数列的概念及简单表示法知识点讲解+例题讲解(含解析)
- 格式:docx
- 大小:53.27 KB
- 文档页数:10
数列的概念与简单表示法【学习目标】1.掌握数列的概念与简单表示方法,能处理简单的数列问题.2.掌握数列及通项公式的概念,理解数列的表示方法与函数表示方法之间的关系.3.了解数列的通项公式的意义并能根据通项公式写出数列的任一项.4.理解数列的顺序性、感受数列是刻画自然规律的数学模型,体会数列之间的变量依赖关系. 【学习策略】数列是自变量为正整数的一类特殊的离散函数,因此,学习数列,可类比函数来理解。
关于数列的一些问题也常通过函数的相关知识和方法来解决.【要点梳理】要点一、数列的概念 数列概念:按照一定顺序排列着的一列数称为数列. 要点诠释:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项:数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项,第2项,…;排在第n 位的数称为这个数列的第n 项.其中数列的第1项也叫作首项.要点诠释:数列的项与项数是两个不同的概念。
数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号.类比集合中元素的三要素,数列中的项也有相应的三个性质: (1)确定性:一个数是否数列中的项是确定的; (2)可重复性:数列中的数可以重复;(3)有序性:数列中的数的排列是有次序的. 数列的一般形式:数列的一般形式可以写成:ΛΛ,,,,,321n a a a a ,或简记为{}n a .其中n a 是数列的第n 项. 要点诠释:{}n a 与n a 的含义完全不同,{}n a 表示一个数列,n a 表示数列的第n 项.要点二、数列的分类 根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6,…是无穷数列 根据数列项的大小分:递增数列:从第2项起,每一项都大于它的前一项的数列。
人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。
是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。
与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。
一、数列的概念与简单表示法1.数列的相关概念定义:按照一定顺序排列的一列数叫数列.(例如:1,3,5,7,9…).项与项数:数列中每一个数叫做数列的项,排在第一位的叫做第一项(通常叫首项),以此类推,排在第n 位的叫做数列的第n 项. 表示:数列一般形式可以写成:123,,,,,,n a a a a 简记为{}n a .2.数列的分类按照数列中项数有限和无限分为:有穷数列,无穷数列. 按照数列的项的变化趋势分类:递增数列(1n n a a +>);递减数列(1n n a a +<);常数列(1n n a a +=);摆动数列(1n a +与n a 随着n 的变化大小关系不确定).例如:1,3,5,7,9…(无穷递增数列),10,7,4,1,-2,…,-14(有穷递减数列),2,2,2,2,…(常数列),1,-1,1,-1,1…(摆动数列). 3.数列与函数的关系数列可以看成以正整数*N (或它的有限子集{1,2,,}n )为定义域的函数()n a f n =,当自变量从小到大依次取值时,所对应的一列函数值. 4.数列的表示方法通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.例如:1,3,5,7,9…可表示为21n a n =-,n ∈*N .注意:①不是所有的数列都能写出它的通项公式;②对于一个确定的数列,通项公式不一定唯一.直接列出:123,,,,,.n a a a a图像表示:在平面直角坐标系中,数列可以用一群孤立的点(,)n n a 表示.递推公式:给出数列的第一项(或前几项),再给出后面的项用前面的项来表示的式子,这种表示数列的方法叫递推公式法. 例如:数列{}n a 中,有11a =,111n n a a -=+,根据此递推公式,我们就可以依次写出数列中的每一项. 5.n a 与n S 的关系数列前n 项和记为n S ,则1231n n n S a a a a a -=+++++,11231n n S a a a a --=++++,两式相减,得1n n n a S S -=-,由于n 只能取正整数,当1n =时1n S -不存在,不能使用上式,但当1n =时很明显有11a S =,故我们得到通项n a 与前n 项和n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩ .3练习题:21n-1(2)=+,则220是这个数列的(n n2n答案解析:,n,99,999,再把这个数列的每一项乘以5,得到令11n na a +≥,解得6n ≤ 即6n ≤时,1n n a a +≥,6n >时,1n n a a +< 故6a 或7a 最大. 答案:6或7 15解析:函数对称轴为297.254-=-,n ∈*N ,故7n =时最大,带入得7108a =. 答案:B16解析:由题意可知1n n a a +>,即22(1)(1)n n n n λλ+++>+ 解得21n λ>--恒成立,21n --在1n =时取得最大值3- 故3λ>-. 答案:D17解析:54554(21)(21)321616a S S =-=---=-=. 答案:16 18解析:1n n S n =+,则443431413120a S S =-=-=++,420a ∴=. 答案:C19解析:1n =时,113214a S ==+-=2n ≥时,221321[3(1)2(1)1]61n n n a S S n n n n n -=-=+---+--=-此式不适合1n =时取值.答案:4(1)61(2)n n a n n =⎧=⎨-≥⎩.数学浪子整理制作,侵权必究。
课时作业31 数列的概念与简单表示法一、选择题1.已知数列1,2,7,10,13,…,则219在这个数列中的项数是( C )A .16B .24C .26D .28解析:因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n =3n -2.令a n =3n -2=219=76,解得n =26.2.数列{a n }的前n 项和S n =2n 2-3n(n ∈N *),若p -q =5,则a p-a q =( D )A .10B .15C .-5D .20 解析:当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.3.已知数列{a n }满足a 1=1,a n +2-a n =6,则a 11的值为( A ) A .31 B .32 C .61D .62解析:∵数列{a n }满足a 1=1,a n +2-a n =6,∴a 3=6+1=7,a 5=6+7=13,a 7=6+13=19,a 9=6+19=25,a 11=6+25=31.4.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( C )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D .⎝ ⎛⎦⎥⎤-∞,92解析:因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *), 所以b <2n +1(n ∈N *), 所以b <(2n +1)min =3,即b <3.5.(2019·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 017的末位数字为( B )A .8B .2C .3D .7解析:由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,整数项为4,9,49,64,144,169,…,∴数列{b n }的各项依次为2,3,7,8,12,13,17,18,…, 末位数字分别是2,3,7,8,2,3,7,8,…,∵2 017=4×504+1,∴b 2 017的末位数字为2,故选B. 6.已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *),若b n +1=(n-λ)(1a n+1),b 1=-λ,且数列{b n }是递增数列,则实数λ的取值范围是( C )A .(2,+∞)B .(3,+∞)C .(-∞,2)D .(-∞,3)解析:由a n +1=a n a n +2,知1a n +1=2a n +1,即1a n +1+1=2(1a n+1),所以数列{1a n +1}是首项为1a 1+1=2,公比为2的等比数列,所以1a n +1=2n ,所以b n +1=(n -λ)·2n ,因为数列{b n }是递增数列,所以b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n +1-λ)2n -1>0对一切正整数n 恒成立,所以λ<n +1,因为n ∈N *,所以λ<2,故选C.二、填空题7.已知数列{a n }满足a 1=1,且a n =n (a n +1-a n )(n ∈N *),则a 3=3,a n =n .解析:由a n =n (a n +1-a n ),可得a n +1a n=n +1n ,则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n n -1×n -1n -2×n -2n -3×…×21×1=n (n ≥2),∴a 3=3.∵a 1=1满足a n =n ,∴a n =n .8.已知数列{a n }满足a 1+2a 2+3a 3+…+na n =n +1(n ∈N *),则数列{a n }的通项公式为a n =⎩⎨⎧2,n =1,1n ,n ≥2.解析:已知a 1+2a 2+3a 3+…+na n =n +1,将n =1代入,得a 1=2;当n ≥2时,将n -1代入得a 1+2a 2+3a 3+…+(n -1)a n -1=n ,两式相减得na n =(n +1)-n =1,∴a n =1n ,∴a n =⎩⎨⎧2,n =1,1n ,n ≥2.9.(2019·惠州市调研考试)已知数列{a n }满足a 1=1,a n +1-2a n =2n (n ∈N *),则数列{a n }的通项公式a n =n ·2n -1.解析:a n +1-2a n =2n两边同除以2n +1,可得a n +12n +1-a n 2n =12,又a 12=12,∴数列{a n 2n }是以12为首项,12为公差的等差数列,∴a n 2n =12+(n -1)×12=n 2,∴a n =n ·2n -1.10.(2019·吉林普通中学二调)已知数列{a n }中,前n 项和为S n ,且S n =n +12a n ,则a na n -1(n >1)的最大值为2.解析:∵S n =n +12a n ,∴当n >1时,a n =S n -S n -1=n +12a n -n2a n -1,即a n a n -1=n n -1,∵数列⎩⎨⎧⎭⎬⎫n n -1单调递减,∴当n =2时,a n a n -1=2最大.三、解答题11.(2019·浙江舟山模拟)已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *)可得, a 1=12a 21+12a 1,解得a 1=1,a 1=0(舍). S 2=a 1+a 2=12a 22+12a 2,解得a 2=2(负值舍去);同理可得a 3=3,a 4=4. (2)因为S n =12a 2n +a n2, ①所以当n ≥2时,S n -1=12a 2n -1+a n -12, ② ①-②得a n =12(a n -a n -1)+12(a 2n -a 2n -1), 所以(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,所以数列{a n }是首项为1,公差为1的等差数列,所以a n =n .12.(2019·河南南阳一中模拟)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N *).(1)求a 2的值,并证明a n +2-a n =2; (2)求数列{a n }的通项公式.解:(1)令n =1,得2a 1a 2=4S 1-3,a 1=1,所以a 2=12,2a n a n +1=4S n -3,2a n +1a n +2=4S n +1-3,两式相减得2a n +1(a n +2-a n )=4a n +1.因为a n ≠0,所以a n +2-a n =2.(2)由(1)可知,数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1,所以当n 为奇数时,a 2k -1=1+2(k -1)=2k -1,数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12,所以当n 为偶数时,a 2k =12+2(k -1)=2k -32,综上所述,a n =⎩⎨⎧n ,n 为奇数,n -32,n 为偶数.能力拓展13.(2019·河南中原名校联考)已知等差数列{a n }的前n 项和为S n ,且S 3=15,a 7+a 9=34,数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,且对于任意的n ∈N *,T n <a n +11t ,则实数t 的取值范围为(0,162).解析:依题意,设等差数列{a n }的公差为d ,因为S 3=15,故S 3=3a 2=15,故a 2=5.又a 7+a 9=2a 8=34,故a 8=17,故a 8-a 2=6d =12,故d =2,故a 1=3,所以a n =3+2(n -1)=2n +1,所以1a n a n +1=1(2n +1)(2n +3)=12(12n +1-12n +3),所以T n =12⎝⎛⎭⎪⎫13-15+⎝⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=1213-12n +3=n3(2n +3),因为T n <a n +11t ,即n3(2n +3)<2n +12t ,显然t >0,所以t <3(2n +12)(2n +3)n =3(4n 2+30n +36)n=12⎝⎛⎭⎪⎫n +9n +90,又n +9n ≥6,当且仅当n =3时,等号成立,所以12⎝ ⎛⎭⎪⎫n +9n +90≥162.所以0<t <162.14.已知等比数列{a n }是递增数列,a 2a 5=32,a 3+a 4=12,又数列{b n }满足b n =2log 2a n +1,S n 是数列{b n }的前n 项和.(1)求S n ;(2)若对任意n ∈N *,都有S n a n ≤S ka k成立,求正整数k 的值.解:(1)因为{a n }是等比数列, 则a 2a 5=a 3a 4=32,又a 3+a 4=12,且{a n }是递增数列, 所以a 3=4,a 4=8,所以q =2,a 1=1, 所以a n =2n -1.所以b n =2log 2a n +1=2log 22n =2n .所以S n =2+4+…+2n =n (2+2n )2=n 2+n . (2)令c n =S n a n =n 2+n 2n -1,则c n +1-c n =S n +1a n +1-S na n=(n +1)(n +2)2n -n (n +1)2n -1 =(n +1)(2-n )2n. 所以当n =1时,c 1<c 2; 当n =2时,c 3=c 2; 当n ≥3时,c n +1-c n <0, 即c 3>c 4>c 5>…,所以数列{c n }中最大项为c 2和c 3.所以存在k =2或3,使得任意的正整数n ,都有S k a k ≥S na n.尖子生小题库——供重点班学生使用,普通班学生慎用 15.(2019·洛阳市第一次联考)已知数列{a n }满足na n +2-(n +2)a n=λ(n 2+2n ),其中a 1=1,a 2=2,若a n <a n +1对任意的n ∈N *恒成立,则实数λ的取值范围是[0,+∞).解析:由na n +2-(n +2)a n =λ(n 2+2n )=λn (n +2)得a n +2n +2-a nn=λ,所以数列{a nn }的奇数项与偶数项均是以λ为公差的等差数列,因为a 1=1,a 2=2,所以当n 为奇数时,a nn =1+λ(n +12-1)=n -12λ+1,所以a n =n 2-n 2λ+n .当n 为偶数时,a n n =1+λ(n2-1)=n -22λ+1,所以a n =n 2-2n 2λ+n ,当n 为奇数时,由a n <a n +1得n 2-n 2λ+n <(n +1)2-2(n +1)2λ+n +1,即λ(n -1)>-2,若n =1,则λ∈R ,若n >1,则λ>-2n -1,所以λ≥0.当n 为偶数时,由a n <a n +1得n 2-2n 2λ+n <(n +1)2-(n +1)2λ+n +1,即3λn >-2,所以λ>-23n ,即λ≥0.综上,实数λ的取值范围为[0,+∞).。
数列的概念及简单表示法一、知识梳理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式(1)通项公式:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)1,1,1,1,…,不能构成一个数列.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的,可以构成数列. (3)数列可以是常数列或摆动数列. 答案 (1)× (2)× (3)× (4)√2.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12, a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23. 答案 D 3.(必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -44.(2019·山东省实验中学摸底)已知数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),S n 为其前n 项和,则S 5的值为( ) A.57B.61C.62D.63解析 由条件可得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,a 5=2a 4+1=31,所以S 5=a 1+a 2+a 3+a 4+a 5=1+3+7+15+31=57. 答案 A5.(2018·北京朝阳区月考)数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( )A.(-1)n +12B.cosn π2 C.cos n +12π D.cos n +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D6.(2019·天津河东区一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析 ∵S n =a 1(4n -1)3,a 4=32,则a 4=S 4-S 3=32.∴255a 13-63a 13=32,∴a 1=12.答案 12考点一 由数列的前几项求数列的通项【例1】 (1)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A.a n =(-1)n -1+1B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1(2)已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析 (1)对n =1,2,3,4进行验证,a n =2sin n π2不合题意.(2)各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…,故其通项公式可以为a n =(-1)n·2n -32n . 答案 (1)C (2)a n =(-1)n ·2n -32n【训练1】 写出下列各数列的一个通项公式: (1)-11×2,12×3,-13×4,14×5,…; (2)12,2,92,8,252,…; (3)5,55,555,5 555,….解 (1)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式是a n =(-1)n ×1n (n +1),n ∈N *.(2)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22.(3)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n -1,故所求的数列的一个通项公式为a n =59(10n -1).考点二 由a n 与S n 的关系求通项【例2】 (1)(2019·广州质检)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为________________.(2)(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 (1)由log 2(S n +1)=n +1,得S n +1=2n +1, 当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=2n , 所以数列{a n }的通项公式为a n =⎩⎨⎧3,n =1,2n ,n ≥2.(2)由S n =2a n +1,得a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 得a n =2a n -1. ∴数列{a n }是首项为-1,公比为2的等比数列.∴S 6=a 1(1-q 6)1-q =-(1-26)1-2=-63. 答案 (1)a n =⎩⎨⎧3,n =12n ,n ≥2 (2)-63【训练2】 (1)已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5. (2)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.答案 (1)4n -5 (2)⎩⎨⎧4,n =1,2·3n -1,n ≥2考点三 由数列的递推关系求通项【例3】 (1)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A.2+ln nB.2+(n -1)ln nC.2+n ln nD.1+n +ln n(2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________.(4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________.解析 (1)因为a n +1-a n =ln n +1n =ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2,a 4-a 3=ln 4-ln 3,a n -a n -1=ln n -ln(n -1)(n ≥2). 把以上各式分别相加得a n -a 1=ln n -ln 1,则a n =2+ln n ,且a 1=2也适合, 因此a n =2+ln n (n ∈N *).(2)由na n-1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =n n +1·n -1n ·n -2n -1·…·34·23·1=2n +1,又a 1也满足上式,所以a n =2n +1. (3)由a n +1=2a n +3,得a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n=a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列.∴b n =4·2n -1=2n +1,∴a n =2n +1-3. (4)因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n=12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12=n +12. 所以a n =2n +1.规律方法 由数列的递推关系求通项公式的常用方法 (1)已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n . (3)已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可用待定系数法确定),可转化为{a n +k }为等比数列.(4)形如a n +1=Aa n Ba n +C (A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.【训练3】 (1)(2019·山东、湖北部分重点中学联考)已知数列{a n }的前n 项和为S n ,若a 1=2,a n +1=a n +2n -1+1,则a n =________. (2)若a 1=1,a n +1=2n a n ,则通项公式a n =________.解析 (1)a 1=2,a n +1=a n +2n -1+1⇒a n +1-a n =2n -1+1⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1, 则a n =2n -2+2n -3+…+2+1+n -1+a 1=1-2n -11-2+n -1+2=2n -1+n .(2)由a n +1=2n a n ,得a na n -1=2n -1(n ≥2),所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n (n -1)2.又a 1=1适合上式,故a n =2n (n -1)2.答案 (1)2n -1+n (2)2n (n -1)2考点四 数列的性质【例4】 (1)数列{a n }的通项a n =n n 2+90,则数列{a n }中的最大项是( )A.310B.19C.119D.1060(2)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤12,2a n -1,12<a n <1,a 1=35,则数列的第2 019项为________.解析 (1)令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.(2)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35, ∴{a n }为周期数列且T =4, ∴a 2 019=a 504×4+3=a 3=25. 答案 (1)C (2)25【训练4】 (1)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 020=________.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是________.解析 (1)∵a 1=1,a n +1=a 2n -2a n +1=(a n -1)2,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 020=a 2=0.(2)由a n +1>a n 知该数列是一个递增数列,又通项公式a n =n 2+kn +4,所以(n +1)2+k (n +1)+4>n 2+kn +4,即k >-1-2n . 又n ∈N *,所以k >-3. 答案 (1)0 (2)(-3,+∞)三、课后练习1.(2019·山东新高考适应性调研)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法复合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 018这2 018个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列共有( ) A.98项B.97项C.96项D.95项解析 能被3除余1且被7除余1的数就只能是被21除余1的数,故a n =21n -20,由1≤a n ≤2 018得1≤n ≤97,又n ∈N *,故此数列共有97项. 答案 B2.已知数列{a n }的通项公式a n =(n +2)·⎝ ⎛⎭⎪⎫67n,则数列{a n }的项取最大值时,n =________.解析 假设第n 项为最大项,则⎩⎨⎧a n ≥a n -1,a n ≥a n +1,即⎩⎪⎨⎪⎧(n +2)·⎝ ⎛⎭⎪⎫67n≥(n +1)·⎝ ⎛⎭⎪⎫67n -1,(n +2)·⎝ ⎛⎭⎪⎫67n ≥(n +3)·⎝ ⎛⎭⎪⎫67n+1,解得⎩⎨⎧n ≤5,n ≥4,即4≤n ≤5,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. 答案 4或53.(2019·菏泽模拟)已知数列{a n }的前n 项和为S n ,且满足S n =(-1)n·a n -12n ,记b n =8a 2·2n -1,若对任意的n ∈N *,总有λb n -1>0成立,则实数λ的取值范围为________.解析 令n =1,得a 1=-14; 令n =3,可得a 2+2a 3=18;令n =4,可得a 2+a 3=316,故a 2=14,即b n =8a 2·2n -1=2n . 由λb n -1>0对任意的n ∈N *恒成立, 得λ>⎝ ⎛⎭⎪⎫12n对任意的n ∈N *恒成立,又⎝ ⎛⎭⎪⎫12n≤12, 所以实数λ的取值范围为⎝ ⎛⎭⎪⎫12,+∞.答案 ⎝ ⎛⎭⎪⎫12,+∞4.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).。