当前位置:文档之家› 《中考真题》2019年广东省中考数学试题(解析版)

《中考真题》2019年广东省中考数学试题(解析版)

《中考真题》2019年广东省中考数学试题(解析版)
《中考真题》2019年广东省中考数学试题(解析版)

2019年广东省中考数学试题

一、选择题

1. ﹣2的绝对值等于【 】 A. 2 B. ﹣2 C.

1

2

D. ±2

【答案】A 【解析】

根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A

2.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( ) A. 62.2110? B. 52.2110? C. 322110? D. 60.22110?

【答案】B 【解析】 【分析】

科学记数法的表示形式为a×

10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.

【详解】221000的小数点向左移动5位得到2.21, 所以221000用科学记数法表示为2.21×105

, 故选B .

【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n

的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.

3.如图,由4个相同正方体组合而成的几何体,它的左视图是( )

A. B. C. D.

【答案】A 【解析】 【分析】

根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可. 【详解】观察图形,从左边看得到两个叠在一起的正方形,如下图所示:

故选A.

【点睛】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.

4.下列计算正确的是( ) A. 6

3

2

b b b ÷= B. 339

b b b ?=

C. 222

2a a a +=

D. ()

3

36a

a =

【答案】C 【解析】 【分析】

根据同底数幂除法法则、同底数幂乘法法则、合并同类项法则、幂的乘方法则逐一进行计算即可得. 【详解】A. 633b b b ÷=,故A 选项错误; B. 336b b b ?=,故B 选项错误; C. 2222a a a +=,正确; D. ()

3

3

9a a =,故D 选项错误,

故选C.

【点睛】本题考查了同底数幂的乘除法,幂的乘方等运算,熟练掌握各运算的运算法则是解题的关键.

5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )

A. B. C. D.

【答案】C

【解析】

【分析】

根据轴对称图形和中心对称图形的概念逐一进行判断即可得.

【详解】A、是轴对称图形,不是中心对称图形,故不符合题意;

B、是轴对称图形,不是中心对称图形,故不符合题意;

C、是轴对称图形,也是中心对称图形,故符合题意;

D、是轴对称图形,不是中心对称图形,故不符合题意,

故选C.

【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.

6.数据3、3、5、8、11的中位数是( )

A. 3

B. 4

C. 5

D. 6

【答案】C

【解析】

【分析】

根据中位数的定义进行求解即可.

【详解】从小到大排序:3、3、5、8、11,

位于最中间的数是5,

所以这组数据的中位数是5,

【点睛】本题考查了中位数,熟练掌握中位数的定义以及求解方法是解题的关键.①给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.

7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )

A. a b >

B. a b <

C. 0a b +>

D.

0a

b

< 【答案】D 【解析】 【分析】

先由数轴上a ,b 两点的位置确定a ,b 的取值范围,再逐一验证即可求解. 【详解】由数轴上a ,b 两点的位置可知-2<a <-1,0|b|,故B 选项错误; a+b<0,故C 选项错误;

0a

b

<,故D 选项正确, 故选D.

【点睛】本题考查了实数与数轴,实数的大小比较、实数的运算等,根据数轴的特点判断两个数的取值范围是解题的关键.

8.( ) A. 4- B. 4

C. 4±

D. 2

【答案】B 【解析】

根据算术平方根的定义进行求解即可.

, 故选B.

【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.

9.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A. 12x x ≠ B. 2

1120x x -=

C. 122x x +=

D. 122x x ?=

【答案】D 【解析】 【分析】

根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.

【详解】x 1、x 2是一元二次方程x 2

-2x=0的两个实数根,

这里a=1,b=-2,c=0, b 2-4ac=(-2)2-4×1×0=4>0,

所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意;

21120x x -=,故B 选项正确,不符合题意;

12221

b x x a -+=-=-=,故C 选项正确,不符合题意; 120c

x x a

?=

=,故D 选项错误,符合题意, 故选D.

【点睛】本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.

10.如图,

正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG

交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ???;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ??=.其中正确的结论有( )

A. 1个

B. 2个

C. 3个

D. 4个

【答案】C 【解析】 【分析】

由正方形的性质可得∠BAD=∠C=∠E=∠EFB=∠BGF=90°,AD//BC ,继而可得四边形CEFM 是矩形,∠AGF=90°,由此可得AH=FG ,再根据∠NAH=∠NGF ,∠ANH=∠GNF ,可得△ANH ≌△GNF(AAS),由此可判断①正确;由AF ≠AH ,判断出∠AFN ≠∠AHN ,即∠AFN ≠∠HFG ,由此可判断②错误;证明△AHK ∽△MFK ,根据相似三角形的性质可对③进行判断;分别求出S △ANF 、S △AMD 的值即可对④作出判断.

【详解】∵四边形ABCD 、BEFG 是正方形, ∴∠BAD=∠C=∠E=∠EFB=∠BGF=90°,AD//BC , ∴四边形CEFM 是矩形,∠AGF=180°-∠BGF=90° ∴FM=EC ,CM=EF=2,FM//EC , ∴AD//FM ,DM=2, ∵H 为AD 中点,AD=4, ∴AH=2, ∵FG=2, ∴AH=FG ,

∵∠NAH=∠NGF ,∠ANH=∠GNF , ∴△ANH ≌△GNF(AAS),故①正确; ∴∠NFG=∠AHN ,NH=FN ,AN=NG ,

∵AF>FG,

∴AF≠AH,

∴∠AFN≠∠AHN,即∠AFN≠∠HFG,故②错误;∵EC=BC+BE=4+2=6,

∴FM=6,

∵AD//FM,

∴△AHK∽△MFK,

6

3

2

FK FM

KH AH

===,

∴FK=3HK,

∵FH=FK+KH,FN=NH,FN+NH=FH,∴FN=2NK,故③正确;

∵AN=NG,AG=AB-BG=4-2=2,

∴AN=1,

∴S△ANF=11

·121

22

AN FG=??=,S△AMD=

11

·424

22

AD DM=??=,

∴S△ANF:S△AMD=1:4,故④正确,

故选C.

【点睛】本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质等,综合性较强,熟练掌握和灵活运用相关内容是解题的关键.注意数形结合思想的应用.

二、填空题

11.计算:

1

1

2019

3

-

??

+=

?

??

______.

【答案】4

【解析】

【分析】

根据0次幂和负指数幂运算法则分别化简两数,然后再相加即可.

详解】1

0120193-??+ ???

=1+3

=4, 故答案为:4. 【点睛】本题考查了实数的运算,涉及了0指数幂、负整数指数幂,熟练掌握各运算的运算法则是解题的

关键.

12.如图,已知//a b ,175∠=?,则2∠=_____.

【答案】105° 【解析】 【分析】

如图,根据邻补角的定义求出∠3的度数,继而根据平行线的性质即可求得答案.

【详解】∵∠1+∠3=180°,∠1=75°, ∴∠3=105°, ∵a//b ,

∴∠2=∠3=105°, 故答案为:105°

.

【点睛】本题考查了邻补角的定义,平行线的性质,熟练掌握两直线平行,内错角相等是解本题的关键.

13.若正多边形的内角和是1080°,则该正多边形的边数是_____. 【答案】8 【解析】 【分析】

n 边形的内角和是(n ﹣2)?180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.

【详解】根据n 边形的内角和公式,得 (n ﹣2)?180=1080, 解得n=8.

∴这个多边形的边数是8. 故答案为:8.

【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题 的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.

14.已知23x y =+,则代数式489x y -+的值是_____. 【答案】21 【解析】 【分析】

由已知可得x-2y=3,继而对所求的式子进行变形后,利用整体代入思想即可求得答案. 【详解】∵x=2y+3, ∴x-2y=3,

∴4x-8y+9=4(x-2y)+9=4×3+9=21, 故答案为:21.

【点睛】本题考查了代数式求值,正确的进行变形是解题的关键.

15.如图,

某校教学楼AC 与实验楼BD 的水平间距CD =在实验楼顶部B 点测得教学楼顶部A 点

的仰角是30°,底部C点的俯角是45?,则教学楼AC的高度是____米(结果保留根号).

【答案】

【解析】

【分析】

过点B作BM⊥AC,垂足为E,则∠ABE=30°,∠CBE=45°,四边形CDBE是矩形,继而证明∠CEB=∠CBE,

从而可得CE长,在Rt△ABE中,利用tan∠ABE=AE

BE

,求出AE长,继而可得AC长.

【详解】过点B作BM⊥AC,垂足为E,

则∠ABE=30°,∠CBE=45°,四边形CDBE是矩形,

∴,

∵∠CEB=90°,

∴∠CEB=90°-∠CBE=45°=∠CBE,

在Rt△ABE中,tan∠ABE=AE BE

3

=

∴AE=15,

即教学楼AC的高度是米,

故答案为:).

【点睛】本题考查了解直角三角形的应用,正确构建直角三角形是解题的关键.

16.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a、b代数式表示).

【答案】a+8b

【解析】

【分析】

观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.

【详解】观察图形可知两个拼接时,总长度为2a-(a-b),

三个拼接时,总长度为3a-2(a-b),

四个拼接时,总长度为4a-3(a-b),

…,

所以9个拼接时,总长度为9a-8(a-b)=a+8b,

故答案为:a+8b.

【点睛】本题考查了规律题——图形的变化类,通过推导得出总长度与个数间的规律是解题的关键.

三、解答题

17.解不等式组:(

)12214x x ①

②->??

+>? 【答案】3x >. 【解析】 【分析】

先分别求出每一个不等式的解集,然后再确定出不等式组的解集即可. 【详解】解不等式①,得3x >, 解不等式②,得1x >, 则不等式组的解集是3x >.

【点睛】本题考查了解一元一次不等式组,熟练掌握解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.

18.先化简,再求值:22

1224x

x x x x x -??-÷ ?---??

,其中x =.

【答案】2

2

x +1. 【解析】 【分析】

括号内先进行分式的加减运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可.

【详解】原式()()()

22121x x x x x x +--=

?-- =

2

x x

+,

当x =时,原式1

=

=. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.

19.如图,在ABC ?中,点D 是边AB 上的一点.

(1)请用尺规作图法,在ABC ?内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹)

(2)在(1)的条件下,若AD

2DB =,求AE EC

的值. 【答案】(1)见解析;(2)2AE

EC

=. 【解析】 【分析】

(1)以点B 为圆心,以任意长为半径画弧,交BA 、BC 于点F 、G ,以点D 为圆心,以BF 长为半径画弧,交DA 于点M ,再以M 为圆心,以FG 长为半径画弧,与前弧交于点H ,过点D 、H 作射线,交AC 于点E ,由此即可得;

(2)由(1)可知DE//BC ,利用平行线分线段成比例定理进行求解即可. 【详解】(1)如图所示;

(2)∵ADE B ∠=∠, ∴//DE BC . ∴

2AE AD

EC DB

==. 【点睛】本题考查了作一个角等于已知角,平行线分线段成比例定理,熟练掌握利用尺规作一个角等于已知角的作图方法是解题的关键.

20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、

B、C、D四个等级,绘制如下不完整的统计图表,如题图表所示,根据图表信息解答下列问题:

成绩等级频数分布表

成绩等级扇形统计图

(1)x=______,y=______,扇形图中表示C的圆心角的度数为______度;

(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.

【答案】(1)4,40,36;(2)1 3 .

【解析】

【分析】

(1)根据B等级的人数以及所占的比例可求得y,用y减去其余3组的人数可求得x,用360乘以C等级所占的比例即可求得相应圆心角的度数;

(2)画出树状图得到所有等可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.

【详解】(1)y=10÷25%=40,

x=40-24-10-2=4, 360×

4

40

=36度, 故答案为:4,40,36 (2)画树状图如图:

共有6种等可能的情况,其中同时抽到甲、乙的有两种情况, ∴P(同时抽到甲、乙)=

2163

=. 【点睛】本题考查了频数分布表,扇形统计图,列表法或树状图法求概率,弄懂图表,从中得到有用的信息是解题的关键.本题还用到了知识点:概率=所求情况数与总情况数之比.

21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的

价格为70元,每个足球的价格为80元.

(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球? 【答案】(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个. 【解析】 【分析】

(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;

(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可. 【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得

60

70804600x y x y +=??

+=?

解得

20

40 x

y

=

?

?

=

?

答:篮球、足球各买了20个,40个;

(2)设购买了a个篮球,根据题意,得

()

708060

a a

≤-,

解得32

a≤,

∴最多可购买篮球32个.

【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.

22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC

?的三个顶点均在格点上,以点A为圆心的EF与BC相切于点D,分别交AB、AC于点E、F.

(1)求ABC

?三边的长;

(2)求图中由线段EB、BC、CF及FE所围成的阴影部分的面积.

【答案】(1),,(2)S阴影205π

=-.

【解析】

【分析】

(1)结合网格特点利用勾股定理进行求解即可;

(2)由(1)根据勾股定理逆定理可得∠BAC=90°,连接AD,求出AD长,利用三角形面积公式以及扇形面积公式分别求出ABC

?的面积和扇形AEF的面积,继而可求得答案.

【详解】(1)AB==

AC =

BC ==

(2)由(1)得AB 2+BC 2

)2

2

2=BC 2, ∴90BAC ∠=?,

连接AD

,则AD == ∴=ABC AEF S S S 阴扇形?-

=21902360

AD AB AC π??-

=(2

9012

360

π??

=205π-.

【点睛】本题考查了勾股定理及其逆定理,扇形面积公式,熟练掌握相关内容以及网格的结构特点是解题的关键.

23.如图,一次函数1y k x b =+的图象与反比例函数2

k y x

=

的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n

.

(1)根据图象,直接写出满足2

1k k x b x

+>的x 的取值范围; (2)求这两个函数的表达式;

(3)点P 在线段AB 上,且:1:2AOP BOP S S ??=,求点P 的坐标. 【答案】(1)1x <-或04x <<;(2)4y x =-

,3y x =-+;(3)27,33P ??

???

【解析】 【分析】

(1) 观察图象得到当1x <-或04x <<时,直线y=k 1x+b 都在反比例函数2

k y x

=的图象上方,由此即可得; (2)先把A(-1,4)代入y=

2k x 可求得k 2,再把B(4,n)代入y=2k

x

可得n=-1,即B 点坐标为(4,-1),然后把点A 、B 的坐标分别代入y=k 1x+b 得到关于k 1、b 的方程组,解方程组即可求得答案;

(3)设AB 与y 轴交于点C ,先求出点C 坐标,继而求出7.5AOB S ?=,根据P :1:2AO BOP S S ??=分别求出

2.5AOP S ?=,5BOP S ?=,再根据 1.5AOC S ?=确定出点P 在第一象限,求出1COP S ?=,继而求出P 点的

坐标2

3

P x =,由点P 在直线3y x =-+上继而可求出点P 的纵坐标,即可求得答案. 【详解】(1)观察图象可知当1x <-或04x <<,k 1x+b>2k

x

(2)把()1,4A -代入2k

y x

=,得24k =-,

∴4

y x

=-,

∵点()4,B n 在4

y x

=-上,∴1n =-,

∴()4,1B -,

把()1,4A -,()4,1B -代入11y k x b =+得

11441k b k b -+=??+=-?,解得11

3

k b =-??

=?, ∴3y x =-+;

(3)设AB 与y 轴交于点C ,

∵点C 在直线3y x =-+上,∴()0,3C ,

()()11

3147.522

AOB A B S OC x x ?=?+=??+=,

又:1:2AOD BOP S S ??=, ∴1

7.5 2.53AOP S ?=?=,5BOP S ?=, 又1

31 1.52

AOC

S ?=??=,∴点P 在第一象限,

∴ 2.5 1.51COP S ?=-=,

又3OC =,∴1312P x ??=,解得23P x =, 把23P x =代入3y x =-+,得7

3

P y =,

∴27,33P ??

???

.

【点睛】本题考查了一次函数与反比例函数的综合题,涉及了待定系数法,函数与不等式,三角形的面积等,熟练掌握相关知识是解题的关键.注意数形结合思想的应用.

24.如图1,在ABC ?中,AB AC =,O 是ABC ?的外接圆,过点C 作BCD ACB ∠=∠交O 于点D ,

连接AD 交BC 于点E ,延长DC 至点F ,使CF AC =,连接AF .

(1)求证:ED EC =; (2)求证:AF 是

O 的切线;

(3)如图2,若点G 是ACD ?的内心,25BC BE ?=,求BG 的长. 【答案】(1)证明见解析;(2)证明见解析;(3)BG=5. 【解析】

【分析】

(1)根据等腰三角形的性质可得A ABC CB =∠∠,再根据圆周角定理以及ACB BCD ∠=∠可得BCD ADC

∠=∠,即可得ED=EC ; (2)连接OA ,可得OA BC ⊥,继而根据CA CF =以及三角形外角的性质可以推导得出CAF ACB ∠=∠,可得//AF BC ,从而可得OA AF ⊥,问题得证; (3)证明ABE

CBA ??,可得2AB BC BE =?,从而求得5AB =,连接AG ,结合三角形内心可推导得

出BAG BGA ∠=∠,继而根据等腰三角形的

判定可得5BG AB ==. 【详解】(1)∵AB AC =,∴A ABC CB =∠∠, 又∵ACB BCD ∠=∠,ABC ADC ∠=∠, ∴BCD ADC ∠=∠, ∴ED EC =; (2)连接OA ,

∵AB AC =,∴??AB AC =, ∴OA BC ⊥,

∵CA CF =,∴CAF CFA ∠=∠, ∴2ACD CAF CFA CAF ∠=∠+∠=∠, ∵ACB BCD ∠=∠,∴2ACD ACB ∠=∠, ∴CAF ACB ∠=∠,∴//AF BC , ∴OA AF ⊥, ∴AF 为

O 的切线;

(3)∵ABE CBA ∠=∠,BAD BCD ACB ∠=∠=∠, ∴ABE

CBA ??,∴

AB BE

BC AB

=, ∴2AB BC BE =?,

∵25BC BE ?=,∴5AB =,

连接AG ,∴BAG BAD DAG ∠=∠+∠,

BGA GAC ACB ∠=∠+∠,

∵点G

内心,∴DAG GAC ∠=∠,

又∵BAD BCD ACB ∠=∠=∠,

2019年安徽中考数学试卷及答案

2019年安徽省初中学业水平考试数学试卷 一、选择题(本大题共10小题,每小题4分,满分40分) 1、在—2,—1,0,1这四个数中,最小的数是() A、—2 B、—1 C.、0 D、1 2、计算a3·(—a)的结果是() A、a2 B、—a2 C、a4 D、—a4 3、一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是() 4、2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学计数法表示为() A、1.61×109 B、1.61×1010 C、1.61×1011 D、1.61×1012 5、已知点A(1,—3)关于x轴的对称点A/在反比例函数 k y x 的图像上,则 实数k的值为() A、3 B、 1 3 C、—3 D、- 1 3 6、在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为() A、60 B、50 C、40 D、15

7、如图,在R t△ABC中,∠ACB=900,AC=6,BC=12,点D在边BC上,点E在线段AD上,E F⊥AC于点F,EG⊥EF交AB于G,若EF=EG,则CD的长为() A、3.6 B、4 C、4.8 D、5 8、据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6﹪,假设国内生产总值增长率保持不变,则国内生产总值首次突破100万亿的年份为() A、2019年 B、2020年 C、2021年 D、2022年 9、已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则() A、b>0,b2-a c≤0 B、b<0,b2-a c≤0 C、b>0,b2-a c≥0 D、b<0,b2-a c≥0 10、如图,在正方形ABCD中,点E,F将对角线AC三等 分,且AC=12,点P正方形的边上,则满足PE+PF=9 的点P个数是() A、0 B、4 C、6 D、8 二、填空题(本大题共4小题,每小题5分,满分20分) 的结果是. 11、计算182 12、命题“如果a+b=0,那么a,b互为相反数”的逆命题 为. 13、如图,△ABC内接于⊙O,∠CAB=30O,∠CBA=45O, CD⊥AB于点D,若⊙O的半径为2,则CD的长 为 . 14、在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x-a+1和y=x2-2ax 的图像交于P,Q两点,若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是. 三、(本大题共2小题,每小题8分,满分16分) 15、解方程(x—1)2=4. 16、如图,在边长为1的单位长度的小正方 形组的12×12风格中,给出了以格点 (风格线的交点)为端点的线段AB。 (1)将线段AB向右平移5个单位,再向 上平移3个单位得到线段CD,请画出 线段CD。 (2)以线段CD为一边,作一个菱形CDEF, (作出一个菱形即可) 且E,F也为格点。 四、(本大题共2小题,每小题8分,满分16分)

全国卷2019年中考数学试题(解析版)

初中毕业学业考试 数学试题卷解析 准考证号___________ 姓名______ 考生注意∶ 1.请考生在试题卷首填写好准考证号及姓名 2.请将答案填写在答题卡上,填写在试题卷上无效 3.本学科试题卷共4页,七道大题,满分120分,考试时量120分钟。 4.考生可带科学计算机参加考试 一、填空题(本大题8个小题,每小题3分,满分24分﹚ 1、若向东走5米记作+5米,则向西走5米应记作_____米。 知识点考察:有理数的认识;正数与负数,具有相反意义的量。 分析:规定向东记为正,则向西记为负。 答案:-5 点评:具有相反意义的一对量在日常生活中很常见,若一个记为“+”,则另一个 记为“-”。 2、我国南海海域的面积约为3500000㎞2,该面积用科学计数法应表示为_____㎞2。 知识点考察:科学计数法。 分析:掌握科学计数的方法。)10(10≤

2019年广东省中考数学试卷

2019 年广东省中考数学试卷 副标题 题号 得分 一二三总分 一、选择题(本大题共10 小题,共30.0 分) 1. -2 的绝对值是() 1 2 A. 2 B. -2 C. D. ±2 【答案】A 【解析】解:|-2|=2,故选:A. 根据负数的绝对值是它的相反数,即可解答. 本题考查了绝对值,解决本题的关键是明确负数的绝对值是它的相反数. 2. 某网店 2019 年母亲节这天的营业额为 221000 元,将数 221000 用科学记数法表示 为() A. 2.21×106 C. 221×103 B. 2.21×105 D. 0.221×106 【答案】B 【解析】解:将 221000 用科学记数法表示为:2.21×105. 故选:B. 根据有效数字表示方法,以及科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a| <10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3. 如图,由 4 个相同正方体组合而成的儿何体,它的左视图是() A. B. C. D. 【答案】A

【解析】解:从左边看得到的是两个叠在一起的正方形,如图所示. 故选:A. 左视图是从左边看得出的图形,结合所给图形及选项即可得出答案. 此题考查了简单几何体的三视图,解答本题的关键是掌握左视图的观察位置. 4. 下列计算正确的是( A. b6+b3=b2 ) B. b3?b3=b9 C. a2+a2=2a2 D. (a3)3=a6 【答案】C 【解析】解:A、b6+b3,无法计算,故此选项错误; B、b3?b3=b6,故此选项错误; C、a2+a2=2a2,正确; D、(a3)3=a9,故此选项错误. 故选:C. 直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案. 此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘法运算,正确掌握相关运算法则是解题关键. 5. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是() A. B. C. D. 【答案】C 【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误; B、是轴对称图形,不是中心对称图形,故本选项错误; C、既是轴对称图形,也是中心对称图形,故本选项正确; D、是轴对称图形,不是中心对称图形,故本选项错误. 故选:C. 根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合 6. 数据 3,3,5,8,11 的中位数是() A. 3 B. 4 C. 5 D. 6 【答案】C 【解析】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11, 故这组数据的中位数是,5. 故选:C. 先把原数据按从小到大排列,然后根据中位数的定义求解即可. 本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数. 7. 实数a、b 在数轴上的对应点的位置如图所示,下列式子成立的是()

【附5套中考模拟试卷】甘肃省陇南市2019-2020学年中考中招适应性测试卷数学试题(5)含解析

甘肃省陇南市2019-2020学年中考中招适应性测试卷数学试题(5) 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A . 1 9 B . 16 C . 13 D . 23 2.计算(-ab 2)3÷(-ab)2的结果是( ) A .ab 4 B .-ab 4 C .ab 3 D .-ab 3 3.二次函数2y ax bx c =++(a≠0)的图象如图所示,则下列命题中正确的是( ) A .a >b >c B .一次函数y=ax +c 的图象不经第四象限 C .m (am+b )+b <a (m 是任意实数) D .3b+2c >0 4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ). A .50° B .40° C .30° D .25° 5.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x 名学生,根据题意,列出方程为 A . (1) 19802 x x -= B .x (x+1)=1980 C .2x (x+1)=1980 D .x (x-1)=1980 6.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ). A . 1 6 B . 12 C . 13 D . 23 7.方程x 2+2x ﹣3=0的解是( ) A .x 1=1,x 2=3 B .x 1=1,x 2=﹣3

2019年安徽省中考数学试卷及答案(最新)

2019年安徽省中考数学试卷 一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的. 1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是() A.﹣2B.﹣1C.0D.1 2.(4分)计算a3?(﹣a)的结果是() A.a2 B.﹣a2C.a4D.﹣a4 3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是() A.B.C.D. 4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为() A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012 5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为() A.3B.C.﹣3D.﹣ 6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为() A.60B.50C.40D.15 7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()

A.3.6B.4C.4.8D.5 8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年 9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则() A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0 C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0 10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是() A.0B.4C.6D.8 二、填空题(共4小题,每小题5分,满分20分) 11.(5分)计算÷的结果是. 12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为. 13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为. 14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解方程:(x﹣1)2=4.

2019年湖北省中考数学压轴题汇编

2019年湖北省中考数学压轴题汇编 1.(2019?黄冈)如图,AC ,BD 在AB 的同侧,2AC =,8BD =,8AB =,点M 为AB 的中点,若120CMD ∠=?,则CD 的最大值是 . 2.(2019?咸宁)如图,先有一张矩形纸片ABCD ,AB =4,BC =8,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:①CQ =CD ;②四边形CMPN 是菱形;③P ,A 重合时,MN =2;④△PQM 的面积S 的取值范围是3≤S ≤5.其中正确的是 (把正确结论的序号都填上). 3.(2019?随州)如图,已知正方形ABCD 的边长为a ,E 为CD 边上一点(不与端点重合),将ADE ?沿AE 对折至AFE ?,延长EF 交边BC 于点G ,连接AG ,CF . 给出下列判断: ①45EAG ∠=?;②若13DE a =,则//AG CF ;③若E 为CD 的中点,则GFC ?的面积为21 10 a ; ④若CF FG =,则(21)DE a =-;⑤2BG DE AF GE a +=g g . 其中正确的是 .(写出所有正确判断的序号) 4.(2019?武汉)问题背景:如图1,将ABC ?绕点A 逆时针旋转60?得到ADE ?,DE 与BC 交于点P ,可推出结论:PA PC PE +=. 问题解决:如图2,在MNG ?中,6MN =,75M ∠=?,42MG =点O 是MNG ?内一点,则点O 到MNG ?三个顶点的距离和的最小值是 .

2019年中考数学试卷

2019年中考数学试卷 1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动. (1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H, ∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB, ∴QH QB AC AB ,∴QH= 8 5 x,y= 1 2 BP?QH= 1 2 (10﹣x)? 8 5 x=﹣ 4 5 x2+8x(0<x≤3), ②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,

∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH′∽△ABC, ∴'AQ QH AB BC =,即:'14106x QH -=,解得:QH′=3 5 (14﹣x ), ∴y= 12PB?QH′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

山东泰安市2019年中考数学阶段测试卷3(带答案)

山东泰安市2019年中考数学阶段测试卷3(带答案) 阶段检测三一、选择题 1.在平面直角坐标系中,点P(-2,x2+1)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.根据如图所示的程序计算函数值,若输入的x值为5/2,则输出的y 值为( ) A.3/5 B.2/5 C.4/25 D.25/4 3.将某抛物线向右平移2个单位,再向下平移3个单位所得的抛物线的函数关系式是 y=-2x2+4x+1,则将该抛物线沿y轴翻折后所得抛物线的函数关系式 是( ) A.y=-2(x-1)2+6 B.y=-2(x-1)2-6 C.y=-2(x+1)2+6 D.y=2(x+1)2-6 4.(2017河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O.固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为( ) A.(√3,1) B.(2,1) C.(1,√3) D.(2,√3) 5.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论: ①出发1小时时,甲、乙在途中相遇; ②出发1.5小时时,乙比甲多行驶了60千米; ③出发3小时时,甲、乙同时到达终点; ④甲的速度是乙的速度的一半. 其中,正确结论的个数是( ) A.4 B.3 C.2 D.1 6.如图,正方形OABC,正方形ADEF 的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=4/x(x>0)的图象上,则点E的坐标是( ) A.(√5+1,√5-1) B.(3+√5,3-√5) C.(√5-1,√5+1) D.(3-√5,3+√5) 7.已知一次函数y=kx+b的图象与直线y=-5x+1平行,且过点(2,1),那么此一次函数的关系式为( ) A.y=-5x-2 B.y=-5x-6 C.y=-5x+10 D.y=-5x+11 8.已知函数y=-(x-m)(x-n)(其中m0)的图象与正方形的一个交点,若图中阴影部分的面积等于16,则k的值为( ) A.16 B.1 C.4 D.-16 10.一元二次方程(x+1)(x-2)=10的根的情况是( )

2019年中考数学试卷(及答案)

2019年中考数学试卷(及答案) 一、选择题 1.已知反比例函数 y = 的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是( ) A . B . C . D . 2.已知11(1)11 A x x ÷+=-+,则A =( ) A . 21 x x x -+ B . 21 x x - C . 21 1 x - D .x 2﹣1 3.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( ) A .2x 2-25x+16=0 B .x 2-25x+32=0 C .x 2-17x+16=0 D .x 2-17x-16=0 4.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac2,其中正确的结论的个数是( ) A .1 B .2 C .3 D .4 5.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )

A .40 B .30 C .28 D .20 6.如图,正比例函数1y=k x 与反比例函数2 k y=x 的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( ) A .(1,2) B .(-2,1) C .(-1,-2) D .(-2,-1) 7.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=?, 6,1AB AE ==,则CD 的长是( ) A .26 B .210 C .211 D .43 8.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( ) A . 2 3 π﹣3B . 1 3 π3 C . 4 3 π﹣3 D . 4 3 π3 9.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8% B .9% C .10% D .11% 10.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象

2019年各省市中考数学压轴题合辑5(湖南专辑)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 2019年各省市中考数学压轴题合辑(五) 1.(2019?长沙)如图,抛物线26(y ax ax a =+为常数,0)a >与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(30)t -<<,连接BD 并延长与过O ,A ,B 三点的P e 相交于点C . (1)求点A 的坐标; (2)过点C 作P e 的切线CE 交x 轴于点E . ①如图1,求证:CE DE =; ②如图2,连接AC ,BE ,BO ,当3a = ,CAE OBE ∠=∠时,求11OD OE -的值.

2.(2019?长沙)已知抛物线22(2)(2020)(y x b x c b =-+-+-,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围; (3)在(1)的条件下,存在正实数m ,n (m <n ),当m ≤x ≤n 时,恰好≤≤, 求m ,n 的值.

3.(2019?长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比. (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”). ①四条边成比例的两个凸四边形相似;(命题) ②三个角分别相等的两个凸四边形相似;(命题) ③两个大小不同的正方形相似.(命题) (2)如图1,在四边形ABCD和四边形 1111 A B C D中, 111 ABC A B C ∠=∠, 111 BCD B C D ∠=∠,111111 AB BC CD A B B C C D ==.求证:四边形ABCD与四边形 1111 A B C D相似. (3)如图2,四边形ABCD中,// AB CD,AC与BD相交于点O,过点O作// EF AB分 别交AD,BC于点E,F.记四边形ABFE的面积为 1 S,四边形EFCD的面积为 2 S,若 四边形ABFE与四边形EFCD相似,求2 1 S S 的值.

2019年全国各地中考数学真题大集合

河南省2019年中考数学试题 班级______ 姓名______ 一. 选择题: 1. 1 2 -的绝对值是( ) A. 12- B. 1 2 C. 2 D. 2- 2. 成人每天维生素D 的摄入量约为0.0000046克,数据“0.0000046”用科学记数法表示为( ) A. 74610-? B.74.610-? C. 64.610-? D. 50.4610-? 3. 如图,,75,27AB CD B E ∠=?∠=?P ,则D ∠的度数为( ) A. 45° B. 48° C. 50° D. 58° 4. 下列计算正确的是( ) A. 236a a a += B.()2 236a a -= C. ( )2 22 x y x y -=- D.=5. 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②. 关于平移后几何体的三视图,下列说法正确的是( ) A. 主视图相同 B. 左视图相同 C. 俯视图相同 D. 三种视图都不相同 6. 一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C. 只有一个实数根 D. 没有实数根 图2 E D C B A

7. 某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元,3元,2元,1元. 某天的销售情况如图所示,则这天销售的矿泉水的平均单价( ) A. 1.95 元 B. 2.15元 C. 2.25元 D. 2.75元 8. 已知抛物线24y x bx =-++经过(-2,n )和(4,n )两点,则n 的值为( ) A. -2 B. - 4 C. 2 D. 4 9. 如图,在四边形ABCD 中,AD ∥BC ,∠D=90°,AD=4,BC=3 ,分别以A ,C 为 圆心,以大于1 2 AC 的长为半径画弧,两弧交于点E ,作射线BE 交AD 于点F , 交AC 于点O ,若点O 是AC 的中点,则CD 的长为 ( ) A. B. 4 C. 3 D. 10. 如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4),将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( ) A. (10,3) B. (-3,10) C. (10,-3) D. (3,-10) 二. 填空题 11. 12-=___________ 12. 不等式组1 274 x x ?≤-???-+>?的解集是_________________ 13. 现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个 黄球2个红球,这些球除颜色外完全相同。从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是______________ 15% 10%20% 55% D C B A A

2019年中考数学测试卷(含答案)

毕节市2019年初中毕业生学业(升学)统一考试试卷 数 学 一、选择题: 1.下列实数中,无理数为( ) A . 2.0 B . 2 1 C .2 D .2 2.2019年毕节市参加中考的学生约为115000人.将115000用科学记数法表示为( ) A .6 1015.1? B .6 10115.0? C .4 105.11? D .51015.1? 3.下列计算正确的是( ) A .93 3 a a a =? B .2 22)(b a b a +=+ C .02 2 =÷a a D .6 32)(a a = 4.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少.. 有( ) A .3个 B .4个 C .5个 D .6个 5.对一组数据:1,2,1,2-,下列说法不正确... 的是( ) A .平均数是1 B .众数是1 C .中位数是1 D .极差是4 6.如图,CD AB //,AE 平分CAB ∠交CD 于点E ,若0 70=∠C ,则AED ∠等于( ) A .0 55 B .0 125 C. 0 135 D .0 140

7.若关于x 的一元一次不等式 23 2-≤-x m 的解集为4≥x ,则m 的值为( ) A .14 B .7 C.2- D .2 8.为了估计鱼塘中鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,在从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做了记号的,那么可以估计这个鱼塘鱼的数量约为( ) A .1250条 B .1750条 C.2500条 D .5000条 9.若关于x 的分式方程 1 1 2517--=+-x m x x 有增根,则m 的值为( ) A .1 B .3 C. 4 D .5 10.甲、乙、丙、丁四人参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表: 则这10次跳绳测试中,这四个人发挥最稳定...的是( ) A .甲 B .乙 C.丙 D .丁 11.把直线12-=x y 向左平移1个单位,平移后直线的关系式为( ) A .22-=x y B .12+=x y C. x y 2= D .22+=x y 12.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,0 30=∠ACD ,则BAD ∠为( ) A .0 30 B .0 50 C. 0 60 D .0 70 13.如图,ABC Rt ?中,0 90=∠ACB ,斜边9=AB ,D 为AB 的中点,F 为CD 上一点,且CD CF 3 1 = ,过点B 作DC BE //交AF 的延长线于点E ,则BE 的长为( )

2019年成都中考数学试题与答案

2019年成都中考数学试题与答案 A 卷(共100分) 一.选择题(本大题共10个小题,每小题3分,共30分) 1.比-3大5的数是( ) A.-15 B.-8 C.2 D.8 2.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( ) A. B. C. D. 3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为( ) 5500×104 B.55×106 C.5.5×107 D.5.5×108 4.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( ) A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1) 5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为( ) A.10° B.15° C.20° D.30° 6.下列计算正确的是( ) A. B. C. D. b b ab 235=-242263b a b a =-)(1)1(22-=-a a 2222a b b a =÷

7.分式方程的解为( ) A. B. C. D. 8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( ) A.42件 B.45件 C.46件 D.50件 9.如图,正五边形ABCDE 内接于⊙O ,P 为上的一点(点P 不与点D 重合),则∠CPD 的度数为( ) A.30° B.36° C.60° D.72° 10.如图,二次函数的图象经过点A (1,0),B (5,0),下列说法正确的是( ) A. B. C. D.图象的对称轴是直线 二.填空题(本大题共4个小题,每小题4分,共16分) 1215=+--x x x 1-=x 1=x 2=x 2-=x DE c bx ax y ++=20>c 042<-ac b 0<+-c b a 3= x

河北省中考数学压轴题汇总

2010/26.(本小题满分12分) 某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售 价格y (元/件)与月销量x (件)的函数关系式为y= 1 100 x +150,成本为20元/件,无论销售多少,每月还需 支出广告费62500元,设月利润为w 内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为150 1 元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳 100 2 x 元 的附加费,设月利润为w 外(元)(利润=销售额-成本-附加费). (1)当x=1000时,y =元/件,w 内=元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内 销售月利润的最大值相同,求a 的值; (4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还 是在国外销售才能使所获月利润较大? 参考公式:抛物线 2(0) yaxbxca 的顶点坐标是 2 b4acb (,) 2a4a . 2011/26.(本小题满分12分) 如图15,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒1个单位长的速度运动t (t >0) 秒,抛物线y=x 2 +bx +c 经过点O 和点P.已知矩形ABCD 的三个顶点为A (1,0)、B (1,-5)、D (4,0). ⑴求c 、b (用含t 的代数式表示); ⑵当4<t <5时,设抛物线分别与线段A B 、CD 交于点M 、N. ①在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值; 21 8 ②求△MPN 的面积S 与t 的函数关系式,并求t 为何值时,S= ; ③在矩形ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分 成数量相等的两部分,请直接..写出t 的取值范围. y ADP O -1 1 x N M BC 图15 2012/26.(12分)如图1和2,在△ABC 中,AB=13,BC=14,cos ∠ABC=. 探究:如图1,AH ⊥BC 于点H ,则A H=,AC=,△ABC 的面积S △ABC=; 拓展:如图2,点D 在AC 上(可与点A ,C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E ,F , 设BD=x ,AE=m ,CF=n (当点D 与点A 重合时,我们认为S △ABD=0)

舟山市2019年中考数学试题及答案

舟山市2019年中考数学试题及答案 (试卷满分120分,考试时间120分钟) 一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.﹣2019的相反数是() A.2019 B.﹣2019 C.D.﹣ 2. 2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为() A.38×104B.3.8×104C.3.8×105D.0.38×106 3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为() A.B.C.D. 4. 2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是() A.签约金额逐年增加 B.与上年相比,2019年的签约金额的增长量最多 C.签约金额的年增长速度最快的是2016年 D.2018年的签约金额比2017年降低了22.98% 5.如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()

A.tan60°B.﹣1 C.0 D.12019 6.已知四个实数a,b,c,d,若a>b,c>d,则() A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.> 7.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为() A.2 B.C.D. 8.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为() A.B. C.D. 9.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是() A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)10.小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论: ①这个函数图象的顶点始终在直线y=﹣x+1上; ②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;

2019年陕西省中考数学试题及答案)

机密★启用前试卷类型:A 2019年陕西省初中毕业学业考试 数学试卷 注意事项: 1、本试卷分为第一部分(选择题)和第二部分(非选择题)。全卷共8页,总分120分。考试时间120分钟。 2、领取试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B铅笔在答题卡填涂对应的试卷类型信息点(A或B)。 3、请在答题卡上各题的指定区域内作答,否则作答无效。 4、作图时,先用铅笔作图,再用规定签字笔描黑。 5、考试结束,本试卷和答题卡一并交回。 第一部分(选择题共30分) 一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.计算:(-3)0=【A】 A.1 B.0 C.3 D .- 1 3 2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【D 】 3.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为【C】A.52°B.54° C.64°D.69° 4.若正比例函数y=-2x的图象经过点(a-1,4),则a的值为【A】 A.-1 B.0 C.1 D.2 5.下列计算正确的是【D】 A.2a2·3a2=6a2B.(-3a2b)2=6a4b2 C.(a-b)2=a2-b2D.-a2+2a2=a2 6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC,交BC于点D,DE⊥AB,垂足为E,若DE=1,则BC的长为【A】 A.2+ 2 B.2+ 3 C.2+ 3 D.3 7.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴交点的坐标为【B】 A.(2,0) B.(-2,0) C.(6,0) D.(-6,0) 8.如图,在矩形ABCD中,AB=3,BC=6.若点E、F分别在AB、CD上,且BE=2AE,DF=2FC,G、H分别是AC的三等分点,则四边形EHFG的面积为【C】 A.1 B. 3 2 C.2 D.4 BE=2AE,DF=2FC,G、H分别是AC的三等分点 ∴E是AB的三等分点,F是CD的三等分点 ∴EG∥BC且EG=- 1 3BC=2 同理可得HF∥AD且HF=- 1 3AD=2 ∴四边形EHFG为平行四边形EG和HF间距离为1 S四边形EHFG=2×1=2 9.如图,AB是⊙O的直径,EF、EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是【B】 A.20°B.35°C.40°D.55° 连接FB,得到FOB=140°; ∴∠FEB=70° ∵EF=EB

2019年中考数学试卷含答案

2019年中考数学试卷含答案 一、选择题 1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,0 2.下列几何体中,其侧面展开图为扇形的是( ) A . B . C . D . 3.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .19 B .16 C .13 D .23 4.已知11(1)11 A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211 x - D .x 2﹣1 5.-2的相反数是( ) A .2 B .12 C .-12 D .不存在 6.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7× 10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 7.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为 ( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣5 8.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( ) A .60° B .50° C .45° D .40° 9.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )

A .40 B .30 C .28 D .20 10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(3 4)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x =<的图象经过顶点B ,则k 的值为( ) A .12- B .27- C .32- D .36- 11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508 x x =+ 12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D . 二、填空题 13.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA = 43 ,则CD =_____. 14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________

相关主题
文本预览
相关文档 最新文档