超氧化物歧化酶(SOD)
- 格式:doc
- 大小:59.50 KB
- 文档页数:6
超氧化物歧化酶超氧化物歧化酶广泛存在于动物、植物、微生物体内,它能够专一性地清除生物氧化过程中产生的超氧化物自由基,是生物抗氧化系统的重要酶类之一。
1、作为药用酶、保健食品:人的机体内由于各种原因而产生的过量的自由基、特别是超氧阴离子自由基(O2-.),它对人体内的多种疾病都有关系。
如炎症、放射性疾病、自身免疫性疾病、肿瘤以及衰老等,所以SOD对治疗自身免疫性疾病如红斑狼疮、风湿类风湿关节炎、肺气肿、心脑血管疾病、延缓衰老等方面都有明显的效果。
通过适当的途径对人体补充适量的SOD对延缓衰老能达到很满足的效果。
现在美国等国为延缓衰老广泛掀起了注射SOD的狂潮,而SOD的售价甚至超过黄金的价格(美国FDA于1998年批准使用SOD)。
作为药用酶在美国、德国、澳大利亚等海内已有产品出售,商品名称为oigotal oimie oitocetn pdlOCeirt pdvciFlOm等,在我国也有超氧化物歧化酶注射剂的生产。
我们生产的药用SOD的酶比活在3000u /mg以上,在一4℃冰柜里可保存二年。
2、作为化妆品的添加剂:英国人类基因研究委员会的科学家哈里斯博士指出“科学家过去以为衰老过程是由人体的生物中所预设,但根据基因研究所显示,人体衰老主要是人体的保养及修补系统缺陷”。
英国科学家Hacman則认为人体衰老的主要原凶就是自由基(Fvet)。
在正常情况下,自由基由产生到清除,是处于平衡状态。
由于年龄的增长,自由基逐渐增多,它和人体的蛋白质、核酸、免疫细胞相结合,导致器管老化,免疫力下降。
过氧自由基就通过各种渠道,损害机体,如氧自由基能引起脂质过氧化,过氧脂质与蛋白质交联,产生不溶性蛋白质。
这种变化以结缔组织中胶原蛋白最明显,它能导致胶原变粗,长度缩短,使皮肤失去膨胀力,即所渭皱纹。
此外,过氧化脂质在氧化酶的作用下,能分解成丙二醛等并与邻脂酰乙醇胺之交联生成黄色色素,然后再与蛋白质、核酸等物质形成紫褐色质,即所谓老年斑。
超氧化物歧化酶(SOD)编辑超氧化物歧化酶(Superoxide Dismutase SOD)是一种广泛存在于动植物、微生物中的金属酶。
能催化生物体内超氧自由基(O2-)发生歧化反应,是机体内O2-的天然消除剂[1] 。
从而清除O2-,在生物体的自我保护系统中起着极为重要的作用。
在免疫系统中也有极为重要的作用[2] 。
中文名丹青宝牌SOD口服片外文名superoxidedismutase别称抗衰老之星主要原料SOD、人参,黄芪是否含防腐剂否主要营养成分SOD是超氧化物歧化酶主要食用功效清除自由基、逆转亚健康、延缓衰老,改善睡眠、改善肠胃功能、预防老年性痴呆,抗氧化、抗辐射损伤,提高免疫力适宜人群老人、儿童、妇女,免疫低下者、术后康复者副作用无储藏方法避光,置于阴凉干燥处目录1简介2SOD的研发史1简介编辑SOD是一种金属酶,含有铜和锌两种离子,需氧。
生物中,SOD催化使对抗体有关的超氧阴离子变成双氧水,随后被双氧水分解,保护机体免受超氧阴离子的影响,是一种新型的抗氧化酶。
超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白,简称:SOD。
SOD是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。
对人体不断地补充SOD具有抗衰老的特殊效果。
2SOD的研发史编辑1938年英国科学家Mann和Keilin首次从牛红血球中分离出一种含铜蛋白质,最初定名为血铜蛋白。
1956 年英国教授Harman D提出了“自由基衰老学说”,认为自由基是引起衰老和疾病的最终根源。
1969年美国生化专家Fridovich和他的学生Mccord从牛红细胞中重新发现这种蛋白,定名为SOD,并报告SOD有清除自由基的作用。
1980年日本著名医学博士羽靳负指出:关节神经痛、白内障、黄褐斑、癌症等,多种疾病与过量的自由基有关,SOD可以有效清除自由基。
1985年全世界100多个国家的数百位科学家一致公认人体内存在着一套对抗自由基的机制,这套机制由体内SOD支配和调控,SOD是对抗和俘获自由基的核心力量,是体内唯一以自由基为底物的清除剂。
超氧化物歧化酶
超氧化物歧化酶(Superoxide dismutase,SOD)是一种存在于细胞内的酶类物质,它在生物体内起着重要的抗氧化作用。
超氧化物歧化酶能够催化超氧自由基(superoxide radical)的还原反应,将其转化为氧气(O2)和过氧化氢(H2O2)。
这一反应能够有效地减少超氧自由基的浓度,从而减轻细胞和组织的氧化应激损伤。
超氧化物歧化酶存在于多种生物体中,包括人类、动物和植物。
在人类体内,超氧化物歧化酶分为不同的亚型,主要包括铜锌超氧化物歧化酶(Cu/Zn-SOD)、锰超氧化物歧化酶(Mn-SOD)和细胞外超氧化物歧化酶(EC-SOD)。
它们分别位于细胞质、线粒体和细胞外基质中,以适应不同的氧化环境。
超氧化物歧化酶对细胞的保护作用非常重要。
超氧自由基是一种高度反应性的氧自由基,在细胞代谢过程中产生,并与其他氧自由基共同引发氧化应激反应。
氧化应激反应可以导致细胞膜的脂质过氧化、蛋白质的氧化修饰以及核酸的损伤,进而引发多种疾病和衰老过程。
超氧化物歧化酶通过清除超氧自由基,可以降低细胞氧化应激水平,维护细胞内的氧化平衡。
研究表明,超氧化物歧化酶在许多疾病的发生和发展中发挥着重要作用。
例如,某些遗传性疾病与超氧化物歧化酶的功能缺陷有关,导致细胞氧化应激增加。
此外,超氧化物歧化酶也与神经退行性疾病、心血管疾病、肿瘤等疾病的发生密切相关。
因此,研究超氧化物歧化酶的功能和调控机制对于理解疾病的发病机理以及开发相关的治疗方法具有重要意义。
超氧化物歧化酶超氧化物歧化酶,别名肝蛋白、奥谷蛋白,简称:SOD。
SOD是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。
对人体不断地补充SOD具有抗衰老的特殊效果。
超氧化物歧化酶是1938年Marn等人首次从牛红血球中分离得到超氧化物歧化酶开始算起,人们对SOD的研究己有七十多年的历史。
1969年McCord等重新发现这种蛋白,并且发现了它们的生物活性,弄清了它催化过氧阴离子发生歧化反应的性质,所以正式将其命名为超氧化物歧化酶。
SOD(超氧化物歧化酶)是国际上公认的具有人体垃圾“清道夫”、“抗衰王”、“美容骄子”之称,是对抗“百病之源”活性氧自由基最有力的物质,是近半个世纪以来社会科学界、医学界、生物界最举世瞩目的价值发现,它的研究与发展代表着生物医药的高科技技术发展的前沿,在科技成果及学术领域占据重要的国际地位。
SOD(超氧化物歧化酶)被国家列入生物医药“国家十一五规划”重点项目。
2011年是“国家十二五规划”的第一年,SOD行业将再次跻身国家当前优先发展的高科技产业化项目,标志着中国健康产业链SOD新兴行业的崛起, 使全人类迈入健康经济时代。
利用超氧化物歧化酶(SOD)产业化建设,一方面可架构生物医药、保健食品、日用美容化妆品、化工化学、农业五大版块经济支柱的绿色产业链循环经济圈发展。
另一方面打造SOD科技应用成果转化的孵化器平台引领生化医药美容化妆品食品等行业的新型健康原料的应用,有利于促进再生资源利用,产生巨大的社会效益和经济效益。
一、反应机理超氧化物岐化酶,它催化如下的反应:2O2-+2H+→H2O2+O2O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。
它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。
SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。
尽管过氧化氢仍是对机体有害的活性氧,但体内的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解为完全无害的水。
线粒体超氧化物歧化酶线粒体超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一种酶类,广泛存在于动植物的细胞中,具有非常重要的生物学功能。
1. SOD的基本概念SOD主要是用于清除机体内过量产生的超氧自由基(O2-)。
超氧自由基是一种非常活泼的氧化物质,会造成机体内如蛋白质、DNA、脂质等大量的氧化损伤,因此,SOD具有非常重要的生物学意义。
2. SOD的种类与结构SOD分为三种基本类型,即胞浆型(Cu/Zn SOD)、线粒体型(Mn SOD)和胶质型(EC SOD)。
而其中最重要的是线粒体类型的SOD,它主要位于线粒体内膜上,负责清除线粒体内大量产生的超氧自由基,防止线粒体功能受损。
SOD的分子结构比较复杂,具有四个亚基,每个亚基中含有一个金属离子,通常为铜和锰。
这些金属离子的存在是SOD的功能发生的重要前提,也是SOD的研究热点之一。
3. SOD的生物学功能SOD是一种非常重要的抗氧化酶,可以清除机体内过量产生的超氧自由基。
超氧自由基是一种具有极强氧化性的自由基物质,可以对人体内的各种生物大分子进行氧化损伤,如蛋白质结构的改变、破坏细胞膜的完整性、DNA的损伤等。
SOD负责清除这些超氧自由基,从而使细胞和组织得到保护,从而维持细胞健康。
在某些疾病或生理情况下,机体的SOD活性下降,则会产生大量的超氧自由基,导致机体出现不同程度的氧化损伤。
此外,SOD还具有其它生物学功能,如参与细胞周期调节、生长发育等生命过程,尤其在人类肿瘤组织的清除方面具有独特作用。
总之,SOD是一种非常重要的生物学分子,在人类的健康和生命中扮演着重要的角色。
对SOD的研究将有助于我们更好地了解生命的本质,探索疾病的本质,为人类健康做出更大的贡献。
超氧化物歧化酶概述第一节超氧化物歧化酶简介超氧化物歧化酶(SOD),是英文Superoxide Dismutase的缩写,是体内对抗自由基的第一道防线。
当我们身体吸入氧气进行新陈代谢,就会产生超氧阴离子自由基,若不予以消除,会在体内产生连锁反应,破坏我们的细胞,是人体老化及疾病的元凶。
正常情况下,体内自由基的产生和清除处于动态平衡。
机体在自由基清除不足和抗氧化能力下降的情况下,生物膜的氧化作用增强,体内氧化物增多。
而SOD对清除体内致病因子-超氧自由基有特效。
SOD复合酶是唯一能清除细胞中自由基的酶,自由基是带有不成对电子、原子或离子,其化学性质活泼,有极高的氧化性能,以夺取核酸、氨基酸等生物分子的电子,使这些物质性质演化成毒性更强的羟自由基,可导致机体的多种疾病。
研究表明,机体的衰老、病变及辐射伤害都同自由基的形式有关,故SOD有抗衰老、抗辐射、消炎、抑制肿瘤和癌症的功能。
研究还表明,SOD对胃病、气管炎、皮肤病、烧伤、脚气等都有独特疗效,对醒酒、亢奋精神、抗疲劳、恢复体力、减肥也有很好的效果,目前在化妆品、食品、保健品、医药、酒类、饮料等行业也已开始使用SOD,其发展前景十分广阔。
SOD对放疗、化疗患者白细胞有明显的保护作用,SOD能够十分有效地维持白细胞的数量,从而可以加速治疗进程。
SOD不同于其他细胞因子(如CSF类),后者不能在化疗中配合使用。
由于体内的SOD随着年龄的增加而渐减,再加上环境的恶化,大量的自由基超过身体所能应付的程度,健康就会亮起红灯,皮肤会变得粗糙、松驰、满是斑点,人就显得没有元气,因此借助外来的补充是必需的。
当今,以SOD为主要成份的产品风靡世界,引发了美容化妆品的革命,国外许多饮料、糖果、糕点都添加SOD。
人们为求永葆青春、健美、延年益寿,非常乐于使用昂贵的SOD针剂。
1.1.1 人体抗衰老物质SOD的发现1938年,英国Mann等人首次从小牛血液中分离出一种含铜的蓝绿色蛋白质。
SOD名词解释生物化学
SOD,即超氧化物歧化酶,是一种重要的酶,存在于动植物体内,主要作用是降解有害的超氧化物,如遇氧单位,这种物质被称为SOD,是一种苯并芘化的抗氧化剂,可以抵抗自由基的毁坏作用,起到调节氧化对有机大分子的保护作用,是人体自身抗氧化防御的重要组成部分,而生物化学则是研究有机物质在生物活动中的化学反应和物理变化的学科。
生物化学研究SOD有着十分重要的意义,超氧化物歧化酶作为一种重要的酶,具有防腐蚀、抵抗氧化、促进新陈代谢等作用。
由于其具有调节氧化活性的功能,因此,在生物化学的研究中,SOD的作用是十分重要的。
SOD的形成是生物有机体自身抗氧化防御机制不可缺少的组成部分,生物由于其独特的组织和功能,通过不断产生自身抗氧化物质来调节氧气含量,从而实现抗氧化防御,SOD是其主要抗氧化物质之一。
SOD可以有效降低氧气积累,及时清除氧自由基,减少多种有害物质对高细胞的毁坏作用,这种重要功能也是生物化学研究的重点之一。
通过对SOD的研究,可以发现其在动植物体内的具体作用,如何发生和控制,这些对于研究生物化学有着重要的意义。
在基础研究领域,通过改变SOD活性,可以探索其在特定生物体内如何发挥作用,这对生物化学研究者有重要意义。
另外,通过分析已有的SOD基因,可以揭示SOD的结构与功能的关系,有助于发现和改进有效的抗氧化剂,为研究生物化学过程奠定基础。
总而言之,超氧化物歧化酶(SOD)在生物化学研究中十分重要,它是生物体自身抗氧化防御的重要组成部分,它可以有效地抵抗自由基的毁坏作用,调节氧化对有机大分子的保护作用。
通过研究它,可以进一步探索和深入了解什么是生物化学,深入研究其机理,对研究生物化学有着深远的启迪。
sod超氧化物歧化酶SOD超氧化物歧化酶简介超氧化物歧化酶(Superoxide Dismutase,SOD)是一种重要的抗氧化酶,它能够催化超氧(O2·-)自由基的转化成较不活性的氧气(O2)和过氧化氢(H2O2),阻止细胞内自由基连锁反应的发生。
SOD广泛存在于生物体内,包括细菌、植物和动物。
超氧化物歧化酶的功能机制以及其对生物体的重要性已经成为研究的热点。
超氧化物歧化酶的类型超氧化物歧化酶主要有三种类型:铜锌SOD(CuZn-SOD)、锰SOD(Mn-SOD)和镁SOD(Mg-SOD)。
铜锌SOD广泛存在于细胞基质中,是最常见的超氧化物歧化酶;锰SOD主要存在于线粒体中,其活性也相对较高;镁SOD则主要存在于叶绿体中。
这三种不同类型的SOD在不同细胞器和细胞区域中发挥着重要的生物学功能。
超氧化物歧化酶的催化机理超氧化物歧化酶的催化机理是通过将超氧(O2·-)转化为氧气(O2)和过氧化氢(H2O2)来阻止细胞内部的氧化反应。
其中,铜锌SOD和锰SOD与超氧发生直接的物理反应,将超氧还原为氧气。
铜锌SOD通过铜离子的切换形成两个不同的亚型,分别为Cu2+和Cu1+,它们与超氧发生反应生成氧气和过氧化氢。
锰SOD则通过直接与超氧发生反应,将超氧转化为氧气和过氧化氢。
而镁SOD则通过将超氧转化为次氧(O2)和过氧化氢。
超氧化物歧化酶的生物学意义超氧化物歧化酶在细胞内发挥着重要的作用,是防治氧化应激的关键分子。
氧化应激是指细胞内氧化物质过量产生所引起的一系列有害反应,这些有害反应会对DNA、蛋白质和脂质等生物大分子造成损害。
超氧化物歧化酶能够将超氧自由基转化成较不活性的物质,从而有效减少细胞内的氧化应激反应,保护细胞免受自由基的损害。
超氧化物歧化酶与疾病超氧化物歧化酶在许多疾病的发生和发展中起着重要的作用。
许多疾病,如癌症、心脏病和神经退行性疾病等,都与氧化应激过程有关,超氧化物歧化酶的异常功能或缺乏会导致氧化应激反应的增加,从而增加疾病的风险。
超级氧化物歧化酶
超级氧化物歧化酶(SuperoxideDismutases,SOD)是一类由锰,铁或铜酶组成的蛋白质,在生物体内扮演关键角色,以抵御氧化物的损害。
超级氧化物歧化酶是一类典型的辅酶,其作用是将自由氧还原为水,并取代体内多种氧化过程,从而维持生物体系统的正常功能。
超级氧化物歧化酶在早期生命过程中就发挥着重要作用。
古代生物在没有发展出正确的酶系统来代替氧同化的情况下,抗氧化酶就发挥着非常重要的作用,保护生物体免受氧化物的损害。
超级氧化物歧化酶的醛基化反应能够转化超氧降低其危害,而酶解产物水和氧,可以参与回收有机物。
超级氧化物歧化酶有两种类型,即锰蛋白酶(MnSOD)和硫蛋白酶(FeSOD)。
MnSOD主要存在于胞内,是细胞内抗氧化系统中的重要组成部分,能够保护细胞免受自由基和氧化应激的损害。
FeSOD则存在于植物和动物体外环境中,主要参与植物体抗寒耐寒机制和光合作用的调控。
在哺乳动物体的衰老过程中,超级氧化物歧化酶的表达量明显降低。
这是因为老化活动会降低细胞内抗氧化酶的表达,老化过程中还会发生酶编码基因的突变,使得细胞内SOD失去了抗氧化作用。
老化过程中超级氧化物歧化酶的下降不仅会导致基因突变,还会增加活性氧累积,从而增加衰老物质的形成,如变性蛋白质等。
以上是超级氧化物歧化酶的作用介绍,它可以保护生物体免受氧化物的损害,维持生物体系统的正常功能,同时也可以通过参与其他
的合成反应起到调控作用。
然而,老化过程中超级氧化物歧化酶的表达量会明显降低,导致活性氧累积,加速衰老过程的发展。
因此,我们需要研究如何通过调节超级氧化物歧化酶的表达量,来抵御衰老过程,保护我们的健康。
超氧化物歧化酶(SOD)的生产技术引言超氧化物歧化酶(Superoxide Dismutase, SOD)是一种重要的酶类物质,可以将细胞内的超氧自由基转化为氢过氧化物和氧气,起到保护细胞免受氧化损伤的作用。
SOD的生产技术对于维护细胞的正常功能具有重要意义。
本文将介绍SOD的生产技术,以及常用的生产方法和工艺。
SOD的生产方法SOD的生产方法可以分为化学合成和生物合成两大类。
化学合成是通过化学反应合成SOD,这种方法简单但成本较高,并且产物纯度较低。
生物合成是利用生物体内的细胞合成SOD,这种方法具有高效、环保、产物纯度高等优点。
常用的SOD生产工艺1.发酵法:发酵法是生产SOD的常用工艺之一。
通过选用高效的SOD产生菌株,如大肠杆菌、曲霉等,将其加入到适宜的培养基中进行培养和发酵。
在培养过程中,要控制适宜的温度、pH值和培养时间等因素,以促进菌体的生长和SOD的合成。
2.超声波法:超声波法是一种物理方法,通过超声波的作用将SOD从生物源中提取出来。
这种方法操作简便,提取效率高,但需要使用专门的超声波提取设备。
3.冷冻法:冷冻法是利用冷冻技术将SOD从细胞中释放出来。
将含有SOD的细胞悬浮液经过低温冷冻处理,然后迅速解冻,细胞被破坏后,SOD从细胞中释放出来。
这种方法可用于大规模的SOD生产。
SOD生产技术的优化与创新为了提高SOD的产量和纯度,越来越多的研究人员致力于优化和创新SOD的生产技术。
以下是一些值得关注的技术和方法:1.基因工程技术:通过基因工程技术,可以将SOD的基因导入到高效表达的宿主中,从而实现大规模的SOD产生。
这种方法可以大大提高SOD的产量和纯度,并且可以对SOD进行结构与功能的改良。
2.提高发酵条件:通过调整发酵条件,如温度、pH值、培养基成分等,可以促进SOD的产生和合成。
同时,研究人员还可以通过优化发酵过程中的氧气供应、搅拌速度等参数,提高SOD的产量。
3.组合生产技术:将不同的SOD产生菌株或基因组合在一起,可以实现多种SOD的同时产生。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。