当前位置:文档之家› (生物化学)蛋白质分离纯化技术

(生物化学)蛋白质分离纯化技术

(生物化学)蛋白质分离纯化技术
(生物化学)蛋白质分离纯化技术

蛋白质分离纯化技术

摘要:蛋白质分离纯化是蛋白质产品工业化生产的关键之一。本文分析了蛋白质分离纯化的特点及一般原则;综述了蛋白质分离纯化的传统技术:凝胶过滤层析、离子交换层析、吸附层析、亲和层析、疏水作用层析、高效液相色谱层析(HPLC)、电泳法等及新型技术:亲和超滤、内含肽介导的蛋白质亲和纯化。

关键词:蛋白质分离纯化

蛋白质是生命的物质基础,是生命活动的最终控制者和直接执行者,它参与生物体内几乎所有的生命活动过程,如生长、发育、遗传、代谢、应激、能量转换、信号传导等。以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向。对蛋白质进行纯化,得到高纯度的"高活性的蛋白质是生物学科研人员经常要面对的问题。蛋白质的分离纯化主要包括4个步骤:预处理、蛋白质的抽提、蛋白质的粗分级和蛋白质的分离纯化[1]。本文针对近年来有关蛋白质的分离纯化技术所取得的进展进行了综述,为今后的理论和应用研究提供依据。

1 蛋白质分离纯化的特点及一般原则

1.1蛋白质分离纯化的特点

1)大多数蛋白质产品是生物活性物质,在分离纯化过程中,有机溶剂、溶液pH值、离子强度的变化均可使蛋白质变性失活。

2)蛋白质产品在物料中含量很低,且物料组成非常复杂。例如,利用基因工程菌发酵生产蛋白质,物料中含有大量组成复杂的培养基、菌体生产代谢物等,目标蛋白质的含量常常不到蛋白质总量的1%。有些目标蛋白质存在于细胞内或在胞内形成包含体,为获取蛋白质,还需进行细胞破碎,结果物料中含有大量的细胞碎片和胞内产物。

3)含蛋白质产品的物料不稳定,蛋白质产品易受料液中蛋白水解酶

降解。

4)很多蛋白质产品作为医药、食品被人类利用,因而要求蛋白质产品必须是高度纯化的,产品无菌、无致热源等[2]。

1.2蛋白纯化的一般原则

1)蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。

2)每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。

3)蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段:

a.粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。

b.精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来[1]。

2 蛋白质分离纯化技术

2.1 传统技术

2.1.1 凝胶过滤层析

凝胶过滤层析又称分子筛层析或分子排阻层析,它是以具有网状结构的多孔高分子聚合物为固定相,利用组分中物质分子量的不同进行分离纯化的技术。大分子的物质难于进入微孔只能在流动相的带动下通过间隙快速流出,而小分子的物质则在微孔内外进进出出慢速流出,这样蛋白液的各个组分便按分子量由大到小的顺序流出柱体。它是一种快速而简便的分离分析技术,由于设备简单,操作方便,不需要有机溶剂,对高分子物质有很高的分离效果,因此被生物化学、分子生物学、生物工程以及医药学等领域广泛应用[3]。

2.1.2 离子交换层析

离子交换剂是由不溶性的高分子母体上引入可解离的基团制成的。按引入基团的交换电性不同分成阳离子交换剂和阴离子交换剂;按母体的不同可分为离子交换树脂"离子交换纤维素和离子交换凝胶。交换树脂主要用于分子量较小的物质的分离,只有某些大孔径的树脂才可用于酶的分离。离子交换的分离机理大致如下: 由于不同的蛋白质在同一pH 下会带上不同性质( 正负) 或带上不同电量的电荷,试验中可通过选择合适的pH条件,使目标蛋白和杂质带上不同性质的电荷而与离子交换剂进行相互作用,从而或保留或流出柱体; 对于与目标蛋白带电性质相同但电量不同的物质可采用不同浓度的盐溶液洗脱进一步分离。胡鹏等[4]采用离子交换层析法,对牛背最长肌中钙激活酶进行了分离纯化,并确定了最佳分离条件。

2.1.3 吸附层析

附层析利用吸附剂对不同物质吸附能力的不同而实现物质的分离纯化。其是一种应用最早且至今仍在使用的纯化技术,在对传统的硅藻土、氧化铝、羟基磷石灰和活性碳等吸附剂进行了大量的研究之后,目前对于吸附层析的研究主要集中在对上述几种吸附剂的改性以及新型高分子吸附剂的开发上,但该技术在蛋白质分离纯化上的应用进展缓慢)吸附层析具有要求的设备简单,吸附剂来源丰富、价格低廉,操作方法灵活等优点,其缺点是选择性差、分辨率较低。

2.1.4 亲和层析

亲和层析是利用生物分子对之间所具有的专一性和可逆性进行纯化分离的技术。成对互配的分子对,例如酶与底物"酶与辅酶,研究中可将任何一方作为固定相的配基偶联于不容性母体上,而对流动相中的对应分子进行分离。但是对于小分子的配基,由于空间位阻的作用使其难于与被分离物配对,因此需要在母体和配体之间加入一段连接臂,该过程称为母体的活化,现在已有活化后的母体商品出售。

2.1.5疏水作用层析

根据蛋白质表面的疏水性差别发展起来的一种纯化技术。其中,连接在支持介质上的疏水基团与蛋白质表面上暴露的疏水基团结合。但是疏水层析的某些洗脱条件可能导致蛋白质的变性,而且还存在不可预测性,对某些蛋白质分离效果很好,对另一些则不好。因此,近年来发展的新方法,常用硫酸铵沉淀、离子交换和亲和层析之后,进行疏水层析的样品不需要透析、凝胶过滤等方式脱盐。

2.1.6 高效液相色谱层析(HPLC)

HPLC是一个高效快速分离化合物的方法,由于其分辨率高,速度快,重复性好,适用面广,灵活性强,灵敏度高等特点,使它在近年生物大分子的分离和纯化方面占据了极其重要的地位。因此,它能有效地分离各种多肽混合物,特别适用于分子质量不大的蛋白质和多肽物质的分离、纯化和鉴定,在蛋白质及多肽研究中已得到了广泛的应用。其中反相高效液相色谱(RPLC)被广泛应用于分子质量不大的蛋白质分离、纯化和鉴定上,所使用的RPLC约95%是C18反相硅胶HPLC[5]。

2.1.7 电泳法

电泳为带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。蛋白质混合样品经过电泳后,被分离的各蛋白质组分的电泳迁移率互不相同,由各蛋白质组分所带的静电荷以及分子大小和形状的不同而达到分离。电泳法按支持体的不同,可分为纸电泳、薄层电泳、凝胶电泳和等电聚焦电泳等。其中后2种方法的应用最为广泛,主要用于物质纯度的鉴别以及分子量或等电点的确定,当然也可作为分辨率很高的分离方法。由于电泳法的进样量少,一般更多的作为一种分离分析方法。常用SDS-聚丙烯酰胺凝胶电泳,毛细管电泳在纯化蛋白的方面也得到了很好的应用[6]。翁瑜等[7]用双向凝胶电泳比较3种常用蛋白质提取方法可以看出双向凝胶电泳的效果更好。

2.2 新型技术

2.2.1 亲和超滤

亲和超滤技术是把亲和层析的高选择性和超滤技术的高处理能力相

结合的一种新型能大规模进行生物特征物质分离提纯的技术。其基本原理为[8,9]:当需提纯的物质(亲和体)自由的存在于提取液时,由于其分子量较小,能顺利通过截留分子量大的超滤膜。但当亲和体与具有结合能力的大分子配体混合,形成亲和体-大分子配体复合物后,由于此复合物分子量远大于超滤膜的截留分子量,从而被截留;而提取液中其它未被结合的组分则通过超滤膜,从亲和体-大分子配体复合物中分离出来。当所有的杂质去除后,用合适的洗脱液处理超滤膜截留得到的复合物,使亲和体从大分子中解吸出来;游离的亲和体(蛋白质、酶等)可通过超滤膜,从大分子配合体中分离出来。透过液可被截留分子量较小的超滤膜进行浓缩;而大分子配体经再生后可循环使用。这一过程已成功地应用于蛋白质、酶等的间歇、半连续和连续操作[10]。

2.2.2 内含肽介导的蛋白质亲和纯化

传统的亲和纯化技术由于受到成本、消除亲和标签等的限制,在大规模的工业生产中较难以发挥作用,因此如何降低蛋白质亲和纯化的成本也就成了人们研究的一个重要方向。而内含肽介导的新型蛋白质纯化方式正切合了这种需要,相关的研究也越来越受到人们的重视。修饰后的内含肽能介导N-端或C-端单侧肽键断裂,与蛋白质亲和纯化技术联合应用,为重组表达的活性蛋白提供了良好的分离纯化途径,使传统的亲和层析技术有了重大突破[11]。内含肽介导的新型蛋白质纯化方式包括:

1)自切割亲和纯化

自切割亲和纯化方式就是利用内含肽具自切割特性的这种特性而实现目标蛋白与亲和标签分离的目的的。首先将编码亲和标签、内含肽及目标蛋白的基因序列连接在一起,在合适的宿主系统中表达出一个标

签-内含肽-目标蛋白的三联体,再利用固定在树脂上的配体吸附三联体的标签而截留融合蛋白,随后在某些简单的理化因素作用下(如pH、温度的变化或者巯基化合物的加入)该三联体从内含肽的N- 端或者C- 端发生自切割释放目标蛋白,而此时标签则留在了树脂表面[12]。与传统

的亲和纯化方式相比,自切割亲和纯化通过引入内含肽而避免了外源蛋白酶的加入以及后期对蛋白酶的清除步骤,但是纯化中仍然使用了昂贵的亲和树脂,对扩大化的生产应用仍然是一个较大的限制。

2)内含肽介导的聚β-羟基脂肪酸酯系统

聚β-羟基脂肪酸酯(polyhydroxybutyrate, PHB)是许多细菌在碳源过剩或者氧、氮、磷短缺条件下合成的一种生物多聚脂,其基本结构单位为-[O-CH(CH3)CH2CO]n-,由于PHB 具有很好的生物相容性和可降解性,在工业上有着较广泛的应用。通常情况下,PHB 以分子量较大的颗粒形式存在于细胞浆中,通过简单的离心或过滤即可以从细胞裂解液中分离出来。Phasin作为一种PHB 调节蛋白,能够特异性地紧紧吸附在PHB 颗粒表面,因此如果将phasin 作为标签与连接内含肽的目标蛋白进行融合表达,那么 PHB 就成为了一种非常理想的亲和纯化介质用于目标蛋白的分离纯化[13]。

3) 内含肽介导的弹性蛋白样多肽系统

像PHB系统一样,内含肽介导的弹性蛋白样多肽(elastin-like polypeptide)系统同样能够避开亲和树脂柱,用于重组蛋白的快速高效纯化。ELP 是由VPGXG(其中X 为脯氨酸以外的任意氨基酸)重复序列组成的肽,具有温度诱导的相变特性,在室温下具有高度的水溶性,当温度升高到约30~40 oC的相变温度(Tt)时或者改变加入的盐浓度,ELP 能够迅速地发生自聚集而析出,通过简单的离心或者膜过滤即可以分离出来,而这种自聚集仅仅发生在蛋白质的ELP 段,并不影响通过灵活的连接肽与之相连的其他蛋白质的活性[14]。因此,如果将 ELP 与融合了目标蛋白的内含肽相连接,就可以充分利用ELP 的自聚集以及内含肽的自切割特性而构建一种非常独特的蛋白质纯化系统。

3 结论

目前,除上述技术外,还有很多蛋白质的分离纯化技术。分离蛋白质混合物的方法有很多,需根据具体的实验要求和设计选择最适合的纯化方法才能达到最优的纯化效果。蛋白质的分离纯化过程通常是几种技术

的综合应用,但每一步都需要在了解蛋白本身性质的基础上对分离技术加以选择性的应用。使蛋白总回收率和纯度保持最大化是各分离技术在试验和工业应用中的基本准则,因此,实现分离纯化技术的选择和蛋白质性质的研究两者相互促进、协调发展就是后续研究的核心问题。

参考文献:

[1] 黄熙泰,于自然,李翠凤.现代生物化学(第二版)[M].北京:化学工业

出版社,2005:57-60.

[2] 鲍时翔,姚汝华.蛋白质分离纯化与层析技术进展[J].华南理工大学学

报.1996,24(12):99-102.

[3] 杨安钢,毛积芳,药立波,等.生物化学与分子生物学实验技术[M].北京:高

等教育出版社,2001:14-18.

[4] 胡鹏,罗欣,杜方岭.DEAE-Sepharose-FF离子交换层析对牛背最长肌

中钙激活酶的纯化研究[J].农产品加工:创新版,2009(10):43:45. [5] 阮小林,谢天尧,莫金垣.毛细管电泳在蛋白质等生物大分子分析中的

应用[J].现代医学仪器与应用,2002,14(4):14-18.

[6] 翁瑜,曾群力,姜槐,等.双向凝胶电泳比较三种常用蛋白质提取方法[J].

中国生物化学与分子生物学报,2005,21(5):691-694.

[7] 朱晓囡,苏志国.反相液相色谱在蛋白质及多肽分离分析中的应用[J].

分析化学评述与进展,2004,2(32):248-254.

[8] Powers J D,Kilpatrick P K,Carbonell R G.Trypsin pu-rification by affinity

binding to small unilamellar liposomes[J].Biotech and Bioeng,1990,36:506-519.

[9] Luong J H,Male K B,Nguyen A L.Affinity process fortrypsin purification

and stabilization[P].US Pat:4973554,1990-11-27.

[10] 陈立军,张心亚,黄洪,沈慧芳,陈焕钦.新型分离纯化技术—亲和超滤及

其应用[J].膜 科学与技术.2006,26(4):61-65.

[11] 孙永福,王凤山,张敏.内含肽介导的新型蛋白质纯化技术

[J].2008,28(2):146-148.

[12] Banki MR et al. Microb Cell Fact, 2005, 4(1): 32.

[13] Wieczorek R et al. J Bacteriol, 1995, 177(9): 2425-2435.

[14] Mee C et al. Chem Eng J, 2008, 135(1): 56-62.

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

蛋白质分离与纯化教学设计课题

蛋白质分离与纯化教学设计 一、教学背景分析 【教材分析】 “蛋白质的分离与纯化”实验是《高中生物》选修1生物技术实践 5.3血红蛋白的提取与分离中的容。本节课的主要容包括蛋白质的提取、分离纯化等基本知识,主要要求学生掌握凝胶电泳的实验原理以及操作方法。“血红蛋白分离与纯化”实验不仅是学习血红蛋白的提取、分离纯化方法,而且也是进一步掌握蛋白质的组成、结构和功能的基础。 【学情分析】 到目前为止,学生已经学习了蛋白质的相关知识,对蛋白质有了一定的了解,“蛋白质的分离与纯化”实验目的是使学生体验从复杂细胞混合物体系中提取和纯化生物大分子的基本原理、过程和方法,虽然操作难度较大,但原理清晰,动手机会较多,学习兴趣很高。学生有必修“生命活动的主要承担者——蛋白质”的基础,在一定程度上掌握了蛋白质的组成、结构和功能等基础知识,学生在进行实验前还是能大概了解影响蛋白质分离纯化的因素的,再者经过老师的指导,实验能取得良好的结果的。 二、教学目标 【知识目标】 1.了解从血液中提取蛋白质的原理与方法。 2.说出凝胶电泳的基本原理与方法。 【能力目标】 运用凝胶电泳对蛋白质进行分离纯化。 【情感态度与价值观目标】 1.培养学生科学实验的观点。 2.初步形成科学的思维方式,发展科学素养和人文精神。 三、教学重难点

【教学重点】 从血液中提取蛋白质;凝胶电泳分离纯化蛋白质。 【教学难点】 样品预处理,色谱柱的装柱,纯化分离操作。 四、实验实施准备 【教师准备】 1.分组。学生按学科能力的强中弱平均分组,各组尽量平衡,各组自行分工,并由实验员统一安排实验过程。 2.实验材料:血液 仪器:试管、胶头滴管、烧杯、玻璃棒、离心机、研磨器、透析袋、电泳仪等。 试剂:20mmol/L磷酸缓冲液(pH为8.6)、蒸馏水、聚丙烯酸铵、生理盐水、5%醋酸水溶液等。 【学生准备】 1.预习实验“蛋白质分离纯化”,了解蛋白质的相关信息。 2.进行分组。 五、教学方法 【教法】分析评价法、任务驱动法、直观演示法 【学法】自主学习法、合作交流法 六、教学媒体 黑板、多媒体 七、课时安排 两个课时(80min) 一个课时用来讲述理论部分知识:样品处理与色谱柱分离纯化蛋白质的原理与方法; 另一课时用来进行实验。

蛋白质提取与制备的原理和方法

蛋白质提取与制备的原理和方法 蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。因此可采用不同溶剂提取、分离及纯化蛋白质和酶。 蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子结构性质是不同蛋白质溶解差异的内因。温度、pH、离子强度等是影响蛋白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用。将细胞内蛋白质提取出来。并与其它不需要的物质分开。但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。水适用于白蛋白类蛋白质的抽提。如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。如球蛋白 类能溶于稀盐溶液中,脂蛋白可用 稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。其它不溶于水的蛋白质通常用稀碱溶液抽提。 蛋白质类别和溶解性质 白蛋白和球蛋白: 溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。 真球蛋白: 一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。 拟球蛋白: 溶于水,可为50%饱和度硫酸铵析出 醇溶蛋白: 溶于70~80%乙醇中,不溶于水及无水乙醇 壳蛋白: 在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液 精蛋白: 溶于水和稀酸,易在稀氨水中沉淀 组蛋白: 溶于水和稀酸,易在稀氨水中沉淀 硬蛋白质: 不溶于水、盐、稀酸及稀碱 缀合蛋白(包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等) : 此类蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如

蛋白质的分离纯化方法

蛋白质的分离纯化方法 根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有 用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

蛋白质分离与纯化技术

化工学院生物工程一班胡冠南 3010207234 蛋白质分离与纯化技术 蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。所以研究蛋白质的结构与功能是研究生物科学的基础。蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。由于深入研究蛋白质的结构与功能需要用到高纯度的蛋白质,因此蛋白质分离与纯化技术是生物产业中的核心技术。然而该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。所以对该项技术的改良与创新在实际应用中具有重要意义。 一.蛋白质分离的准备 从正常生物基质中提取各种蛋白质均需要有特定的条件。如果不能满足这一条件,蛋白将很快失去生物学活性,其生物半衰期也将迅速降低。因此,在蛋白质的特性研究中,确定提取条件是一个关键问题。在不同的实验中所通到的困难各不相同,有的困难是如何抵抗外源性蛋白酶的作用而维持蛋白质的稳定,在有些实验中的困难是如何维持酶的活性。在不同的实验中要针对不同的情况来解决不同的问题。然而对蛋白质研究而言却有着一些共同的参数。缓冲液可以抗衡蛋白质溶液中pH值的改变,选择合适的缓冲液对于维持—定pH 值下蛋白质的稳定及保证实验的重复性十分重要。pH和pKa是描述缓冲液的两个重要概念。pH值是指溶液中氢离子浓度的负对数,pH=-log(H+)。 pKa值是溶液中酸解离常数的负对数值。溶液的pH值与pKa值越接近表明溶液的缓冲能力越强,离pKa值越远则缓冲能力越弱。 表1 常用缓冲液的pKa值

蛋白表达、分离和纯化

蛋白质的表达、分离、纯化和鉴定 来源:易生物实验浏览次数:2704网友评论0 条第一部分蛋白质的表达、分离、纯化克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作 结构与功能的研究。 第二部分蛋白质的鉴定电泳可用于分离复杂的蛋白质混合物,研究蛋白质的亚基组成等。在聚丙烯酰胺凝胶电泳中,凝胶的孔径,蛋白质的电荷,大小,性质等因素共同决定了蛋白质的电泳迁移率。 关键词:蛋白质蛋白质表达克隆基因聚丙烯酰胺凝胶电泳氯霉素酰基转移酶十二烷基硫酸钠SDS聚丙烯酰 胺凝胶 第一部分蛋白质的表达、分离、纯化 目的要求 (1)了解克隆基因表达的方法和意义。 (2)了解重组蛋白亲和层析分离纯化的方法。 实验原理 克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作结构与功能的研究。大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它基因表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21中,在37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MC AC)。蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。 试剂和器材

一、试剂 [1] LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL. [2] 氨苄青霉素:100mg/mL [3] 上样 缓冲液:100 mM NaH2PO4, 10 mM Tris, 8M Urea, 10 mM2-ME, pH8.0 [4] Washing Buffer:100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3 [5] Elution Buffer:100 mM NaH2PO4, 10 mMTris, 8M Urea, 500 mM Imidazole, pH 8.0 [6] IPTG 易生物仪器库:.ebioe./yp/product-list-42.html 易生物试剂库:.ebioe./yp/product-list-43.html 二、器材 摇床,离心机,层析柱(1′10 cm) 操作方法 一、氯霉素酰基转移酶重组蛋白的诱导 1. 接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21菌株于5mL LB液体培养基中(含100ug/mL 氨苄青霉素),37℃震荡培养过夜。 2. 转接1mL过夜培养物于100mL(含100ug/mL 氨苄青霉素)LB液体培养基中,37℃震荡培养至OD600 = 0.6 - 0.8。取10ul 样品用于SDS-PAGE 分析。 3. 加入IPTG至终浓度0.5 mmol/l, 37℃继续培养1-3h.

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理 (一)利用分子大小 1、透析:原理:利用蛋白质分子不能透过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖、水等分开。 方法:将待提纯蛋白质放在透析袋中放在蒸馏水中进行 涉及的问题: 如何加快透析过程 (1)加大浓度差,及时更换透析液 (2)利用磁力搅拌器 常用的半透膜:玻璃纸、火棉和其他材料合成 2、超过滤:原理:利用压力和离心力,强行使其他小分子和水通过半透膜,而蛋白质留在膜上 3、凝胶过滤层析:原理:当不同分子大小的蛋白质混合物流进凝胶层析柱时,比凝胶网孔大的分子不能进入珠内网状结构,排阻在凝胶珠以外,在凝胶珠缝隙间隙中向下移动。而比孔小的分子不同程度地进入凝胶珠内,这样由于不同大小分子所经历的路径不同而到分离。 结果:大分子先被洗脱下来,小分子后被洗脱下来 (二)利用溶解度差别 4、等电点沉淀:原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来.。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.当离子强度增加,足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析

(三)根据电荷不同 6、SDS-PAGE 全称十二烷基硫酸钠—聚丙烯酰胺凝胶电泳 原理:通过加热和SDS可以使蛋白质变性,多亚基的蛋白质也解离为单亚基,处理后的样品中肽链是处于无二硫键连接的,分离的状态。电泳时SDS-蛋白质复合物在凝胶中的迁移率不再受蛋白质原有电荷和形状的影响,而主要取决于蛋白质分子量。所以SDS-PAGE常用来分析蛋白质的纯度和大致测定蛋白质的分子量。 7、离子交换层析:原理:氨基酸分离常用阳离子交换树脂,树脂被处理成钠型,将混合氨基酸上柱,氨基酸主要以阳离子形式存在,在树脂上与钠离子发生交换,而被挂在树脂上。 氨基酸在树脂上结合的牢固程度取决于氨基酸与树脂之间的亲和力,决定亲和力的因素有:(1)主要是静电吸引力(2)氨基酸侧链同树脂之间的疏水作用氨基酸与阳离子交换树脂间的静电引力大小次序依次是: 碱性氨基酸R2+>中性氨基酸R+>酸性氨基酸R0。 因此洗脱顺序应该是: 酸性氨基酸中性氨基酸碱性氨基酸 为使氨基酸从树脂上洗脱下来采用逐步提高pH和盐浓度的方法

蛋白质和酶的分离与纯化

蛋白质和酶的分离纯化及鉴定 蛋白质是生命体中的重要物质基础之一。从分子水平上认识生命现象,已成为现代生物学发展的主要方向。要研究蛋白质,首先要得到高度纯化的目的蛋白。蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质。要想从成千上万种蛋白质混合物中纯化出目的蛋白,就要根据蛋白质的理化性质不同设计出合理的分离方法。 目前研究为止酶除核酶外本质都是蛋白质,因此酶的分离纯化方法基本是采用蛋白质的分离纯化方法,但是酶的活性受到多种因素的影响,因此酶的分离纯化比一般的蛋白质要求更高。 一、质分离纯化的一般原则 1. 原料的选择 原则:来源方便,成本低,易操作、安全的原料。 蛋白分布:体液、组织、细胞定位 2. 破碎方法: (1) 机械方法:通过机械运动产生的剪切力的作用,使细胞或组织破碎的方法。 如:捣碎法、研磨、匀桨法 (2) 物理方法:通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法。 如:反复冻融、渗透压、超声破碎 (3) 化学方法:通过各种化学试剂对细胞膜的作用,使细胞破碎的方法. 如:甲苯、丙酮、氯仿和非离子型的表面活性剂(Triton和Tween) (4) 酶促法:溶菌酶、蜗牛酶等 3. 目的蛋白或酶的特异、快速、精确的定性或定量方法 4. 先粗后细,分级分离 粗分:将得到的蛋白溶液先利用简单、快速、易处理的方法除去大部分杂蛋白。如: 盐析、离心、有机溶剂沉淀等。 精制:利用蛋白质性质的差异,采用不同的方法,如:离子交换层析、分子筛、吸附层析、亲和层析、电泳、离心、结晶等方法进一步纯化。 5. 避免蛋白质的变性(pH、适合的温度和缓冲体系等) 二、常用的蛋白质的分离纯化技术 可以根据各种蛋白质的结构、理化性质不同设计分离方法。 (一)根据蛋白质的溶解度不同进行分离

蛋白质纯化原理

蛋白质的纯化原理 一)根据蛋白质溶解度不同的分离方法 1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。 影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。 蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。 蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。 2、等电点沉淀法 蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用。 3、低温有机溶剂沉淀法 用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。 (二)根据蛋白质分子大小的差别的分离方法 1、透析与超滤 透析法是利用半透膜将分子大小不同的蛋白质分开。 超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质。 2、凝胶过滤法 也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一。柱中最常用的填充材料是葡萄糖凝胶(Sephadex ged)和琼脂糖凝胶(agarose gel)。 (三)根据蛋白质带电性质进行分离 蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开。 1、电泳法 各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开。值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质。

蛋白质分离纯化的新技术和技术要点

蛋白质分离纯化的新技术及技术要点 浅述蛋白质分离纯化的新技术 摘要:本文主要介绍了浊点萃取法、置换色谱法、亲和层析法、亲和色谱法、凝胶电泳、双水相萃取等蛋白质的最新分离纯化技术,综和近年来国内外的一些研究结果,结合实际应用的例子,分析了各种分离纯化方法的优点,同时指出其不足之处。文章最后展望了蛋白质分离纯化技术的发展趋势。 关键词:分离纯化蛋白质进展 生物技术的发展非常迅速,基因工程、蛋白质工程、发酵工程等生物技术,已经能设计、制造、生产人们急需的多种蛋白质。和其它生物产品的生产过程一样蛋白质的生产过程一般也分为上、中、下游过程。上、中游过程是运用生物技术生产目标产物,下游过程是指对含有目标产物的物料进行处理、分离、纯化、加工目标产物。本文主要综和近年来国内外的研究结果,介绍了蛋白质的最新分离纯化技术。 2. 蛋白质的分离纯化方法: 2.1 浊点萃取法(CPE): 2.1.1 概念及原理: 浊点萃取法(cloud point extraction,CPE)〔1〕是近年来出现的一种新兴的液—液萃取技术,它不使用挥发性有机溶剂,不影响环境。它以中性表面活性剂胶束水溶液的溶解性和浊点现

象为基础,改变实验参数引发相分离,将疏水性物质与亲水性物质分离。目前该法已成功地应用于金属螯合物、生物大分子的分离与纯化及环境样品的前处理中[2-5]。 CPE 法除了利用增溶作用外,还利用了表面活性剂另一个重要性质——浊点现象。溶液静置一段时间(或离心)后会形成两个透明的液相:一为表面活性剂相(约占总体积的5%);另一为水相(胶束浓度等于CMC)。外界条件(如温度)向相反方向变化,两相便消失,再次成为均一溶液。溶解在溶液中的疏水性物质如膜蛋白,与表面活性剂的疏水基团结合,被萃取进表面活性剂相,亲水性物质留在水相,这种利用浊点现象使样品中疏水性物质与亲水性物质分离的萃取方法就是浊点萃取。图1显示了由温度变化引发的这种相分离现象。温度的改变,引起水化层的破坏,增强了表面活性剂的疏水性。 2.1.2 蛋白质分离纯化中的应用: CPE 法可用于分离膜蛋白、酶、动物、植物和细菌的受体,还可以替代一些分离方法如硫酸铵分级法作为纯化蛋白的第一步,与色谱方法联用。另外,CPE 法分离纯化蛋白质已经可以实现大规模操作。Minuth等人成功地进行了胆固醇氧化酶浊点萃取的中试研究。虽然使用离心分离器可以使CPE大规模连续进行,但商品离心分离器用于CPE 的效率和容量仍需进一步研究。而且,他们发现相分离操作受时产生的表面活性物质影响较大,体系两相间密度差较小,表面张力较小,含产物的表面活性剂相的流变学行为较复杂,操作较难。表1列出了CPE法近几年来在蛋白质分离纯化中的应用。 (1) CPE法用于分离纯化膜蛋白

分离纯化蛋白质的方法及原理-推荐下载

(2)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集 沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净 电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等 电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋 白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度 增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度 增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是 由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些 被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化 盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶 解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在 室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分离纯化蛋白质。 有机溶剂引起蛋白质沉淀的主要原因之一是改变了介质的介电常数。有机溶剂的加入使水溶液的介电常数降低。介 电常数的降低将增加两个相反电荷之间的吸引力。蛋白质分子表面可解离基团的离子化程度减弱,水化程度降低, 因此促进了蛋白质分子的聚集和沉淀。 水溶性非离子聚合物如聚乙二醇与蛋白质亲水集团发生相互作用并在空间上阻碍了蛋白质与水相接近。蛋白质在聚 乙二醇中的溶解度明显的依赖于聚乙二醇的分子量。 4、温度对蛋白质溶解度的影响:在一定温度范围内,约0~40℃之间,大部分球状蛋白的溶解度随温度升高而增加,在40~50℃以上,大部分蛋白质变得不稳定并开始变性,一般在中性pH介质中即失去溶解力。大多数蛋白质在低温下比较稳定,因此蛋白质的分级分离操作一般都在0℃或更低的温度下进行。 (三)根据电荷不同 根据蛋白质的电荷不同即酸碱性质不同分离蛋白质混合物的方法有电泳和离子交换层析两类。 1、电泳:在外电场的作用下,带点颗粒将向着与其电性相反的电极移动,这种现象称为电泳。电泳技术可用于氨 基酸、肽、蛋白质和核苷酸等生物分子的分析分离和制备。 区带电泳是由于在支持物上电泳蛋白质混合物被分离为若干区带。 电泳前用缓冲液浸润薄膜或滤纸等支持物或用缓冲液直接配置成凝胶,将待分离的蛋白质样品加在它的一端或中央,支持物的两端与电极连接,通电电泳。电泳完毕,各个组分分布在不同的区域,用显色剂(蛋白质可用考马斯亮蓝 或氨基黑等染色)显色后可以显示出各个组分。 氨基酸混合物特别是寡聚核苷酸混合物一次电泳往往不能完全分开。这种情况可以将第一次电泳分开的斑点通过支 持介质间的接触印迹转移到第二个支持介质上,旋转90°,进行第二次电泳。这种方法称为双向电泳。 2、聚丙烯酰胺凝胶电泳:以聚丙烯酰胺凝胶为支持物,一般制成凝胶柱或凝胶板,凝胶是由相连的两部分组成 (小的部分是浓缩胶,大的部分为分离胶),这两部分凝胶的浓度、缓冲液组分和离子强度、pH以及电场强度都是 不同的,即不连续性。电泳时样品首先在不连续的两相间积聚浓缩而成很薄的起始区带,然后再进行电泳分离。 电泳有三种物理效应:1、样品的浓度效应;2、凝胶对被分离分子的筛选效应;3、一般电泳分离的电荷效应。

蛋白质色谱分离方法

蛋白质色谱分离方法 摘要蛋白质是生命有机体的主要成分,在生命体生长发育的各个阶段都起着重要作用。所以分离和检测蛋白质一直是人们研究的热点。依据蛋白质的物理、化学及生物学特性,已有多种分离手段,如:超滤法、SDS-PAGE、亲和层析等,其中,液相色谱分离技术由于具有重复性好、分辨率高等优势在蛋白质分离检测中得到了广泛的应用。 关键词高效液相色谱高效离子交换色谱反相高效液相色谱高效凝胶过滤色谱高效亲和色谱 一、引言 蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有成千种不同的蛋白质。蛋白质的分离和提纯工作是一项艰巨而繁重的任务,到目前为止,还没有一个单独的或一套现成的方法能把任何一种蛋白质完全的从复杂的混合物中提取出来,但对任何一种蛋白质都有可能选择一套适当的分离提纯程序来获取高纯度的制品。 1、蛋白质纯化的总战略考虑 蛋白质回收要采用简便易行的方法尽可能多地将目标蛋白从细胞培养上清液、细菌破碎液或组织匀浆中提取出来,收率至少达到90%以上。然后进一步作精纯化,这第一步要求去掉大部分杂蛋白,同时要使样品的体积得到充分浓缩,一般要求要浓缩几十到几百倍,粗提液的体积大大缩小,便于下一步精纯化。而且每一步都要做电泳判断纯化效果。 2、蛋白质分离纯化技术的选择 要尽可能多地了解目标蛋白的结构、氨基酸组成、氨基酸序列,以及蛋白质的空间结构所决定的物理、化学、生物化学和物理化学性质等信息,根据不同蛋白质之间的性质差异或者改变条件使之具有差异,利用一种或多种性质差异,在兼顾收率和纯度的情况下,选择最佳的蛋白质提纯方法。 二、色谱技术简介 1、色谱分离技术基本概念 色谱分离技术又称层析分离技术或色层分离技术,是一种分离复杂混合物中各个组分的有效方法。它是利用不同物质在由固定相和流动相构成的体系中具有不同的分配系数,当两相作相对运动时,这些物质随流动相一起运动,并在两相间进行反复多次的分配,从而使各物质达到分离。当流动相中携带的混合物流经

相关主题
文本预览
相关文档 最新文档