0_0型未定式极限的五种求解方法
- 格式:pdf
- 大小:176.22 KB
- 文档页数:2
未定式极限的求解方法分析通过总结未定式的极限的求解方法,分析了常用的求未定式的极限方法,以帮助初学者对未定式极限的求解方法更好的理解和掌握。
标签:未定式;极限;求解方法极限对初学者而言,是一道很难过的关,尤其是未定式的极限求解。
但为了学好高等数学还是要打好这个基础。
在求解极限的过程中,经常会遇到求解未定式极限的问题,常用的未定式的极限主要就分成以下五种类型,分别是00,∞∞,0·∞,∞-∞以及00,1∞,∞0。
后面三种的解决方式相同,所以常看成一种类型。
本文将从五个方面,通过利用罗比达法则以及恒等变形的方法,对常用的未定式极限的求解方法进行解析。
1 00型未定式解决这类未定式问题一般可以通过五种方法解题:1.1 因式分解法,约去零因式,转化为普通的极限问题例 1 (1)求极限lim x→4x2-7x+12x2-5x+4.(2)求极限lim x→1x n-1x m-1(m,n∈N+,m≠n).解(1)当x→4时,此极限是00型,因为分子和分母有公因式x-4,而x→4时,x-4≠0,可约去这个公因式。
所以lim x→4x2-7x+12x2-5x+4=lim x→4(x-3)(x-4)(x-1)(x-4) =lim x→4x-3x-1=13.(2)当x→1时,此极限是00型,因为分子和分母有公因式x-1,而x→1时,x-1≠0,可约去这个因式。
所以lim x→1x n-1x m-1=lim x→1(x-1)(x n-1+x n-2+Λ+x+1)(x-1)(x m-1x m-2+Λ+x+1)=lim x→1(x n-1+x n-2+Λ+x+1)(x m-1+x m-2 +Λ+x+1)=nm.1.2 根式有理化,再约去零因子,转化为普通的极限问题例2(1)求极限lim x→01-1+x2x 2.(2)求极限lim x→4x-2-22x+1-3.解(1)当x→0时,此极限是00型,将分子有理化得lim x→01-1+x2x2=lim x→0(1-1+x2)(1+1+x2)x2(1+1+x2)=lim x→0-x2x2(1+1+x2)=lim x→0-11+1+x2=-12.(2)当x→4时,此极限是00型,将分子分母同时有理化得lim x→4x-2-22x+1-3=lim x→4(x-2-2)(x-2+2)(2x+1+3)(2x+1-3)(x-2+2)(2x+1+3)=lim x→4(x-4)(2x+1+3)2(x-4)(x-2+2)=lim x→42x+1+32(x-2+2)=322.1.3 两个重要极限之(一)法求极限例 3 (1)求极限lim x→0tg xx.(2)求极限lim x→01-cos xx 2.解(1)lim x→0tg xx=lim x→0siim xx·1cos x=limx→0sin xx·lim x→01cos x=1.(2)lim x→01-cos xx2=lim x→02sin2x2x2=lim x→012sin x2x22=12.1.4 等价无穷小量代换法求极限例 4 (1)求极限lim x→01-cos x ln(1+2x).(2)求极限lim x→∞tg31n·arctg3nn sin2n3·tg1n·arcsin5n.解(1)当x→0时,1-cos x~12x2,ln(1+2x)~2x,所以lim x→01-cos x ln(1+2x)=lim x→012x22x=0.(2)当n→∞时,tg1n~1n,arctg3nn~3nn,sin2n3~2n3,tg1n~1n,arcsin5n~5n,所以lim x→∞tg31n·arctg3nn sin2n3·tg1n·arcsin 5n=lim x→∞1n3·3nn2n3·1n·5n=310.1.5 罗比达法则求极限法求极限例 1 (1)求极限lim x→0e x-e-x-2xx-sin x.(2)求极限lim x→0(1+x)α-1x(α为任意实数).解(1)lim x→0e x-e-x-2xx-sin x00=lim x→0e x-e -x-21-cos x00=lim x→0e x-e-x sin x00=lim x→0e x+e-x cos x=2.(2)lim x→0(1-x)α-1x00=lim x→0α(1+x)α-11=α.2 型未定式2.1 多项式商的未定式极限一般有如下结论lim x→0a0x n+a1x n-1+Λ+a n-1x+a nb0x m +b1x m-1+Λ+b m-1x+b m=0n<m a0b0n=m∞n>m.其中a1,a1,Λ,a n,b0,b1,Λ,b n为常数,且a0≠0,b0≠0,m,n为正整数。
极限七种未定式及解法是什么?
未定式是高等数学中求极限中常见的问题,它不能直接代入计算。
一共有7种。
分别是0比0,∞比∞,0*∞,1^∞,0^0,∞^0和∞-∞型。
未定式是指如果当x→x0(或者x→∞)时,两个函数f(x)与g(x)都趋于零或者趋于无穷大,那么极限lim [f(x)/g(x)] (x→x0或者x→∞)可能存在,也可能不存在,通常把这种极限称为未定式,也称未定型。
未定式通常用洛必达法则求解
相关定义
如果当x→x0(或者x→∞)时,两个函数f(x)与g(x)都趋于零或者趋于无穷大,那么极限lim [f(x)/g(x)] (x→x0或者x→∞)可能存在,也可能不存在,通常把这种极限称为未定式或者未定型,分别用0/0和∞/∞来表示。
对于这类极限,不能直接用商的极限等于极限的商来求,通常用洛必达法则(或译作罗必塔法则)来求解。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。