永永磁电机综述及退磁分析
- 格式:doc
- 大小:464.00 KB
- 文档页数:29
三相异步起动永磁同步电机起动电流与退磁电流浅析摘要:针对三相异步起动永磁同步电机起动电流进行了理论分析,通过对比单电机、应用该电机的压缩机以及应用该压缩机的空调系统实际起动电流,得出了起动电流大小的影响因素,结合不同厚度和材质的磁钢退磁电流变化趋势,评估起动电流与退磁电流裕量大小,为电机设计提供参考。
关键词:三相异步起动永磁同步电机;起动电流;退磁电流;Analysis of starting current and demagnetization current of three-phase asynchronous starting permanent magnet synchronous motorLiu fengGree Electric Appliances, Inc. of Zhuhai Zhuhai Guangdong 519000Abstract:The starting current of three-phase asynchronousstarting permanent magnet synchronous motor is analyzed theoretically. By comparing the actual starting current of single motor, compressor with this motor and air conditioning system with this compressor, the influencing factors of starting current are obtained. Combined with the changing trend of demagnetization current of magnetic steel with different thickness and material, the starting current and demagnetization current margin are evaluated, which can provide reference for motor design.Keywords:Three-phase asynchronous starting permanent magnet synchronous motor;Starting current;Demagnetization current一、前言由于三相异步起动永磁同步电机(以下简称:电机)直接接入电网电压起动,起动电流非常大,因而产生很强的电枢磁场。
基于 Ansoft 的永磁同步电机退磁仿真分析摘要:为了保证永磁同步电机抗退磁能力仿真的准确性,本文提出了一种基于 Ansoft Maxwell 软件的永磁同步电机退磁仿真方法。
以12S10P磁同步电机为例(PMSM) ,首先详细的介绍了此退磁仿真的电磁设置;然后评估与验证了此退磁仿真方法的仿真值与实测值差异;最后提供了此仿真方法的问题与改进思路,为永磁同步电机退磁仿真提供了参考。
关键词:Ansoft;退磁引言在压缩机的应用工况下,为了保持整套系统的高可靠性,压缩机中所有零件都需要进行可靠性评估,使所有的零件都能保持在正常的状态下运行。
对于压缩机中的主要驱动零部件——电机来说,永磁体退磁是一个重要的指标[1]。
为了保证永磁同步电机按照设计的状态运行并达到设计的效果,永磁体需要在充磁饱和的状态下工作[2]。
当永磁同步电机转子永磁体发生不可逆退磁,整个电机将不再运行于最佳工作状态,进而影响到压缩机的性能。
因此对永磁同步电机进行抗退磁能力评估是一项重要的工作。
目前对于永磁同步电机的退磁电流的测试方法一般为:并接电机绕组某两相,给绕组通入电流使转子自动定位,并固定电机转子此时位置,随后通入反向电流,并对比测试通入退磁电流前后的线磁链值,以该值下降 3 % 为限定标准。
但是,目前采用的仿真分析方法为在永磁体上设定取样曲线,并计算施加退磁电流后取样曲线上剩磁回复值,按照剩磁平均值降低 3 % 为限定标准。
以上实验测试方法和仿真分析方法存在判定指标不一致的情况,因此为了提高仿真准确性以及仿真与测试的一致性,以及充分应用 Ansoft 的退磁仿真功能,本文对 Ansoft 的退磁仿真功能进行了研究。
1 Ansoft仿真分析软件退磁仿真1.1基本设置1.1.1电机退磁仿真工况电机运行状态按照正常的电机性能仿真设定,仿真模型为模拟电机正常运行并通入了较大电流时电机永磁体发生退磁的情况,按照 3 % 磁链降低为界限限定。
永磁同步电机性能分析摘要:在永磁同步电机的设计制作中,时刻都要关注降低电机损耗,提高电机运行的效能。
关键词:永磁同步电机;性能;分析;首先我们看电机的损耗,在已知电机参数电阻R1、X1、X ad、X aq和E0的情况下,就可以计算不同功角下永磁同步电机的性能。
1 绕组计算绕组直流电阻式中电阻率为式中α为铜材半导体电阻的温度变化系数,铜材电阻α≈0.004/。
C。
计算绕组损耗时,要考虑折算到相应的基准工作温度。
一般在75。
C。
考虑集肤效应,绕组交流电阻应为式中k1r为电枢绕组的集肤效应系数。
用圆导线双线并绕的定子电枢绕组,输入工频电流时电枢绕组铜损耗2 电枢铁损耗式中p t1d、p j1d可以根据磁密查系数和铁芯的损耗系数曲线计算得到;v t1、v j1定子齿部和铁芯共轭部的体积;k1和k2为考虑由于机械加工和磁场的分布不均匀等原因而引进的损耗系数,小型电机k1=2.5,k2=2.0。
3.杂散损耗杂散作用产生的辐射损耗主要原因是由于在电磁场的高次杂散作用谐波和电磁铁芯中的开槽谐波引起的高次杂散及该谐波在电磁铁芯中高次杂散作用产生的电磁能量辐射损耗,计算困难且不准确。
常用到的经验函数计算公式:4.机械损耗机械损耗p fw是风摩损耗。
小型永磁电机,参考感应电机的经验公式计算。
接着,我们看电磁转换。
1.给定功角θ2.已知U、E0、R1、X1、Xd、Xq直轴电流Id交轴电流I q3.计算功率因素4.确定气隙磁通5.输出功率和效率计算电磁功率和功角特性1.输入功率2.电磁功率只考虑主要损耗定子绕组的电阻r1较小,忽略其影响,电磁绕组的功率为3.电磁转矩将上式两端同除以机械转矩的夹角速度ω,得电磁转矩下面,我们研究影响电机性能的因素。
由上式可以看出:异步起动永磁牵入同步电机的功率和电磁转矩由上式第一项永磁转矩和上式第二项磁阻转矩两个组成部分共同构成,磁阻转矩的功率和大小直接影响电机永磁牵入起动的同步,由上式第二项可以很清楚地看出磁阻转矩的大小是由电机的交轴和直轴电抗之间的x q、x d的倒数差大小决定的。
电永磁吸盘退磁效果不好容易导致线圈的损坏,当工件加工完毕,由于电磁吸盘和工件有剩磁,使工件取下困难。
为了消除剩磁,应对电磁吸盘工作台和工件退磁。
退磁方法是在电磁吸盘的线圈中通入反向电流,控制所通电流的大小和时间,达到退磁目的,否则会使工件反向磁化。
电永磁吸盘退磁效果不好的故障原因:①退磁电压过高。
在更换损坏的退磁电阻后,应重新调整退磁电压,退磁电压应调全5—10v,如电磁吸盘退磁电压过高会造成工件去磁不净而不能从吸盘上取下。
因此磁电阻R损坏或线路断升,造成退磁凹路断开,无法进行去磁。
②对于电磁吸盘不同材质的工件,应掌握好退磁的时间长短,不然,电磁吸盘也将使工件退磁不好。
磨床电路经常有改装的情况,对电磁吸盘最大的两种情况为:1.不加退磁部分,直接对电磁吸盘进行充磁和断电,导致电磁吸盘充磁积压和退磁不干净,工件难以取下,2.直接在给正向电流的情况下给反向电流,导致电磁吸盘为+110和-110V电压,使电压差额为220V,经常使用会导致电磁吸盘线圈烧坏和接线头的老化损坏,导致电磁吸盘没有吸力。
扩展资料:电永磁吸盘有矩形电永磁吸盘、强力矩形电永磁吸盘、圆形电永磁吸盘等三类。
圆形电永磁吸盘矩形电永磁吸盘主要应用于直线移动导轨机构,可实现移动量的精确显示和自动控制,广泛应用于机床加工和仪器的精密测量。
可供不同规格的各类机床、仪器数字化改造选用,还可根据用户的特殊需要进行特殊制作。
强力电控永磁吸盘可用于铣床、钻床、刨床、镗床等机床吸持工件。
此外,在加工中心与FMS 系统的随行夹具上也得到了应用。
电永磁吸盘圆形电永磁吸盘中的电控永磁吸盘是用电脉冲“开和关”磁力的新型磁力吸盘。
吸盘在吸持工件进行加工过程中,十分安全可靠。
在用磁力吸持工件后,吸盘就会无限期地保持磁性吸力。
“开和关”所需时间少于1秒钟,电脉冲消耗能量极少,吸盘不会产生热变形,电永磁吸盘没有类似普通永磁吸盘磁组之类的滑动部件,其结构平稳、坚固、精度高。
永磁同步电机故障诊断研究综述永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)是一种高效率、高功率因数的电机,由于其具有较高的控制精度和动态性能,被广泛应用于机械传动系统中。
然而,由于各种原因,永磁同步电机在实际运行过程中可能会出现各种故障,这些故障可能会导致其性能下降甚至完全失效。
对永磁同步电机的故障诊断研究非常重要。
本文将对永磁同步电机故障诊断领域的研究进行综述,并从以下几个方面进行讨论和探究。
一、故障分类和特征提取永磁同步电机的故障可以分为转子故障(如短路、断条等)、定子故障(如匝间短路、绝缘损坏等)以及电源故障等。
在故障诊断过程中,正确分类和提取故障特征对于准确判断和定位故障非常关键。
为此,研究者们通过分析电机的运行状态、电流、振动等多种信号,提出了各种故障特征提取方法,如时域分析、频域分析、小波变换等。
二、故障诊断方法和算法针对永磁同步电机故障诊断的需求,研究者们提出了多种故障诊断方法和算法。
其中,基于模型的方法通过建立电机的数学模型,利用状态估计和滤波技术来实现故障诊断。
基于信号处理的方法则是通过对电机输出信号进行处理和分析,提取其中的故障信息。
还有基于人工智能算法的方法,如神经网络、遗传算法、支持向量机等,这些方法通过学习经验数据,能够自动识别和判断故障。
三、故障诊断系统的设计与应用将故障诊断方法应用于实际永磁同步电机系统中,需要设计和搭建一个完整的故障诊断系统。
这个系统包括传感器采集模块、信号处理模块、故障特征提取模块、故障判断模块等多个部分。
通过将这些模块进行集成和优化,可以实现对永磁同步电机故障的实时监测和诊断。
四、未来研究方向和挑战尽管在永磁同步电机故障诊断领域已经取得了一些进展,然而仍然存在一些挑战和需要进一步研究的问题。
故障特征提取方法需要更高的精度和鲁棒性;故障诊断系统需要更加智能和可靠;故障诊断算法需要更高的效率和实时性。
永磁同步电机故障诊断研究综述摘要本文对永磁同步电机故障诊断的研究进行了综述。
首先介绍了永磁同步电机的原理和应用领域,然后对永磁同步电机的故障模式进行了分类和详细描述。
接下来,介绍了常用的永磁同步电机故障诊断方法,并对各种方法进行了比较和分析。
最后,讨论了目前的研究热点和未来的发展趋势。
1. 引言永磁同步电机是一种采用永磁体作为励磁源的电机,具有高效率、高功率密度和高控制精度等优点,广泛应用于工业控制、风力发电、新能源车辆等领域。
然而,由于工作环境的复杂性和电机本身的复杂性,永磁同步电机在使用过程中容易发生各种故障,如断线、短路、轴承故障等。
因此,对永磁同步电机的故障进行准确、快速的诊断,对保障电机的安全运行和延长电机的使用寿命具有重要意义。
2. 永磁同步电机的故障模式永磁同步电机的故障模式主要包括电机定子故障、电机转子故障和电机传感器故障。
其中,电机定子故障包括定子绕组断线、定子绕组短路和定子绕组接地故障;电机转子故障包括磁极断裂、磁极剥落和磁极偏移;电机传感器故障包括霍尔元件故障和编码器故障。
2.1 电机定子故障电机定子故障是指与电机定子绕组相关的故障,常见的定子故障有断线、短路和接地故障。
断线是指定子绕组中某一导线或多个导线断开导致电流无法正常流通;短路是指定子绕组中导线之间产生了短路路径,导致电流绕过了部分绕组;接地故障是指定子绕组中某一导线与绕组外介质接触导致漏电。
2.2 电机转子故障电机转子故障是指与电机转子相关的故障,常见的转子故障有磁极断裂、磁极剥落和磁极偏移。
磁极断裂是指永磁体中的磁极发生断裂,导致磁场异常;磁极剥落是指永磁体中的磁极脱落,导致磁场不均匀;磁极偏移是指永磁体中的磁极位置发生偏移,导致磁场不稳定。
2.3 电机传感器故障电机传感器故障是指与电机传感器相关的故障,常见的传感器故障有霍尔元件故障和编码器故障。
霍尔元件故障是指用于检测转子位置的霍尔元件失效,导致无法准确测量转子位置;编码器故障是指用于测量转子位置和速度的编码器出现故障,导致位置和速度测量不准确。
永磁电机的研究现状与发展趋势永磁电机,是指通过磁铁所产生磁场,在电机内部运用磁感应定理将磁场与电流相互作用产生转矩的机器。
永磁电机具有体积小、重量轻、功率密度大、效率高等特点,被广泛应用于现代制造业领域。
目前,随着工业技术的不断发展,各种永磁材料的出现,使永磁电机得以不断发展和改进。
本文将从永磁电机的主要研究现状和未来发展趋势进行探讨。
一、永磁电机的主要研究现状1. 永磁材料的发展永磁电机的核心部分就是永磁体,永磁体的性能直接影响永磁电机的性能。
目前最主要的永磁体材料是NdFeB磁体材料,它具有高密度、高磁性、高温稳定性等特点。
除此之外,还有SmCo磁体材料,它的性能稳定性和高温稳定性比NdFeB磁体更好,但价格更高,主要应用于高精度、高可靠性和高温环境下的应用,如航空航天领域。
2. 永磁电机的结构设计永磁电机的结构设计也在不断改进,使得永磁电机具有更高的功率密度和峰值转矩。
一种新型的设计方法就是采用铁壳间隔结构,在增强电机性能的同时,还能提高电机的安全性。
另外,永磁电机的转子材料也在不断改进,从传统的铝合金、铜合金材料转向复合材料和碳纤维材料。
这种材料的使用能够使电机轻量化,同时还能提高电机的耐磨性和高能量转速。
二、永磁电机的未来发展趋势1. 应用领域的拓展永磁电机技术的不断提高和发展,能够使其应用领域得到不断拓展。
特别是在新能源汽车、轨道交通、船舶、风电和工业助力等领域,都有很大的发展前景。
2. 永磁电机的智能化与普通电机相比,永磁电机具有高精度、高效率、高动态响应等特点,可以实现实时监控和控制,并适应复杂的工作环境。
因此,未来永磁电机将朝着智能化方向发展,实现精准控制和远程监控。
3. 磁场计算和优化设计永磁电机的磁场分布对电机的特性和性能具有很大的影响。
未来,随着磁场计算和优化设计技术的不断提高,能够进一步提高永磁电机的效率和性能,为新能源和节能减排做出更大的贡献。
总之,永磁电机是当前产业界和科学界广泛关注和研究的焦点,其未来发展前景十分广阔。
Science and Technology & Innovation ┃科技与创新·5·文章编号:2095-6835(2016)16-0005-02永磁同步电动机发展现状综述王建设,徐 荣,孙友增(上海电机学院,上海 201306)摘 要:得益于稀土永磁材料及电力电子技术和控制技术的发展,永磁同步电动机以其质量轻、效率高、体积小等优势,在各个领域得到了广泛应用。
首先综述了目前永磁同步电动机的发展和应用状况,然后对永磁同步电机的类型、特点及设计方法和技术作了深入介绍,最后分析了永磁同步电动机的发展趋势。
关键词:永磁同步电动机;稀土永磁材料;新型控制理论;无刷直流电动机中图分类号:TM351 文献标识码:A DOI :10.15913/ki.kjycx.2016.16.005随着20世纪70年代稀土永磁材料的发展,稀土永磁电机应运而生。
永磁电机利用稀土永磁体励磁,永磁体充磁后能够产生永久磁场。
它的励磁性能优异,因在稳定性、质量、降低损耗等方面都优于电励磁电机而动摇了传统的电机市场。
近年来,随着现代科学技术的快速发展,电磁材,料特别是稀土电磁材料性能及工艺逐渐得以提高和改善,再加上电力电子与电力传动技术、自动控制技术的高速发展,永磁同步电机的性能越来越好。
再者,永磁同步电动机具有质量轻、结构较简单、体积小、特性好、功率密度大等优点,很多科研机构、企业都在努力积极开展永磁同步电机的研发工作,其应用领域将进一步扩大。
1 永磁同步电机的发展及研究现状 1.1 永磁同步电机的发展基础 1.1.1 高性能稀土永磁材料的应用 稀土永磁材料经历了SmCo 5、Sm 2Co 17、Nd 2Fe 14B 三个阶段。
现在以钕铁硼为代表的永磁材料因其在磁学性能上表现优异成为应用最广泛的一类稀土永磁材料。
永磁材料的发展带动了永磁电机的发展。
与传统的电励磁三相感应电机相比,永磁体替代了电激磁磁极,简化了结构,消除了转子的滑环、电刷,实现了无刷结构,缩小了转子体积。
永永磁电机综述及退磁分析 1能源的重要 1,1可再生能源研究现状及发展趋势 能源是当今社会存在和发展的基础,随着人们生活水平的提高和社会的发展,人类对能源的需求正在逐渐增大,而能源的短缺正成为制约社会发展的重要因素。对传统能源的开发利用不仅受到资源有限的限制,而且在能源使用的过程中还会产生温室效应和环境污染等全球性问题。因此,通过对新型能源的开发,实现资源的持续利用和人类社会可持续发展具有重要作用。 目前可以对新型能源进行开发利用的主要有光伏发电、风力发电、潮汐能发电以及生物能和水力能发电等。近年来,随着电力电子技术的发展,风力发电的利用及其优势开始显现,它是可再生能源中技术最成熟、发展速度最快、最具有商业发展潜力的新能源之一;光伏发电技术具有对环境影响小的优点,但是太阳能光伏电池板和逆变器的高成本限制了其在光照强度不强的地区的应用;潮汐能发电具有对地理位置要求高,发电设备需安装在海底,稳定性差等缺点,因此很难进行大规模开发利用;生物能和水能的利用同样受到地域、成本以及环境的影响,因此对生物能和水能的开发利用也较难。 1.1.1 全球可再生能源研究现状及趋势 进入21世纪,世界各国都加大对风能、光伏等可再生能源的研究利用。发展可再生能源己经成为许多国家对能源进行研究和开发的主要内容。2006年3月,欧盟首脑会议确定到2020年风能、光伏等新型能源消费总量要占到传统能源消费总量的20%;2011年美国提出到2030年全美20%的电力供应由风力发电提供,生物燃料消费量要占汽车燃料消耗量的30%以上;印度在2009年风电装机容量已达到1100万千瓦时,装机总容量排在世界第5位;巴西通过利用甘蔗等本地资源大力发展生物能,到2008年底生物燃料总产量已达两千多万吨,并且计划到2030年底生物能年产能达到750亿升,从而将生物能的生产作为巴西经贸的主要资源。 目前,全球己有60多个国家制定了相关的法律、法规或行动计划,通过立法的强制性手段保障可再生能源战略目标的实现。到2009年底,全球风能和太阳能等可再生能源总共约贡献了1.7%的发电量,占全球能源消费总量的0.7%。风力发电总装机容量增长了31%,生物燃料发电量增长了8%,太阳能发 电总装机容量也已达到10000兆瓦以上。总之,目前可再生能源的发展正朝着生产技术逐渐成熟、项目规模逐渐增大、建设快速逐渐加快、投资渠道逐渐增多、生产设备效率逐渐提高、设备维护逐渐便利的方向发展。 1.1.2 我国新能源发展现状及趋势 可再生能源是我国能源资源的重要组成部分,它在环境污染治理、经济社会发展、能源供应和能源结构改造等方面发挥了重大作用。由于政府的大力引导和支持以及市场需求的推动,我国可再生能源的发展具有良好的内外部条件,我国可再生能源开始进入快速发展。2009 年,我国新能源年年产能值相当于2.6亿吨煤的产能,占到我国能源消费总量的8.34%。到2011年底,我国水力发电总装机容量1.97亿千瓦时,居世界第一;风力发电总装机容量达2730万千瓦时,新增装机容量居世界第一,总装机容量居世界第三;太阳能光伏电池年产量达4 千兆瓦时,为全球份额的40%,太阳能热水器总超过1.45亿平方米居世界第一。 尽管我国新能源行业各方面发展迅速但其规模化和产业化发展仍然面临诸多问题,主要有:①市场机制成不够熟,使得新能源产业很难和传统能源产业竞争;②能源政策和配套措施不完善,对可再生能源企业扶持力度不够;③企业对新能源的战略地位认识不够,以及对对能源企业发展的衔接性和科学性认识不足;④企业和政府对新能源的研发投入不足;⑤整个产业链体系较薄弱,利润率较低;⑥对我国新能源产业评估不深入,不利于新能源的产业化发展。总之,新能源产品市场竞争力低、成本价格高是我国可再
生能源产业发展面临的主要问题,解决问题的根本途径是大力推进可再生能源的产业化、规模化发展[1]。 能源紧张是影响我国国民经济发展的一个重要问题,也是全世界共同关心的阔题。节能是我国经济和社会发展的一项长远战略方针,也是当前一项极为紧迫的任务。据国际电工委员会(IEC)统计,工业用电动机消耗全世界发电量的30%-40%,我国电机系统用电量约占全国用电量的60%,其中风机、泵类、压缩机和空调制冷机的用电量分别占全国用电量的10.4%、20.9%、9.4%和6%。电机系统量大面广,节电潜力巨大。改善整个驱动系统(电动机和调速传动)和应用技术(或工艺技术)的效率对节能关系重大,系统优化总的节能潜力可达到30%~60%。据行业协会统计,全国现有各类电机系统总装机容量约7亿kW,运行效率普遍比国外先进水平低10~20个百分点,相当于每年浪费电能约1500亿kWh。为此国家发改委在“十大重点节能工程实施意见”中提出:要推广高效节能电动机、稀土永磁电动机;同时推广变频调速、永磁电动机调速等先进电机调速技术,改善风机、泵类电机系统调节方式,逐步淘汰闸板、阀门等机械节流调节方式。并建议在以下领域推广应用稀土永磁电动机和调速系统:电力:用变频、永磁电动机改造风机、水泵系统,重点是20万kW以上火力发电机组。冶金:鼓风机、除尘风机、冷却水泵;加热炉风机、铸造除鳞水泵等设备的变频、永磁电动机调速。机电:研发制造节能型电机、电机系统及配套设备。轻工:注塑机、液压油泵的变频、永磁调速。其他:企业空调和通风、楼宇集中空调的永磁电机系统改造等。据国际能源机构(IEA)2006年7月的工作报告,通过改善电动机效率结合变频调速可以节约大约7%的电能,其中大致有1/4~1/3是靠提高电动机效率来获得的,其余部分则来自系统的改进。目前,美、欧、日、澳大利亚、巴西等国都纷纷制订电动机效率限值,并强制执行。为协调各国能效分级标准,2006年IEC制定一项新的能效标准IEC60034-30。该标准将一般用途电动机效率水平分为IEl(International Efficiency,简称IE)、IE2、IE3和IE4四级,其中IEl为标准效率,相当于我国目前生产的普通系列感应电动枫的效率水平;IE2为高效率,比普通电机的效率平均提高2.75个百分点,损耗平均下降20%左右;IE3为超高效率,即效率再提高1.5一2个百分点,损耗平均再降低15%左右;IE4为超超高效率,损耗预计再下降20%左右,需要进行全新的电机设计,建也新的体系结构(新的电机极数、速度范围),采用更高性能的材料。 众所周知,永磁电动机采用永磁体励磁,不需要无功励磁电流,所以显著提高功率因数,减小了定子电流和定子电阻损耗;而且在稳定运行时没有转子电阻损耗,进而可以因总损耗降低而减小风扇(小容量电机甚至可以去掉风扇)和相应的风摩耗,从而使其效率和功率因数比同规格感应电动机高。而且在轻载时仍可保持较高的效率和功率因数,使轻载运行时节能效果更为显著。因此,永磁电动机较容易做到高效率,既达到lE2级的效率值。如果进一步优化设计,采用高性硅钢片和先进工艺,在降低一个机座号或者缩短铁心的情况下,可以达到超高效,既IE3级的效率值;在不降低机座号或适当增加铁心的情况下,部分规格有可能达到超超高效,既IE4级的效率值[2]。 我国稀土资源丰富,钕铁硼永磁材料的年产量已居世界第一,国内高品质的钕铁硼永磁体已能批量生产,世界磁性材料的中心已转移到中国,这为发展我国稀土永磁电机产业打下了良好的基础大力发展稀土永磁电机和稀土永磁材料,将资源优势变为经济优势,将极大地推动我国稀土产业的发展。同时为节能降耗、保护环境、实现国民经济持续发展做出重大贡献。
2.永磁电机的特点 与传统的电励磁电机相比,稀土永磁电机具有结构简单、运行可靠、体积小、质量轻、损耗小、效率高、电机的形状和尺寸灵活多样等显著优点。因此稀土永磁电机的应用范围极为广泛,遍及航空、航天、国防、装备制造、工农业生产和日常生活的各个领域。它包括永磁同步电动机、永磁发电机、直流电动机、无刷直流电动机、交流永磁伺服电动机、永磁直线电机、特种永磁电机及相关的控制系统。种类几乎覆盖了整个电机行业。 (1)稀土永磁电机结构简单 体积小,重量轻,耗材少,同容量的永磁同步电机体积、重量、所用材料可以减小30%左右。永磁同步发电机与传统的发电机相比,,不需要集电环和电刷装置,结构简单,降低了故障率。采用稀土永磁后还可以增大气隙磁密,并把电机转速调整到最佳值,提高功率质量比。现代航空、航天用发电机几乎全部采用稀土永磁发电机。永磁发电机也用作大型汽轮发电机的副励磁机。目前,独立电源用的内燃机驱动小型发电机、车用永磁发电机、风轮直接驱动的小型永磁风力发电机正在逐步推广。随着永磁材料性能的不断提高和完善,特别是钕铁硼永磁的热稳定性和耐腐蚀性的改善、价格的逐步降低以及电力电子器件的进一步发展,加上永磁电机研究开发经验的逐步成熟,在大力推广和应用已有研究成果,使永磁电机在国防、工农业生产和日常生活等各个方面获得越来越广泛的应用的同时,稀土永磁电机的研究开发也进入了一个新阶段,正向大功率化(高转速、高转矩)、高功能化和微型化方向发展。目前,稀土永磁电机的单台容量已超过1000kW,最高转速已超过300000r/min,最低转速低于0.01 r/min,最小电机外径只有0.8mm,长1.2mm。 (2)稀土永磁电机轻型化 采用稀土永磁体可以明显减轻电机重量,缩小体积。例如10kW发电机,常规发电机重量为220kg,而永磁发电机重量仅为92kg,相当于常规发电机重量的45.8%。计算机磁盘驱动器在20世纪60年代采用铁氧体尺寸为14英寸,而采用钕铁硼后只有3.5英寸,现在己达到2.5英寸。德国制成的六相变频电源供电的1095kW、230r/min稀土永磁电动机,用于舰船的推进,与过去使用的直流电动机相比,体积减少60%左右,总损耗降低20%左右,并省去了电刷和换向器,维护方便。荷兰飞利浦公司用70W微电机作比较,稀土永磁电机体积是电流励磁电机的1/4,是铁氧体励磁电机的1/2。 (3)稀土永磁电机高性能化 高性能化也是稀土永磁电机的突出优点,有例如,数控机床用稀土永磁伺服电机,调速比高达1:10000。稀土永磁电机可以实现精密控制驱动,转速控制精度可达到0.1‰。在机械特性方面,稀土永磁电机可以实现低速大转矩运行,可在负载转矩下直接起动。此外,稀土永磁电机还具有运行精度高(如计算机硬盘驱动器的摆动电机端面与磁盘之间的跳动量要求达到0.1μ~0.3μ)、运行噪声小、平稳性好、过载能力大等特点。 (4)稀土永磁电机高效节能 稀土永磁电机又是一种高效节能产品,平均节电率高达10%以上,专用稀土永磁电机的节电率可高达15% ~20%。美国GM公司研制的钕铁硼永磁起动电机与老式串激直流起动电机相比,不仅重量由原来的6.21 kg降低到4.2 kg,体积减少了1/3,而且效率提高了45%。在水泵、风机、压缩机需要无级变频调速的场合,异步变频调速可节电25%左右,而永磁变频调速节电率高达30%以上。电机节能是一项系统工程,应该从多个方面寻求降低电能消耗的方法。系统输入功率包括配电电源、电动机的控制、电动机自身、电动机与负载的连接以及最终被驱动的负载匹配。国际电机节能的先进水平是风机、水泵自身运行效率一般在85%以上,系统运行效率在80%左右。而目前我国国产设备的本体设计效率为75%,系统运行效率不到30%,电源浪费十分严重。这种状况目前尚未改变。电动机的节能有两个方法。一个是改进异步电动机的结构,提高其效率和其他性能。另一个是发展永磁同步电动机,可以取得更高的节电效果【3】。