2016年秋季新版苏科版八年级数学上学期第2章、轴对称图形单元复习试卷21
- 格式:doc
- 大小:73.50 KB
- 文档页数:3
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°.其中正确的结论共有()A.1个B.2个C.3个D.4个2、等腰三角形的一边等于5,一边等于12,则它的周长是()A.22B.29C.22或29D.173、等腰三角形的一个内角为80°,则它的顶角度数为()A.20°B.80°C.20°或80°D.50°或80°4、下列图形中是轴对称图形的个数为()A.2个B.3个C.4个D.5个5、如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:甲:作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;乙:作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确6、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.AD⊥BCB.AD平分∠BACC.AB=2BDD.∠B=∠C7、如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.308、如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B为()A.75°B.76°C.77°D.78°9、如图,菱形ABCD的周长为8m,高AE的长为cm,则对角线BD的长为()A.2cmB.3cmC. cmD.2 cm10、如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB=2,BC=3,则BD的长是()A.5B.7C.8D.911、如图,菱形的边长为,,弧是以点为圆心、长为半径的弧,弧是以点为圆心、长为半径的弧,则阴影部分的面积为()A. B. C. D.12、已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cmB.10cmC.14cm或10cmD.12cm13、如图,将一张长方形纸片的角A、E分别沿着BC、BD折叠,点A落在A'处,点E落在边BA'上的E'处,则∠CBD的度数是()A.85°B.90°C.95°D.100°14、在△ABC中,∠A=x°,∠B=y°,∠C≠60°.若y=180﹣2x,则下列结论正确的是()A.AC=ABB.AB=BCC.AC=BCD.AB,BC,AC中任意两边都不相等15、有下列图形:①等边三角形,②平行四边形,③菱形,④矩形,其中既是轴对称图形又是中心对称图形的有().A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,△ABC申,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=82 ,则∠BDC=________.17、如图,在周长为10 cm的□ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD 交AD于点E,连接BE,则△ABE的周长为________.18、如图,已知矩形ABCD中,AB=3,AD=4,沿对角线BD折叠,使点A落在平面内的点E处,过点E作交BD于点F,则线段的长为________;19、如图等边三角形ABC内接于圆,点P是圆上任意一点(P不与A、B、C重合),则∠APB=________.20、如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD 沿EF折叠,使点A,D分落在矩形ABCD外部的点, 处,则阴影部分图形的周长为________.21、如图,正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为________cm.(结果保留π)22、如图,中,,,的垂直平分线交于,交于,,则________.23、如图,矩形纸片ABCD中,BC=5,AB=3,点P是BC边上的动点(点P不与点B、C重合).现将△PCD沿PD翻折,得到△PC′D;作∠BPC′的角平分线,交AB于点E.设BP=x,BE=y,则y与x的函数关系式为________.24、如图,∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC的度数为________.25、如图,在的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的为格点三角形,在图中最多能画出________个不同的格点三角形与成轴对称.三、解答题(共5题,共计25分)26、已知ABC中∠BAC=140°, AB、AC的垂直平分线分别交BC于E、F,AEF的周长为10㎝,求BC的长度和∠EAF的度数.27、△ABC中,AB=AC,∠BAC=120°,点D、F分别为AB、AC中点,ED⊥AB,GF⊥AC,若BC=15cm,求EG的长.28、在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB的距离.29、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交变BC于点D,若CD=4,AB=15,求△ABD的面积.30、如图,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,.AB=20 cm,AC=12 cm.求DE的长.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、B5、D6、C7、A8、D9、D10、A11、B12、A13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
新苏科版八年级数学上册第二章 2.2 轴对称的性质同步练习一.选择题(共13小题)1.(2016•南充)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM2.(2016•厦门)已知△ABC的周长是l,BC=l﹣2AB,则下列直线一定为△ABC的对称轴的是()A.△ABC的边AB的垂直平分线B.∠ACB的平分线所在的直线C.△ABC的边BC上的中线所在的直线D.△ABC的边AC上的高所在的直线3.(2016•天津)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE4.(2016•海南)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.(2016•聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°6.(2016•宿迁)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.17.(2016•呼伦贝尔)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.58.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线之间对称D.周长相等的两个三角形一定关于某条直线之间对称9.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为()A.1:3 B.1:4 C.1:6 D.1:910.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2016次操作后得到的折痕D2015E2015到BC的距离记为h2016,到BC的距离记为h2016.若h1=1,则h2016的值为()A.B.1﹣C.D.2﹣11.如图,将正方形纸片剪掉阴影部分后,可以折叠成一个底面为正方形且带盖的长方体包装盒,若该包装盒的底面边长为2,高为1,则原正方形纸片的边长为()A.3 B.5C.2+D.412.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A.B.C.D.13.将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A.B.C.D.二.填空题(共6小题)14.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=______cm.15.(2016•苏州)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.16.(2016•吉林)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为______(用含a的式子表示).17.(2016•黄冈校级自主招生)将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=120°,∠A=26°,则∠A′DB的度数为______.18.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于______.19.如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE折叠,使点A正好与CD上的F点重合,若△FDE的周长为16,△FCB的周长为28,则FC的长为______.三.解答题(共4小题)20.作出△ABC关于直线m的对称图形.21.(2016•哈尔滨)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.22.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.23.如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.(1)请你帮小萍求出x的值.(2)参考小萍的思路,探究并解答新问题:如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)参考答案一.选择题(共13小题)1.(2016•南充)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.【点评】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.2.(2016•厦门)已知△ABC的周长是l,BC=l﹣2AB,则下列直线一定为△ABC的对称轴的是()A.△ABC的边AB的垂直平分线B.∠ACB的平分线所在的直线C.△ABC的边BC上的中线所在的直线D.△ABC的边AC上的高所在的直线【分析】根据条件可以推出AB=AC,由此即可判断.【解答】解:∵l=AB+BC+AC,∴BC=l﹣2AB=AB+BC+AC﹣2AB,∴AB=AC,∴△ABC中BC边中线所在的直线是△ABC的对称轴,故选C.【点评】本题考查对称轴、三角形周长、等腰三角形的性质等知识,解题的关键是根据条件推出AB=AC,属于中考常考题型.3.(2016•天津)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.【点评】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.4.(2016•海南)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.【点评】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.5.(2016•聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B 落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.6.(2016•宿迁)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.1【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM 的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.【点评】此题考查了翻折变换的性质,适时利用勾股定理是解答此类问题的关键.7.(2016•呼伦贝尔)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9﹣x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=4.故线段BQ的长为4.故选:C.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.8.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线之间对称D.周长相等的两个三角形一定关于某条直线之间对称【分析】认真阅读各选项提供的已知条件,根据轴对称的性质对个选项逐一验证,其中选项A是正确的.【解答】解:A、关于某条直线对称的两个图形能够完全重合,所以关于某条直线对称的两个三角形是全等三角形,正确;B、全等三角形不一定关于某直线对称,错误;C、面积相等的两个三角形不一定关于某条直线之间对称,错误;D、周长相等的两个三角形不一定关于某条直线之间对称,错误;故选A【点评】主要考查了轴对称的性质;找着每个选项正误的具体原因是正确解答本题的关键.9.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为()A .1:3B .1:4C .1:6D .1:9【分析】由=,可知,易证AN=AM ,得到,于是可求出△AMD ′的面积与△AMN 的面积的比.【解答】解:根据折叠的性质,AN=CN ,∠ANM=∠CNM ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠CNM=∠AMN ,∴∠ANM=∠AMN ,∴AM=AN ,∵=,∴,∴,∴△AMD ′的面积:△AMN 的面积=1:3.故选:A .【点评】本题主要考查了图形的折叠问题、等高的三角形面积比等于底的比,把△AMD ′的面积与△AMN 的面积的比转化为边的比,运用等高的三角形面积比等于底的比这一性质是解决问题的关键.10.如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2016次操作后得到的折痕D 2015E 2015到BC 的距离记为h 2016,到BC 的距离记为h 2016.若h 1=1,则h 2016的值为( )A .B .1﹣C .D .2﹣【分析】根据中点的性质及折叠的性质可得DA=DA'=DB,从而可得∠ADA'=2∠B,结合折叠的性质可得∠ADA'=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC的中位线,证得AA1⊥BC,得到AA1=2,求出h1=2﹣1=1,同理h2=2﹣,h3=2﹣×=2﹣,于是经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2﹣,求得结果h2016=2﹣.【解答】解:连接AA1.由折叠的性质可得:AA1⊥DE,DA=DA1,又∵D是AB中点,∴DA=DB,∴DB=DA1,∴∠BA1D=∠B,∴∠ADA1=2∠B,又∵∠ADA1=2∠ADE,∴∠ADE=∠B,∴DE∥BC,∴AA1⊥BC,∴AA1=2,∴h1=2﹣1=1,同理,h2=2﹣,h3=2﹣×=2﹣…∴经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2﹣.∴h2016=2﹣.故选:D.【点评】本题考查了相似三角形的判定和性质,三角形中位线的性质,平行线等分线段定理,找出规律是解题的关键.11.如图,将正方形纸片剪掉阴影部分后,可以折叠成一个底面为正方形且带盖的长方体包装盒,若该包装盒的底面边长为2,高为1,则原正方形纸片的边长为()A.3 B.5C.2+D.4【分析】如图,由题意,△CDE,△DBF都是等腰直角三角形,分别求出CD,DB即可解决问题.【解答】解:如图,由题意,△CDE,△DBF都是等腰直角三角形,∵CE=DE=1,∴CD=,∵DF=2,∴DB=AC=,∴AB=AC+CD+DB=3,故选A.【点评】本题考查翻折变换、正方形的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会看懂图形,搞清楚已知条件,属于中考常考题型.12.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A.B.C.D.【分析】找出题中的折叠规律,利用正方形纸片按照此方法沿虚线减下,展开即可得到剩下的图形.【解答】解:由题意可知:减去的部分为四个等腰直角三角形的斜边构成的正方形,又原图是正方形,所以剩下的图形为大正方形除去一个小正方形.故选B.【点评】本题通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作,易得出答案.13.将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A.B.C.D.【分析】本题考查了拼摆的问题,仔细观察图形的特点作答.【解答】解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正好是原正方体的棱长,所以所剪得的直角三角形较短的与较长的直角边的比是1:2.故选A.【点评】本题考查了剪纸的问题,难度不大,以不变应万变,透过现象把握本质,将问题转化为熟悉的知识去解决,同时考查了学生的动手和想象能力.二.填空题(共6小题)14.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=6cm.【分析】延长原矩形的边,然后根据两直线平行,内错角相等可得∠1=∠ACB,根据翻折变换的性质可得∠1=∠ABC,从而得到∠ABC=∠ACB,再根据等角对等边可得AC=AB,从而得解.【解答】解:如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.故答案为:6.【点评】本题考查了翻折变换的性质,平行线的性质,等腰三角形的判定,熟记各性质是解题的关键,难点在于作出辅助线.15.(2016•苏州)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.【点评】本题考查了翻折变换的性质,解题的关键是根据等边三角形的判定定理判定等边三角形,难度不大.16.(2016•吉林)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a(用含a的式子表示).【分析】由折叠的性质得出BE=EF=a,DE=BE,则BF=2a,由含30°角的直角三角形的性质得出DF=BF=a,即可得出△DEF的周长.【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.【点评】本题考查了翻折变换的性质、含30°角的直角三角形的性质、三角形周长的计算;熟练掌握翻折变换的性质,由含30°角的直角三角形的性质得出DF=a是解决问题的关键.17.将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=120°,∠A=26°,则∠A′DB 的度数为112°.【分析】利用三角形的内角和为180°求出∠B,从而根据平行线的性质可得∠ADE=∠B,再由折叠的性质得出∠ADE=∠A'DE,利用平角的知识可求出∠A′DB的度数.【解答】解:∵∠C=120°,∠A=26°,∴∠B=180°﹣(∠A+∠C)=34°,又∵DE∥BC,∴∠ADE=∠B=34°,根据折叠的性质可得∠ADE=∠A'DE,∴∠A'DE=∠ADE=∠B=34°,∴∠A′DB=180°﹣∠ADE﹣∠A'DE=112°.故答案为:112°.【点评】本题考查折叠的性质,注意掌握折叠前后对应角相等,另外解答本题需要用到三角形的内角和定理及平行线的性质,也要注意对这些基础知识的掌握.18.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.【分析】要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE 中求AE.【解答】解:设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF=,∴S△AEF=×AF×AB=××3=.故答案为:.【点评】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应角相等.19.如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE折叠,使点A正好与CD上的F点重合,若△FDE的周长为16,△FCB的周长为28,则FC的长为6.【分析】根据翻折不变性以及平行四边形的性质,由BF+BC+CF=28,BF=AB=DF+FC,BC=AD=ED+EF,进行等量代换即可解决.【解答】解:∵△BEF是由△BEA翻折,∴EA=EF,BF=BA,∵四边形ABCD是平行四边形,∴BC=AD=AE+DE=EF+ED,AB=BF=DC=DF+CF,∵CF+BC+BF=28,DE+EF+DF=16∴CF+DE+EF+DF+CF=28,∴2CF+16=28,∴CF=6,故答案为6.【点评】本题考查翻折变换、平行四边形的性质,解题的关键是利用翻折不变性解决问题,学会整体代入的数学思想,属于中考常考题型.三.解答题(共4小题)20.作出△ABC关于直线m的对称图形.【分析】直接利用轴对称图形的性质得出对应点的位置,进而得出答案.【解答】解:如图所示:△A′B′C′即为所求.【点评】此题主要考查了作轴对称变换,根据题意得出对应点位置是解题关键.21.(2016•哈尔滨)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.【点评】此题主要考查了轴对称变换以及矩形的性质、勾股定理等知识,正确应用勾股定理是解题关键.22.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【分析】(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).【点评】此题主要考查了轴对称变换和平移变换,根据题意得出对应点位置是解题关键.23.如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.(1)请你帮小萍求出x的值.(2)参考小萍的思路,探究并解答新问题:如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)【分析】(1)正方形AEGF的边长是x.则BG=EC﹣BE=x﹣2,CG=FG﹣CF=x﹣3,在直角△BGC中利用勾股定理即可得到关于x的方程,即可求解;(2)可以证明△AEF是等边三角形,△EFG是等腰三角形,作出底边上的高,利用三角函数即可求解EG,根据△BGC的周长是:BG+GC+BC=BG+GC+BD+CD=BG+GC+BE+CF=2EG 即可求解.【解答】解:(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形,根据对称的性质可得:BE=BD=2,CF=CD=3,设AD=x,则正方形AEGF的边长是x,则BG=EG﹣BE=x﹣2,CG=FG﹣CF=x﹣3,在直角△BCG中,根据勾股定理可得:(x﹣2)2+(x﹣3)2=52,解得:x=6或﹣1(舍去).故边长是6;(2)作GM⊥EF于点M.根据对称的性质可得:AE=AF=AD=4,∠EAB=∠BAD,∠FAC=∠DAC,又∵∠BAC=30°,∴∠EAF=60°,∴△AEF是等边三角形,∴EF=AE=4,∠AEF=∠AFE=60°,∴∠GEF=∠GFE=30°,则EG=GF,∴EM=EF=2,∴EG==,∴△BGC的周长是:BG+GC+BC=BG+GC+BD+CD=BG+GC+BE+CF=2EG=.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE ∥BC,则结论:①△BDF是等腰三角形;②DE= BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A。
其中正确结论的序号是( )A.①②③B.①②④C.①③④D.②③④2、如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD 的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是( )A.2B.2C.D.43、彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是()A. B. C.D.4、下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.5、如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.50°B.60°C.70°D.80°6、如图,在△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为()A. B. C. D.7、如图,在四边形中,点是对角线的中点,点、分别是、的中点,,,则的度数是()A. B. C. D.8、如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE。
若AC=7,BC=4,则BD的长为()A.2.5B.1.5C.2D.19、如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC 上),折叠后顶点D恰好落在边OC上的点F处,若点D的坐标为(−10,8),则△AEF的面积为()A.15B.20C.25D.3010、设等腰三角形的顶角度数为y,底角度数为x,则( )A.y=180°-2x(x可为全体实数)B.y=180°-2x(0°≤x≤90°) C.y=180°-2x(0°<x<90°) D.y=180°-x(0°<x<90°)11、如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D 1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°12、长城是我国古代劳动人民创造的伟大奇迹,是中国悠久历史的见证,是中华民族的象征,被列为世界文化遗产.下列以长城为背景的标志设计中,不是轴对称图形的是()A. B. C. D.13、正方形ABCD中,点P是对角线AC上的任意一点(不包括端点),以P为圆心的圆与AB相切,则AD与⊙P的位置关系是()A.相离B.相切C.相交D.不确定14、如图,是一张直角三角形的纸片,两直角边,现将折叠,使点B点A重合,折痕为DE,则BD的长为()A.7B.C.6D.15、已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B 为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是()A.12cm 2B.24cm 2C.36cm 2D.48cm 2二、填空题(共10题,共计30分)16、在①线段、②角、③圆、④长方形、⑤梯形、⑥三角形、⑦等边三角形中,是轴对称图形的有________(只填序号).17、如图,一个宽度相等的纸条按如图所示方法折叠压平,则∠1的度数等于________°.18、将一张长方形纸片按如图方式折叠,使A点落在BI上,与BI上的E点重合,BC、BD为折痕,则∠CBD=________.19、某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车的部分号码如图所示,则该车牌照的部分号码为________.20、如图,矩形中,,,点E在边上,,点是边上的动点,将矩形沿直线折叠,点,的对应点分别为,,当,,三点恰好在同一直线上时,的长为________.21、如图,在正方形中,,E为的中点,将沿折叠,使点B落在正方形内点F处,连接,则的长为________.22、阅读后填空:已知:如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OA=OD.分析:要证OA=OD,可证ABO≌DCO;要证ABO≌DCO,可先证ABC≌DCB得出AB=DC这个结论;而用________可证ABC≌DCB(填SAS或AAS或HL).23、如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为________.24、如图,已知,平分,,若,,则=________.25、如图,B,C,D在同一直线上,∠B=∠D=90°,AB=CD,BC=DE,则△ACE的形状为________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、如图所示,已知△ABC的角平分线BM,CN相交于点P,求证点P到AB,BC,CA的距离相等.28、如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.若AB=3cm,BC=5cm,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△ABP为等腰三角形?29、如图①,将△ABC纸片沿DE折叠,使点A落F的位置,DF与BC交于点G,EF与BC交于点M,∠A=80°,求∠1+∠2的度数;30、阅读材料:已知△ABC中,AD平分∠BAC,AD是△ABC的中线,求证:AB=AC.小明根据已知条件发现若AD平分∠BAC可得∠BAD=∠CAD,又AD是△ABC的中线,可得BD=CD,加上公共边的条件AD=AD,有两条边和一个角对应相等,就下结论得到△ABD和△ACD是全等的,从而得到结论∠B=∠C,可证出AB=AC成立;小芳的方法是用角平分线的性质得到DE=DF,再用中线分三角形的面积为相等两部分,再用等面积的方法可以得到结论.请你回答小明和小芳的证明思路谁正确的?请任选择一个方法进行完整的证明(可以与小明和小芳的方法不同)参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、B5、C6、B7、C8、B9、C10、C11、B12、A13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )A. cmB. cmC. cmD. cm2、下列各图经过折叠不能围成一个正方体的是()A. B. C. D.3、以下国产新能源电动车的车标图案不是轴对称图形的是()A. B. C. D.4、如图,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW.若OA+OB +OC=1,则OC=()A.2-B. -1C.6-D. -35、如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为()A. B. C. D.6、如图,有一块Rt△ABC的纸片,∠ABC= ,AB=6,BC=8,将△ABC沿AD折叠,使点B落在AC上的E处,则BD的长为( )A.3B.4C.5D.67、在螳螂的示意图中,AB//DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠BCD=()A.16°B.28°C.44°D.45°8、如图,已知中,DE、FG分别是AB,AC边上的垂直平分线,,,则的度数是()A.10°B.20°C.30°D.40°9、将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,BE=1,折叠后,点C落在AD边上的C处,并且点B落在EC1边上的B1处.则1EC的长为()A. B.2 C.3 D.210、已知实数满足,则以的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对11、如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.若∠BAC=45°,AM=4,DM=3,则BC 的长度为()A.8B.7C.6D.512、如图,AB是⊙O的直径,点E是AB上一点,过点E作CD⊥AB,交⊙O于点C,D,以下结论正确的是()A.若⊙O的半径是2,点E是OB的中点,则CD=B.若CD=,则⊙O的半径是1 C.若∠CAB=30°,则四边形OCBD是菱形 D.若四边形OCBD是平行四边形,则∠CAB=60°13、如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为()A.2B.6C.3或6D.2或3或614、如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是()A.△ADC∽△CFBB.AD=DFC. =D. =15、如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C,D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形二、填空题(共10题,共计30分)16、如图,把一张上下两边平行的纸条沿EF折叠,若∠2=132°,则∠1=________.17、如图,等腰三角形中,,是底边上的高,则AD=________.18、若等腰三角形的底角等于15°,腰长为4cm,则等腰三角形的面积为________.19、如图,在△ABC中,,,AD是BC边上的中线,将△ACD沿AD折叠,使点C落在点F处,DF交AB于点E,则∠DEB=________.20、如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为________.21、如图,在△ABC中,AB=AC=3cm,AB的垂直平分线交AC于点N,△BCN的周长是5cm,则BC的长等于________ cm.22、如图,∠A=15°,∠C=90°,DE垂直平分AB交AC于E,若BC=4cm,则AC=________cm.23、如图,在△ABC中,∠ACB=90°,CD是△ABC的中线,若∠DCB=40°,则∠A的度数为________ °.24、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△=3.其中正确结论的是________.AFG;②BG=GC;③AG∥CF;④S△FGC25、如图,将一张长方形的纸片ABCD沿AF折叠,点B到达点B′的位置.已知AB′∥BD,∠ADB=20°,则∠BAF=________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,且∠BAD:∠BAC=1:3,求∠B的度数.28、如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.29、如图,在等腰△ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH,求证:四边形EBFC是菱形.30、(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,求△BCD的周长为;(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF 的周长等于AD的长.①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);②在图3中补全图形,求∠EOF的度数;③若,求的值参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、B5、B6、A7、A8、B9、B10、A11、B12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,在正方形中,对角线相交于点,以为边向外作等边,连接交于若点为的延长线上一点,连接,连接且平分,下列选项正确的有()①;②;③;④A. 个B. 个C. 个D. 个2、一个等腰三角形的顶角等于70°,则这个等腰三角形的底角度数是()A.50°B.55°C.65°D.110°3、如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为()A.30°B.50°C.90°D.100°4、如图,在中,的垂直平分线交于点D,连接,若,,则的度数为()A.90°B.95°C.105°D.115°5、下列大学的校徽图案是轴对称图形的是()A. 浙江大学B. 北京大学C.中国人民大学 D. 清华大学6、如图,已知等腰三角形中,,,分别以、两点为圆心,以大于的长为半径画圆弧,两弧分别交于点、,直线与相交于点,则的度数是()A.50°B.60°C.75°D.45°7、下列“数字”图形中,有且仅有一条对称轴的是()A. B. C. D.8、如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A. B. C. D.9、有五张完全相同的卡片,正面分别画有平行四边形、等边三角形、正五边形、矩形、圆,将它们打乱顺序后背面向上,从中随机选取一张卡片,正面图形既是中心对称图形又是轴对称图形的概率为()A. B. C. D.10、等腰三角形的一个角是94°,则腰与底边上的高的夹角为()A.43°B.53°C.47°D.90°11、下列语句正确的是()A.线段绕着它的中点旋转180°后与原线段重合,那么线段是中心对称图形 B.正三角形绕着它的三边中线的交点旋转120°后与原图形重合,那么正三角形是中心对称图形 C.正方形绕着它的对角线交点旋转90°后与原图形重合,则正方形是中心对称图形 D.正五角星绕着它的中心旋转72°后与原图形重合,则正五角星是中心对称图形12、如图,△ABC中,D,E,两点分别在AC,BC上,DE为BC的中垂线,DB为∠ADE的角平分线。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如下图所示的美丽图案中,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个2、将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是()A.等腰三角形B.直角三角形C.矩形D.菱形3、如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A. B. C. D.4、如图,已知△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=ECB.AE=BEC.∠EBC=∠BACD.∠EBC=∠ABE5、如图(1),E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.如果点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为,已知y与t的函数关系的图象如图(2)所示,那么下列结论正确的是()A.AE=8B.当0≤t≤10时,C.D.当t=12s时,△BPQ是等腰三角形6、如图,在中,,过点作交于点.若,则的度数为()A.18°B.20°C.30°D.36°7、下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个8、如图,△ABC中,∠ACB=90°,∠ABC=40°,将△ABC绕点B逆时针旋转得到△A'BC',使点C的对应点C'恰好落在边AB上,则∠CAA'的度数是()A.50°B.70°C.110°D.120°9、下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形B.等腰梯形C.平行四边形D.线段10、如图,△ABC中,AB,AC的垂直平分线分别交BC于D,E,若∠BAC=110°,则∠DAE的度数为( )A.40B.45C.50D.5511、如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,则下列四个判断中不一定正确的是()A.四边形ADEF一定是平行四边形B.若∠B+∠C=90°,则四边形ADEF是矩形C.若四边形ADEF是菱形,则△ABC是等边三角形D.若四边形ADEF是正方形,则△ABC是等腰直角三角形12、如图,把直角三角形ABO放置在平面直角坐标系中,已知,B 点的坐标为,将沿着斜边AB翻折后得到,则点C的坐标是()A. B. C. D.13、下面的图形中,不是轴对称图形的是()A. B. C. D.14、如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC 的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.4B.5C.5.5D.615、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)二、填空题(共10题,共计30分)16、如图,AB+AC=7,D是AB上一点,若点D在 BC的垂直平分线上,则△ACD 的周长为________.17、等腰三角形中,已知两边的长分别是9和6,则周长为________.18、如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB 于E,且AB=8cm,则△BED的周长是________ cm.19、学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手讲:“另两条边长为3、6或4.5、4.5”,你认为小明回答是否正确:________,理由是________.20、如图,∠ABD=76°,∠C=38°,BC=30cm,则BD的长为________.21、在等腰三角形ABC中,有一边的长为4cm,另一边的长是8cm,则它的周长为________cm.22、如图,在Rt△ACB中,∠C=90°,BC=4,AB=5,BD平分∠ABC交AC于点D,则AD=________.23、如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB=________ cm.24、如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是________ .25、如图,矩形的两对角线相交于点O. ,,则的长为________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、如图,在△ABC中,∠ABC=90º,∠C=60º,BD⊥AC,G是AC中点,求∠GBD的度数.28、如图3,在△ABC中,已知AD是∠BAC的平分线,DE.DF分别垂直于AB.AC ,垂足分别为E.F ,且D是BC的中点,你认为线段EB与FC相等吗?如果相等,请说明理由.29、如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,﹣1),交x轴与A、B两点,交y轴于点C,其中点B的坐标为(3,0).(1)求该抛物线的解析式;(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线CB对称,求直线CD的解析式.30、如图,△ABE和△BCD都是等边三角形,且每个角是60°,那么线段AD与EC有何数量关系?请说明理由.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、C5、D6、A7、C8、D9、D10、A11、C12、C13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,在等边△ABC中,点E是AC边的中点,点P是△ABC的中线AD上的动点,且AD=6,则EP+CP的最小值是( )A.12B.9C.6D.32、如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( )A.80°B.75°C.65°D.45°3、下列命题是假命题的是()A.线段垂直平分线上的点到线段两端的距离相等B.三角形的一个外角等于与它不相邻的两个内角的和C.有一个外角是120°的等腰三角形是等边三角形D.有两边和一角对应相等的两个三角形全等4、如图,已知,求作一点,使到的两边的距离相等,且.下列确定点的方法正确的是( )A. 为、∠B两角平分线的交点;B. 为的角平分线与AB的垂直平分线的交点; C. 为、AC两边上的高的交点; D. 为、AC两边的垂直平分线的交点;5、下列几何图形中,一定是轴对称图形的是()A.三角形B.四边形C.平行四边形D.圆6、如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为()A.8B.4C.8D.67、将三角形纸片按如图所示的方式折叠,使点落在边上,记为点,折痕为.已知,若以点为顶点的三角形与相似,那么的长度是()A. B. C. 或4 D. 或48、等边三角形、矩形、菱形、正方形、等腰梯形这五个图形中,既是轴对称又是中心对称的图形有()个.A.2B.3C.4D.59、第24届冬季奥运会,将于2022年由北京市和张家口市联合举办,下列四个图案是历届会徽图案的一部分图形,其中不是轴对称图形的是()A. B. C. D.10、如图,在口ABCD中,AB=6,BC=10,AC的垂直平分线交AD于点E,则△CDE的周长是()A.12;B.14;C.16;D.18.11、在下列四个交通标志图中,是轴对称图形的是()A. B. C. D.12、如图,在△ABC中,∠CAB=70°,∠B=30°,在同一平面内,将△ABC绕点A逆时针旋转40°到△A′B′C′的位置,则∠CC′B′=()A.10°B.15°C.20°D.30°13、如图,直角梯形纸片对边,是直角,将纸片沿着EF折叠,DF的对应边交AB于点G,FH平分交AC于点H.则结论:①;② ;③ ;④若,则.其中正确结论的个数为()A.4个B.3个C.2个D.1个14、已知等腰三角形两边长分别为,,则这个三角形的周长是()A. B. C. 或 D.15、如图四个手机应用图标中是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、在中,AH是BC边上的高,若CH- BH= AB,,则∠BAC= ________。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,,,若,,则点D到的距离为()A.4B.6C.8D.102、如图所示,在中,,平分,,,则点到的距离为( )A.18B.12C.15D.无法确定3、下列说法,正确的是()A.等腰三角形的高、中线、角平分线互相重合B.到三角形二个顶点距离相等的点是三边垂直平分线的交点C.三角形一边上的中线将三角形分成周长相等的两个三角形D.两边分别相等的两个直角三角形全等4、如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1B.2C.3D.45、将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则的大小为()A.80°B.100°C.120°D.不能确定6、下列图形中,是轴对称图形的是()A. B. C. D.7、如图,DE⊥BC,BE=EC,且AB=5,AC=8,则△ABD的周长为()A.21B.18C.13D.98、已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A.8或10B.8C.10D.6或l29、如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.50°B.60°C.70°D.80°10、如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB 交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+ ∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;=ab.④若OD=a,CE+CF=2b,则S△CEF其中正确的是()A.①②B.③④C.①②④D.①③④11、下列图形中是轴对称图形,但不是中心对称图形的是()A. B. C. D.12、如图,已知△ABC中,∠CAB=∠B=30°,AB=2 ,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为()A. B. C.3﹣ D.13、用数学的眼光观察下面的网络图标,其中可以抽象成轴对称图形的是()A. B. C. D.14、如图,△ABC中,边AB的垂直平分线与AC交于点D,与AB交于点E,已知AC=6,BC=4,则的周长是()A.7B.8C.9D.1015、如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是()A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点O为坐标原点,等边△ABO的边OB和菱形CDEO的边EO均在x轴上,点C在AO上,,反比例函数的图像经过A点,则k的值为________.17、等腰三角形的腰长为17,底长为16,则其底边上的高为________.18、如图,将等边三角形ABC绕点A顺时针旋转得到等边三角形ADE,若AD 与BC交于点F,且,则的值是________.19、如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为________.20、设二次函数的图象顶点为,与轴交点为、,当为等边三角形时,的值为________.21、如图,在中,的垂直平分线分别交、于点E、F.若是等边三角形,则________°.22、如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为________ cm.23、如图,把一张平行四边形纸片,沿BD对折,使C点落在E处,BE与AD相交于点O,若________°.24、如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°,则∠ABD=________°.25、如图,在△ABC中,D为AB上一点,AD=CD=BC,若∠ACD=40°,则∠B=________°.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、作图题:(要求保留作图痕迹,不写作法)(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);(2)连结BE,若AC=10,AB=6,求△ABE的周长.28、如图,△ABE和△BCD都是等边三角形,且每个角是60°,那么线段AD与EC有何数量关系?请说明理由.29、如图,在△ABC中,AB=BC,点E为AC的中点,且∠DCA=∠ACB,DE的延长线交AB于点F。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、下列“QQ表情”中属于轴对称图形的是( )A. B. C. D.2、如图,等腰△ABC的周长为17,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.11B.12C.13D.163、如图,平分,为上一点,分别在上,且满足,若,则的度数是()A.40°B.50°C.60°D.70°4、如图,点P是∠AOB平分线上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A.1B.2C.D.45、如图,△ABC中,AB=AC=2,BC=2 ,D点是△ABC所在平面上的一个动点,且∠BDC=60°,则△DBC面积的最大值是( )A.3B.3C.D.26、在正方形ABCD所在平面内找一点P,使P点与A、B、C、D中两点都连在一个等边三角形,那么这样的P点有()A.5个B.12个C.9个D.15个7、如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AB的垂直平分线交BC于点D,连接AD,则△ACD的周长是()A.7B.8C.9D.108、如图,直角梯形纸片对边,是直角,将纸片沿着EF折叠,DF 的对应边交AB于点G,FH平分交AC于点H.则结论:①;② ;③ ;④若,则.其中正确结论的个数为()A.4个B.3个C.2个D.1个9、如图,矩形中,,,以为圆心,长为半径画圆弧,交于点,则的长为()A. B. C. D.10、如图,OP平分∠AOB,PC⊥OA于点C,点D在OB上,PC=3,则PD的取值范围是()A.PD≥3B.PD>3C.PD≤3D.不能确定11、底边上的高为3,且底边长为8的等腰三角形腰长为().A.3B.4C.5D.612、已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°13、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14、如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.若∠BAC=45°,AM=4,DM=3,则BC 的长度为()A.8B.7C.6D.515、如图,在中,,据尺规作图的痕迹判断以下结论错误的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在中,, , , ,是的平分线.若, 分别是和上的动点,则的最小值是________.17、已知等腰三角形一边等于5,另一边等于9,它的周长是________。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为A.15°B.30°C.45°D.60°2、下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形D.线段3、如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=40°,则∠CDE的度数为()A.50°B.40°C.60°D.80°4、如图,将半径为8的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A. B. C.8 D.105、如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=3,则△BCE的面积等于()A.11B.8C.12D.36、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°7、如图,MN∥BC,将△ABC沿MN折叠后,点A落在点A′处,若∠A=28°,∠B=120°,则∠A′NC多少度?()A.88°B.116°C.126°D.112°8、如图,△ABC中,AB=AC,BD=CD,下列说法不正确的是( )A.∠BAD= ∠BACB.AD=BCC.∠B=∠CD.AD⊥BC9、如图,在中,将绕点A按逆时针方向旋转得到.若点恰好落在BC边上,且,,则的度数为().A.72°B.108°C.144°D.15610、如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是( )A.线段CD的中点B.OA与OB的垂直平分线的交点C.OA与CD的垂直平分线的交点D.CD与∠AOB的平分线的交点11、如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,BC=6,AB=5,则△ABD的周长为( )A.13 cmB.12 cmC. 11cmD.10 cm12、下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个13、下列三角形中,等腰三角形的个数是()A.4个B.3个C.2个D.1个14、如图是常见的安全标记,其中是轴对称图形的是()A. B. C. D.15、如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CDB.AE>CDC.AE<CDD.无法确定二、填空题(共10题,共计30分)16、如图是一张矩形纸片,点E在AB边上,把沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=________,BE=________.17、如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为________ .18、如图,AB为⊙O的直径,半径OA的垂直平分线交⊙O于点C,D,P为优弧AC上一点,则∠APC=________°.19、如图,在中,,是的中垂线,分别交,于点,.已知,,则的周长是________.20、如图是3×3正方形网格,其中已有4个小方格涂成了黑色.移动其中一个黑色方块到其他无色位置,使得整个图形成为轴对称图形(包括黑色部分),你有________ 种不同的移法.21、若锐角△ABC中,AB=AC,过其一个顶点可以画出一条直线把△ABC分成两个等腰三角形,则∠A=________度.22、一个等腰三角形的一个内角为50°,这个等腰三角形的一条腰上的高与底边的夹角是________.23、如图,四边形ABCD为一长条形纸带,AB∥CD,将纸带ABCD沿EF折叠,A、D两点分别与A’、D’对应,若∠1=2∠2,则∠AEF的度数为________•24、在同一平面内,将一副直角三角板ABC和EDF如图放置(∠C=60°,∠F=45°),其中直角顶点D是BC的中点,点A在DE上,则∠CGF=________°.25、如图,四边形是一张正方形纸片,其面积为.分别在边,,,上顺次截取,连接,,,.分别以,,,为轴将纸片向内翻折,得到四边形,若四边形的面积为,则________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD 交于点O,连接CD.求证:△CDO是等腰三角形28、在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,BD=1,求BC的长.29、如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,画出△ABC关于x轴对称的△A2B2C2并写出△A2B2C2的顶点坐标.30、如图,在中,,CD平分交AB于点D,于点E,交CD于点F.求证:.参考答案一、单选题(共15题,共计45分)2、C3、C4、B5、C6、C7、B8、B9、B10、D11、C12、B13、B14、A15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、30、。
1
轴对称图形
选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)
1.2.平面上有A、B两个点,以线段AB为一边作等腰直角三角形能作 ( )
A.3个 B.4个 C.6个 D.无数个
2.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足
分别为A、B两点,则∠MAB等于 ( )
A.50° B.40°
C.30° D.20°
3.已知等腰三角形的一个外角等于100°,则它的顶角是 ( )
A.80° B.20° C.80°或20° D.不能确定
4.下列语句中,正确的有 ( )
①关于一条直线对称的两个图形一定能重合; ②两个能重合的图形一定关于某条直线对称;
③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.
A.1个 B.2个 C.3个 D.4个
5.如图1,已知AB=AC=BD,那么( )
A.∠1=∠2 B.2∠1+∠2=180° C.∠1+3∠2=180° D.3∠1-∠2=180°
图1 图2
6图2是人字形屋架的设计图,由AB,AC,BC,AD四根钢条焊接而成,•其中A,B,C,D 均为焊接点,
且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D,如果焊接工身边只有
可检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接的点是( )
A.AB和BC,焊接点B;B.AB和AC,焊接点A;C.AD和BC,焊接点D;D.AB和AD,焊接点A
二、填空题(不需写出解答过程,请把答案直接填写在相应位的置.....上)
7.若直角三角形斜边上的高和中线长分别是5 cm,6 cm,则它的面积是________.
8.(1)若直角三角形斜边上的高和中线分别为10 cm、12 cm,则它的面积为__________cm2.
(2)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为__________.
9.等腰三角形中有一个角是50°,它的一条腰上的高与底边的夹角为________.
10.如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.(1)若∠C=700,
则∠BEC= ;(2)若BC=21cm,则△BCE的周长是 cm.
11.如图,∠MAN是一钢架,且∠MAN=150,为使钢架更加坚固,需在其内部加一些钢管CD、DE、EF……
添加的钢管长度都与AC相等,则最多能添加这样的钢管 根.
12.(1)如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD= 2.2 cm,AC=3.7 cm,
则点D到AB边的距离是__________cm.
(2)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B的度数为
__________.
2
13.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.
(1)若△AEF的周长为10 cm,则BC的长为__________cm. (2)若∠EAF=100°,则∠BAC__________.
14.(1)如图①,在Rt△ABC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=__________.
(2)如图②,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=__________.
三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明 过程或演算步骤)
15.如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)
(17图)
(16图)
16.如图,在△ABC中,AB=AC,BC=BD=ED=EA,求∠A的度数.
17.如图,在四边形ABCD中,∠BAD=∠BCD=90°,O为BD的中点,∠OAC和∠OCA相等吗?请说明理由.
18.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点
P″.
(1)试猜想∠POP″与a的大小关系,并说出你的理由.
(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?
(18题图)
第二章:轴对称图形答案
一. 选择 1.C 2.D 3.C 4.B 5.D 6.C
二.填空
3
7.30 cm2 8.(1)120 (2)80°或20°9.25°或40°10.(1)80° (2)53cm 11.5
12.(1)1.5 (2)70°或20°13.(1)10 (2)140° 14.(1)20°(2)45°
三.解答题
15.略 16.设∠A=x.因为AE=ED,所以∠ADE=∠A=x.又∠BED为△AED的外角,所以∠BED=∠ADE+
∠A=2x.因为BD=ED,所以∠DBE=∠DEB=2x.因为∠BDC为△ABD的外角,所以∠BDC=∠EBD+∠A=3x.因为
BD=BC,所以∠BDC=∠C=3x.因为AB=AC,所以∠ABC=∠C=3x.又因为△ABC的内角和为180°,所以
22+3x+3x=180°.解得x=(1807) °,即∠A=(1807) °
17.相等 ∵∠BAD=∠BCD=90°,O为BD中点,∴OA=12BD,OC=12BD,
∴OA=OC,∴
∠OAC=∠OCA.
18.(1) ∠POP″=2a. (2)结论仍成立.