行路线的总长度最短?5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij)6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶7.点且每个顶点只通过一次的具有最短距离的回路。
8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。
10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:12.min l=σd(t(i),t(i+1)) (i=1,…,n)13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法15.求其近似解。
16.遗传算法:17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。
定义整数pop-size作为染色体的个数18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。
19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)).20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al23.pha*(1-alpha).^(i-1) 。