材料数值模拟——温度场模拟
- 格式:ppt
- 大小:527.50 KB
- 文档页数:91
稳态热分析数值模拟实例1——短圆柱体的热传导过程1、问题描述有一短圆柱体,直径和高度均为1m,其结构如图7.1所示,现在其上端面施加大小为100℃的均匀温度载荷,圆柱体下端面及侧面的温度均为0℃,试求圆柱体内部的温度场分布(假设圆柱体不与外界发生热交换,圆柱体材料的热传导系数为30 W/(m•℃))。
图7.1 圆柱体结构示意图2、三维建模应用Pro-E软件对固体计算域进行三维建模,实体如图7.2所示:图7.2 圆柱体三维实体图3、网格划分采用流动传热软件CFX的前处理模块ICEM对计算域进行网格划分,得到如图7.3所示的六面体网格单元。
流场的网格单元数为640,节点数为891。
图7.3 圆柱体网格图4、模拟计算及结果采用流动传热软件CFX稳态计算,定义圆柱体材料的热传导系数为30 W/(m•℃),求解时选取Thermal Energy传热模型。
固体上壁面的边界条件设置为100℃的温度,侧面和下壁面边界条件为0℃的温度。
求解方法采用高精度求解,计算收敛残差为10-4。
图7.4为计算得到的圆柱体中心剖面的温度等值线分布图。
数据文件及结果文件在steady文件夹内。
图7.4 圆柱体中心剖面的温度等值线分布瞬态热分析数值模拟实例详解实例1——型材瞬态传热过程分析1、问题描述有一横截面为矩形的型材,如图7.5所示。
其初始温度为500℃,现突然将其置于温度为20℃的空气中,求1分钟后该型材的温度场分布及其中心温度随时间的变化规律(材料性能参数如表7.1所示)。
表7.1 材料性能参数密度ρkg/m3 导热系数W/(m•℃)比热J/(kg•℃)对流系数W/(m2•℃)2400 30 352 110图7.5 型材横截面示意图2、三维建模应用Pro-E软件对固体计算域进行三维建模,实体如图7.6所示:图7.6 型材三维实体图3、网格划分采用流动传热软件CFX的前处理模块ICEM对计算域进行网格划分,得到如图7.7所示的六面体网格单元。
《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着科技的发展,焊接技术作为制造行业中的关键工艺之一,其质量和效率直接关系到产品的性能和寿命。
因此,对焊接过程中的温度场和应力分布进行精确的数值模拟显得尤为重要。
ANSYS作为一种功能强大的工程仿真软件,被广泛应用于焊接过程的数值模拟。
本文将基于ANSYS,对焊接温度场和应力进行数值模拟研究,以期为实际生产提供理论依据。
二、焊接温度场的数值模拟1. 模型建立在ANSYS中建立焊接过程的有限元模型,包括焊件、焊缝、热源等部分。
其中,焊件采用实体单元进行建模,焊缝则通过线单元进行描述。
热源模型的选择对于模拟结果的准确性至关重要,应根据具体的焊接工艺选择合适的热源模型。
2. 材料属性及边界条件根据实际材料,设定焊件和焊缝的热导率、比热容、热扩散率等物理参数。
同时,设定初始温度、环境温度等边界条件。
3. 数值模拟过程根据焊接过程的实际情况,设定加载步和时间步长,模拟焊接过程中的温度变化。
通过ANSYS的热分析模块,得到焊接过程中的温度场分布。
三、焊接应力的数值模拟1. 耦合分析焊接过程中,温度场的变化会导致应力的产生。
因此,在ANSYS中,需要将在热分析中得到的温度场结果作为应力分析的输入条件,进行热-结构耦合分析。
2. 本构关系与材料模型根据材料的本构关系和力学性能,设定材料的弹性模量、泊松比、热膨胀系数等参数。
同时,选择合适的材料模型,如各向同性模型或各向异性模型。
3. 应力分析通过ANSYS的结构分析模块,结合耦合后的温度场结果,进行应力分析。
得到焊接过程中的应力分布和变化情况。
四、结果与讨论1. 温度场结果分析通过ANSYS的后处理功能,可以得到焊接过程中的温度场分布图。
分析温度场的分布情况,可以了解焊接过程中的热传导和热扩散情况,为优化焊接工艺提供依据。
2. 应力结果分析同样,通过后处理功能可以得到焊接过程中的应力分布图。
分析应力的分布和变化情况,可以了解焊接过程中产生的残余应力和变形情况。
复合材料热处理数值模拟模型建立及参数优化引言:复合材料是一种由两种或两种以上不同材料组成的新材料,具有较高的强度、刚度和耐磨性,被广泛应用于航空航天、汽车、船舶等领域。
在复合材料的制造过程中,热处理是一种重要的工艺,可以显著改善复合材料的性能。
数值模拟是研究复合材料热处理过程的有效方法,可以帮助工程师优化工艺参数,提高产品质量。
本文将探讨建立复合材料热处理数值模拟模型及参数优化的方法。
一、复合材料热处理数值模拟模型建立1.材料建模复合材料分为纤维增强复合材料和粒子增强复合材料两种。
在建立数值模拟模型时,需要将复合材料的宏观性能转化为材料模型中的本构关系。
对于纤维增强复合材料,可以通过等效材料法将其转化为各向同性材料进行建模;对于粒子增强复合材料,可以考虑粒子间的相互作用力,采用微观力学模型进行建模。
2.热传导模型热传导是复合材料热处理过程中的重要现象,其数值模拟模型需要考虑复合材料的热导率、热扩散系数和热源等因素。
可以利用有限元方法建立复合材料的热传导模型,并根据实际情况引入适当的边界条件。
3.相变模型复合材料在热处理过程中可能会发生相变,如固态相变、液态相变等。
相变模型的建立需要考虑复合材料的相变温度、相变潜热等参数,可以采用相场方法或相变耦合模型进行建模。
4.热应力模型由于复合材料的热膨胀系数和热导率在不同温度范围内可能存在差异,热处理过程中可能引起热应力的产生。
建立复合材料的热应力模型可以帮助预测热处理过程中的应力分布,进一步优化热处理参数。
二、参数优化方法1.设计实验为了建立准确可靠的数值模拟模型,在进行参数优化之前,需要进行一系列实验来获取材料的热性能参数和相关数据。
实验内容包括材料的热导率、热膨胀系数、热容等参数的测量,以及热处理过程中温度场、应力场等数据的采集。
2.响应面法响应面法是一种常用的参数优化方法,通过建立数值模拟模型,选取关键参数并进行多组实验,然后利用响应面模型对实验结果进行分析和拟合,最终得到最优参数组合。
热防护材料烧蚀温度场的近场动力学模拟王超聪;刘齐文;刘立胜;赖欣【摘要】The ablation process of thermal protective composites is a nonlinear and discontinuous issue. In the peridynamic formulation,the partial differential equations are replaced with integral-differential equations that allow for autonomous evolution of the moving surface and no additional criteria and numerical techniques are needed to be enforced.A new thermal-bond only existing between the particle and its contact neighbor was proposed to capture the heat flow easily. The modified transient heat transfer theory was developed and the surface damage model was introduced. Thus,it is able to easily deal with surface ablation. Numerical simulations have been carried out to verify the accuracy and effectiveness of the proposed method. Numerical results were found to match well with theo-retical results and the experimental results respectively.%热防护材料烧蚀过程是一个典型的非线性、不连续问题.近场动力学理论采用空间积分方程代替偏微分方程,能自然地描述烧蚀面的移动而不需要引入其他临界条件和数值方法.提出了只考虑接触近邻的热键模型,推导了改进的近场动力学瞬态热传导理论,引入烧蚀损伤模型,能够简单准确地捕捉热流,实现了对烧蚀过程的描述.最后对方法的准确性和有效性进行了验证,数值结果与文献中的理论结果和实验结果吻合很好.【期刊名称】《科学技术与工程》【年(卷),期】2017(017)026【总页数】5页(P172-176)【关键词】烧蚀;近场动力学;热键;瞬态热传导理论;烧蚀率;温度场分布【作者】王超聪;刘齐文;刘立胜;赖欣【作者单位】武汉理工大学理学院力学系,武汉430070;武汉理工大学理学院力学系,武汉430070;武汉理工大学材料复合新技术国家重点实验室,武汉430070;武汉理工大学理学院力学系,武汉430070【正文语种】中文【中图分类】O343.6飞行器在穿越大气层时经常面临高温、高压、高焓的恶劣工作环境,过高热量会导致飞行器内部结构有烧毁的危险。
热处理数值模拟技术综述热处理是指通过加热、保温和冷却等措施,对金属材料进行结构和性能的改变。
在工业领域中,热处理是一种常用的工艺,可用于改善材料的力学性能、提高耐腐蚀性、减少残余应力等。
热处理过程中的温度场、相变行为以及应力分布等因素对材料性能的影响至关重要。
为了准确预测材料的热处理效果,热处理数值模拟技术得到了广泛的应用。
近年来,随着计算机技术的快速发展,热处理数值模拟技术在金属材料领域的研究和应用变得越来越重要。
热处理数值模拟技术通过建立数学模型和使用相应的数值算法,可以模拟热处理过程中的温度分布、相变行为以及应力分布等参数。
这些模拟结果可以帮助工程师和研究人员在进行热处理工艺设计时更好地了解材料的性能变化,并优化工艺参数。
热处理数值模拟技术的研究内容主要包括热传导、相变行为和应力分析。
热传导是热处理过程中最基本的物理现象,它描述了热量在物体中传递的过程。
数值模拟技术可以通过求解热传导方程,预测材料的温度分布。
相变行为是指材料在升温或降温过程中发生的晶体结构转变。
数值模拟技术可以利用相变热力学模型,预测材料的相变过程和相变组织。
应力分析是指在热处理过程中由于温度变化引起的材料内部应力。
数值模拟技术可以通过求解应力平衡方程,预测材料的应力分布和残余应力。
在热处理数值模拟技术中,有多种数值算法可以用于求解热传导、相变和应力分析问题。
常见的数值算法包括有限元法、有限差分法和边界元法等。
有限元法是一种广泛应用的数值方法,将材料 discretize 为有限数量的小单元,然后通过求解相应的微分方程来获得材料的温度和应力分布。
有限差分法是一种基于差分近似的数值方法,将材料划分为网格,然后根据网格点之间的温度差和应力差来推导方程。
边界元法是一种基于边界积分方程的数值方法,将材料划分为小的边界单元,然后通过求解边界上的积分方程来获得材料的温度和应力分布。
除了数值算法,热处理数值模拟技术还需要考虑物理模型和材料参数的选择。