西安交通大学——温度场数值模拟matlab.doc
- 格式:doc
- 大小:72.51 KB
- 文档页数:4
利用MATLAB软件实现温度场的仿真
张国德
【期刊名称】《世界仪表与自动化》
【年(卷),期】2003(007)011
【总页数】2页(P60-61)
【作者】张国德
【作者单位】本溪冶金高等专科学校自控系
【正文语种】中文
【中图分类】TK22
【相关文献】
1.焊接温度场热图像的MATLAB软件分析技巧 [J], 项安;徐雪松;贾剑平;张华
2.利用ANSYS进行激光打孔温度场仿真 [J], 宋林森;史国权;李占国
3.利用Matlab软件可视化铸件三维温度场 [J], 李东辉;辛启斌;陈辉;吴成东
4.利用MATLAB软件实现赤铁矿絮凝体SEM图像的三维重建 [J], 牛福生;张红梅;张晋霞
5.利用MATLAB软件仿真验证串补电容对超高压电网保护正确动作的影响 [J], 郑树湘
因版权原因,仅展示原文概要,查看原文内容请购买。
温度场模拟matlab代码:clear,clc,clfL1=8;L2=8;N=9;M=9;% 边长为8cm的正方形划分为8*8的格子T0=500;Tw=100; % 初始和稳态温度a=0.05; % 导温系数tmax=600;dt=0.2; % 时间限10min和时间步长0.2sdx=L1/(M-1);dy=L2/(N-1);M1=a*dt/(dx^2);M2=a*dt/(dy^2);T=T0*ones(M,N);T1=T0*ones(M,N);t=0;l=0;k=0;Tc=zeros(1,600);% 中心点温度,每一秒采集一个点for i=1:9for j=1:9if(i==1|i==9|j==1|j==9)T(i,j)=Tw;% 边界点温度为100℃elseT(i,j)=T0;endendendif(2*M1+2*M2<=1) % 判断是否满足稳定性条件while(t<tmax+dt)t=t+dt;k=k+1;for i=2:8for j=2:8T1(i,j)=M1*(T(i-1,j)+T(i+1,j))+M2*(T(i,j-1)+T(i,j+1))+(1-2*M1-2*M2)*T(i,j);endendfor i=2:8for j=2:8T(i,j)=T1(i,j);endendif(k==5)l=l+1;Tc(l)=T(5,5);k=0;endendi=1:9;j=1:9;[x,y]=meshgrid(i); figure(1);subplot(1,2,1);mesh(x,y,T(i,j))% 画出10min 后的温度场 axis tight;xlabel('x','FontSize',14);ylabel('y','FontSize',14);zlabel('T/℃','FontSize',14) title('1min 后二维温度场模拟图','FontSize',18) subplot(1,2,2);[C,H]=contour(x,y,T(i,j)); clabel(C,H);axis square;xlabel('x','FontSize',14);ylabel('y','FontSize',14); title('1min 后模拟等温线图','FontSize',18) figure(2); xx=1:600;plot(xx,Tc,'k-','linewidth',2)xlabel('时间/s','FontSize',14);ylabel('温度/℃','FontSize',14);title('中心点的冷却曲线','FontSize',18)else disp('Error!') % 如果不满足稳定性条件,显示“Error !” end实验结果:时间/s温度/℃中心点的冷却曲线x1min后二维温度场模拟图T /℃xy1min 后模拟等温线图x5min 后二维温度场模拟图T /℃xy5min 后模拟等温线图x10min后二维温度场模拟图T /℃xy10min 后模拟等温线图x10min 后二维温度场模拟图(不满足稳定性条件)yT /℃21时间/s温度/℃中心点的冷却曲线(不满足稳定性条件)。
通过在室内的某些位置布置适当的节点,采集回来室内的温湿度以及空气质量等实际参数。
首先对室内空间建模,用一个无限细化的三维矩阵来模拟出室内的温度分布情况,针对采集回来的数据,采用插值法和适当次数的拟合函数的拟合,得出三维矩阵的实际值的分布,最后结合matlab软件绘制出计算出的温度场的三维图像。
一.数据的采集与处理因为影响人的舒适感的温度层只是室内的某一高度范围内的温度,而温度传感器虽然是布置在一个平面内,但是采用插值法和拟合函数法是可以大致再现出影响人的舒适感的温度层的温度变化的。
同时,在构建出的三维模型中,用第三维表示传感器层面的温度。
在传感器层面,传感器分布矩阵如下:X=【7.5 36.5 65.5】(模型内单位为cm)Y=【5.5 32.5 59.5】Z=【z1 z2 z3;z4 z5 z6;z7 z8 z9;】(传感器采集到的实时参数)采用meshgrid(xi,yi,zi,…)产生网格矩阵;首先按照人的最小温度分辨值,将室内的分布矩阵按照同样的比例细化,均分,使取值点在坐标一定程度上也是接近于连续变化的,从而才能最大程度上使处理数据得来的分布值按最小分辨值连续变化!根据人体散热量计算公式:C=hc(tb-Ta)其中hc为对流交换系数;结合Gagge教授提出的TSENS热感觉指标可以计算出不同环境下人的对环境温度变化时人体温度感知分辨率,作为插值法的一个参考量,能使绘制出的温度场更加的符合人体的温度变化模式。
例如按照10cm的均差产生网格矩阵(实际上人对温度的分辨率是远远10cm大于这个值的,但是那样产生的网格矩阵也是异常庞大的,例如以0.5cm为例,那么就可以获得116*108=12528个元素,为方便说明现已10cm为例):[xi yi]=meshgrid(7.5:10:65.5,5.5:10:59.5)xi =7.5000 17.5000 27.5000 37.5000 47.5000 57.50007.5000 17.5000 27.5000 37.5000 47.5000 57.50007.5000 17.5000 27.5000 37.5000 47.5000 57.50007.5000 17.5000 27.5000 37.5000 47.5000 57.50007.5000 17.5000 27.5000 37.5000 47.5000 57.50007.5000 17.5000 27.5000 37.5000 47.5000 57.5000yi =5.5000 5.5000 5.5000 5.5000 5.5000 5.500015.5000 15.5000 15.5000 15.5000 15.5000 15.500025.5000 25.5000 25.5000 25.5000 25.5000 25.500035.5000 35.5000 35.5000 35.5000 35.5000 35.500045.5000 45.5000 45.5000 45.5000 45.5000 45.500055.5000 55.5000 55.5000 55.5000 55.5000 55.5000产生网格矩阵之后,就可以在测得的实时数据的基础上,通过相关的温度场的专业的估算函数,以及相关的数值处理函数来估计整个分布面(有最小的分辨率)上的温度了。
西安交⼤传热学上机实验报告传热学上机实验报告⼆维导热物体温度场的数值模拟学院:化⼯学院姓名:沈佳磊学号:2110307016班级:装备11⼀、物理问题有⼀个⽤砖砌成的长⽅形截⾯的冷空⽓空道,其截⾯尺⼨如下图所⽰,假设在垂直于纸⾯⽅向上冷空⽓及砖墙的温度变化很⼩,可以近似地予以忽略。
在下列两种情况下试计算:(1)砖墙横截⾯上的温度分布;(2)垂直于纸⾯⽅向的每⽶长度上通过砖墙的导热量。
外矩形长为3.0m,宽为2.2m;内矩形长为2.0m,宽为1.2m。
第⼀种情况:内外壁分别均匀地维持在0℃及30℃;第⼆种情况:内外表⾯均为第三类边界条件,且已知:外壁:30℃,h1=10W/m2·℃,内壁:10℃,h2= 4 W/m2·℃砖墙的导热系数λ=0.53 W/m·℃由于对称性,仅研究1/4部分即可。
⼆、数学描写对于⼆维稳态导热问题,描写物体温度分布的微分⽅程为拉普拉斯⽅程22220t t x x ??+=??这是描写实验情景的控制⽅程。
三、⽅程离散⽤⼀系列与坐标轴平⾏的⽹格线把求解区域划分成许多⼦区域,以⽹格线的交点作为确定温度值的空间位置,即节点。
每⼀个节点都可以看成是以它为中⼼的⼀个⼩区域的代表。
由于对称性,仅研究1/4部分即可。
依照实验时得点划分⽹格。
建⽴节点物理量的代数⽅程对于内部节点,由?x=?y ,有,1,1,,1,11()4m n m n m n m n m n t t t t t +-+-=+++由于本实验为恒壁温,不涉及对流,故内⾓点,边界点代数⽅程与该式相同。
设⽴迭代初场,求解代数⽅程组图中,除边界上各节点温度为已知且不变外,其余各节点均需建⽴类似3中的离散⽅程,构成⼀个封闭的代数⽅程组。
以t ? =0°C 为场的初始温度,代⼊⽅程组迭代,直⾄相邻两次内外传热值之差⼩于0.01,认为已达到迭代收敛。
四、编程及结果program mainimplicit nonereal ,dimension(1:16,1:12)::treal ,dimension(1:16,1:12)::t1real q,q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,a integer m,n,z logical::converged=.false.z=1t=0a=0.53do n=1,12t(1,n)=30end dodo m=2,16t(m,12)=30end dodo n=1,7t(6,n)=0end dodo m=7,16t(m,7)=0end dodo while(.not.converged.and.z<10000)t1=tdo m=2,5do n=1,11if( n==1 )thent(m,n)=0.25*(t(m-1,n)+t(m+1,n)+2*t(m,n+1))elset(m,n)=0.25*(t(m-1,n)+t(m+1,n)+t(m,n-1)+t(m,n+1)) end if end doend dodo n=8,11do m=6,16if (m==16) thent(m,n)=0.25*(t(m,n-1)+t(m,n+1)+2*t(m-1,n)) elset(m,n)=0.25*(t(m-1,n)+t(m+1,n)+t(m,n-1)+t(m,n+1)) end if end doend doz=z+1do m=1,16do n=1,12if(abs(t(m,n)-t1(m,n))>0.000001) thenconverged=.false.exitelseconverged=.true.end ifend doend doend dowrite(*,'(16f5.1)',advance='no')((t(m,n),m=1,16),n=12,7,-1) write(*,*) write(*,'(6f5.1)',advance='no')((t(m,n),m=1,6),n=6,1,-1)do n=2,11q1=(t(1,n)-t(2,n))*a+q1end dodo m=2,15q2=(t(m,12)-t(m,11))*a+q2end doq3=(t(1,1)-t(2,1))*a*0.5q4=(t(16,12)-t(16,11))*a*0.5q10=q1+q2+q3+q4write(*,*)do n=2,6q5=(t(5,n)-t(6,n))*a+q5end dodo m=7,15q6=(t(m,8)-t(m,7))*a+q6end doq7=(t(5,1)-t(6,1))*a*0.5q8=(t(16,8)-t(16,7))*a*0.5q9=(t(5,7)-t(6,7))*a*2q11=q5+q6+q7+q8+q9q=(q10+q11)*0.5*4print*,"外表⾯导量=",q10,"内表⾯导热量",q11,"每⽶⾼砖墙导热量",q end结果截图:将以上结果⽤matlab画图⼯具绘制出如下图像:。
实用文档传热大作业二维导热物体温度场的数值模拟:璇班级:能动A02学号:10031096一.物理问题有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸如下图所示,假设在垂直于纸面方向上用冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在下列两种情况下试计算:(1)砖墙横截面上的温度分布;(2)垂直于纸面方向的每米长度上通过砖墙的导热量。
第一种情况:外壁分别均与地维持在0℃及30℃;第二种情况:外壁均为第三类边界条件,且已知:t ∞1=30℃,ℎ1=10wm2∙℃t ∞2=10℃,ℎ2=4wm2∙℃砖墙的导热系数λ=0.53 Wm∙℃二.数学描写由对称的界面必是绝热面,可取左上方的四分之一墙角为研究对象,该问题为二维、稳态、无热源的导热问题,其控制方程和边界条件如下:ðt2ðx2+ðt2ðy2=0边界条件(情况一) t(x,0)=30 0≤x≤1.5t(0,y)=30 0≤y≤1.1t(0.5,y)=0 0.5≤y≤1.1t(x,0.5)=0 0.5≤x≤1.5ðt(1.5,y)=0 0≤y≤0.5ðy∂t(x,1.1)=0 0≤x≤0.5ℎ(t−t f1) x=0,0≤y≤1.11=ℎ(t−t f2) x=0.5,0.5≤y≤1.12ℎ(t−t f1) y=0,0≤x≤1.51ℎ(t−t f2) y=0,0.5≤x≤21.50 0≤y≤0.5=0 0≤x≤0.5∂x三.网格划分网格划分与传热学实验指导书中“二维导热物体温度场的电模拟实验”一致,如下图所示:四.方程离散对于节点,离散方程t[i][j]=0.25*(t[i+1][j]+t[i-1][j]+t[i][j+1]+t[i][j-1])对于边界节点,则应对一、二两种情况分开讨论:情况一:绝热平直边界点:t[15][j]=0.25*(2*t[14][j]+t[15][j-1]+t[15][j+1])1≤j≤4t[i][11]=0.25*(2*t[i][10]+t[i-1][11]+t[i+1][11]) 1≤i≤4外等温边界点:t[i][j]=30等温边界点:t[i][j]=0情况二:(Bi1,Bi2为网格Bi数,Bi1=ℎ1∆xλ Bi2=ℎ2∆xλ)绝热平直边界点:t[15][j]=0.25*(2*t[14][j]+t[15][j-1]+t[15][j+1])1≤j≤4t[i][11]=0.25*(2*t[i][10]+t[i-1][11]+t[i+1][11]) 1≤i≤4外侧对流平直边界:t[i][0]=(2*t[i][1]+t[i+1][0]+t[i-1][0]+2*Bi1*tf1)/(2*Bi1+4) 1≤i≤14t[0][j]=(2*t[1][j]+t[0][j+1]+t[0][j-1]+2*Bi1*tf1)/(2*Bi1+4) 1≤j≤10侧对流平直边界:t[i][5]=(2*t[i][4]+t[i+1][5]+t[i-1][5]+2*Bi2*tf2)/(2*Bi2+4) 6≤i≤14t[5][j]=(2*t[4][j]+t[5][j+1]+t[5][j-1]+2*Bi2*tf2)/(2*Bi2+4) 6≤j≤10特殊点:a点t[15][0]=(t[14][0]+t[15][1]+tf1*Bi1)/(Bi1+2)b点t[15][5]=(t[14][5]+t[15][4]+tf2*Bi2)/(Bi2+2)c点t[5][5]=(2*t[4][5]+2*t[5][4]+t[5][6]+t[6][5]+3*Bi2*tf2)/(2*Bi2+6) d点t[5][11]=(t[5][10]+t[4][11]+tf2*Bi2)/(Bi2+2)e点t[0][11]=(t[0][10]+t[1][11]+tf1*Bi1)/(Bi1+2)f点t[0][0]=(t[0][1]+t[1][0]+tf1*Bi1*2)/(2*Bi1+2)五.编程思路及流程图编程思路为设定两个二维数组t[i][j]、ta[i][j]分别表示本次迭代和上次迭代各节点的温度值,iter表示迭代进行的次数,daore_in、daore_out分别表示外边界的散热量。
西安交通大学“仿真软件MATLAB及应用”课程教学大纲课程名称:仿真软件MATLAB及应用英文名称:MATLAB课程编号:MACH4252总学时:32 学分: 1.5课程类型:本科生选修主讲教师:要义勇适用对象: 机械工程学院四年级本科生先修课程: 微机原理,机械控制工程,VB或VC使用教材与参考书目MATLAB 5.x与科学计算,清华大学出版社,王沫然基于MATLAB的系统分析与设计,西安电子科技大学出版社,楼顺天,1998信号与系统分析及MATLAB实现,电子工业出版社,梁虹,2002一、课程性质、目的和任务“仿真软件MATLAB及应用”课程是面向机械学院各专业四年制本科生开设的工程技术课。
通过讲授仿真软件MATLAB的基础知识,培养学生掌握本学科领域内常见仿真方法,进而进行重要机械工程系统设计,同时培养学生严密思考,从而验证现代控制技术中的逻辑仿真方法的正确性。
为学生学习和应用相关专业课程创造良好氛围。
本课程的主要任务是:1.详细介绍MATLAB的界面,基本组成以及使用环境等。
2.详细讲解仿真软件的实际编程方法和操作步骤。
二、教学基本要求(1)了解仿真软件的系统组成与分类。
(2)掌握仿真软件MATLAB的基本编程与程序设计方法。
(3)掌握仿真软件MATLAB的图形处理技术(4)了解并熟悉仿真软件MATLAB的各种应用(5)终考(50%):基本概念考核,采用闭卷考试形式。
平时作业与考勤(20%);课程实验(30%)。
大纲制定者:要义勇执笔大纲审定者:苑国英大纲批准者:江平宇大纲校对者:要义勇。
西安交通大学传热学大作业一、物理问题有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸如下图1-1所示,假设在垂直于纸面方向上用冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在下列两种情况下试计算:砖墙横截面上的温度分布;垂直于纸面方向的每米长度上通过砖墙的导热量。
第一种情况:内外壁分别均匀维持在0℃及30℃;第二种情况:内外壁均为第三类边界条件,且已知:K m W K m W h C t K m W h C t ∙=∙=︒=∙=︒=∞∞/53.0砖墙导热系数/20,10/4,30222211λ二、数学描写由对称的界面必是绝热面,可取左上方的四分之一墙角为研究对象,该问题为二维、稳态、无内热源的导热问题。
控制方程:02222=∂∂+∂∂y tx t边界条件:① 给出了边界上的温度,属于第一类边界条件:由对称性知边界1绝热: 0=w q ; 边界2、3为等温边界:t w2=0℃,t w3=30℃② 给出了边界上的边界上物体与周围流体间的表面传热系数h 及周围流体的温度t f ,属于第三类边界条件 由对称性知边界1绝热: 0=w q ;边界2为对流边界,)()(2f w w w t t h n tq -=∂∂-=λ; 边界3为对流边界,)()(3f w w w t t h n t q -=∂∂-=λ。
1-1图2-1图三、数学模型网格划分:将长方形截面离散成31×23个点,用有限个离散点的值的集合来代替整个截面上温度的分布,通过求解按傅里叶导热定律、牛顿冷却公式及热平衡法建立的代数方程,来获得整个长方形截面的温度分布,进而求出其通过壁面的冷量损失。
步长为0.1m ,记为△x=△y=0.1m 。
采用热平衡法,利用傅里叶导热定律和能量守恒定律,按照以导入元体(m,n )方向的热流量为正,列写每个节点代表的元体的代数方程。
第一种情况:()()()()()()()()()()⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+++==︒==︒==︒==︒==︒==︒==︒==︒=+-+-代表内部点,,点4126~6,1018,26~6,106,18~6,10,2618~6,10,631~1,3023,31~1,301,23~1,30,3123~1,30,11,1,,1,1,n m t t t t t n C m t n C m t n C n t n C n t n C m t n C m t n C n t n C n t n m n m n m n m n m 第二种情况对于外部角点(1,1)、(1,23)、(31,1)、(31,,23)有:()()02222,1,,22,,1,22=∆∆-+-∆+∆∆-+-∆±±x y t t t t x h y x t t t t yh n m n m n m f n m n m n m f λλ 得到:()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=++=++=++=22,3123,3023,312,311,301,3122,123,223,12,11,21,11865331400186533140018653314001865331400t t t t t t t t t t t t 同理可得:对于内部角点(6,6)(6,18)(26,6)(26,18) ,有()()()()()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++++=++++=++++=++++=7,2618,2518,2719,2618,267,266,256,275,266,2618,717,619,618,518,67,66,75,66,56,671853359533592000718533595335920007185335953359200071853359533592000t t t t t t t t t t t t t t t t t t t t对于外部边界节点有()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++==+++==+++==+++=+-+-+-+-20~2,29253146537360020~2,29253146537360022~2,29253146537360022~229253146537360023,123,122,23,1,11,12,1,1,311,31,30311,11,1,21m t t t t m t t t t n t t t t n t t t t m m m m m m m m n n n n n n n n ,,, 对于内部边界节点有()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++==+++==+++==+++=+-+-+-+-25~7,6125330653153100025~7,6125330653153100017~7,6125330653153100017~7,6125330653153100018,118,119,18,6,16,15,6,1,261,26,27261,61,6,56n t t t t n t t t t n t t t t n t t t t m m m m m m m m n n n n n n n n ,, 对于内部节点有()1,1,,1,1,41+-+-+++=n m n m n m n m n m t t t t t传热问题的有限差分解法中主要采用迭代法。
温度场模拟matlab代码:clear,clc,clfL1=8;L2=8;N=9;M=9;% 边长为8cm的正方形划分为8*8的格子T0=500;Tw=100; % 初始和稳态温度a=0.05; % 导温系数tmax=600;dt=0.2; % 时间限10min和时间步长0.2sdx=L1/(M-1);dy=L2/(N-1);M1=a*dt/(dx^2);M2=a*dt/(dy^2);T=T0*ones(M,N);T1=T0*ones(M,N);t=0;l=0;k=0;Tc=zeros(1,600);% 中心点温度,每一秒采集一个点for i=1:9for j=1:9if(i==1|i==9|j==1|j==9)T(i,j)=Tw;% 边界点温度为100℃elseT(i,j)=T0;endendendif(2*M1+2*M2<=1) % 判断是否满足稳定性条件while(t<tmax+dt)t=t+dt;k=k+1;for i=2:8for j=2:8T1(i,j)=M1*(T(i-1,j)+T(i+1,j))+M2*(T(i,j-1)+T(i,j+1))+(1-2*M1-2*M2)*T(i,j);endendfor i=2:8for j=2:8T(i,j)=T1(i,j);endendif(k==5)l=l+1;Tc(l)=T(5,5);k=0;endendi=1:9;j=1:9;[x,y]=meshgrid(i); figure(1);subplot(1,2,1);mesh(x,y,T(i,j))% 画出10min 后的温度场 axis tight;xlabel('x','FontSize',14);ylabel('y','FontSize',14);zlabel('T/℃','FontSize',14) title('1min 后二维温度场模拟图','FontSize',18) subplot(1,2,2);[C,H]=contour(x,y,T(i,j)); clabel(C,H);axis square;xlabel('x','FontSize',14);ylabel('y','FontSize',14); title('1min 后模拟等温线图','FontSize',18) figure(2); xx=1:600;plot(xx,Tc,'k-','linewidth',2)xlabel('时间/s','FontSize',14);ylabel('温度/℃','FontSize',14);title('中心点的冷却曲线','FontSize',18)else disp('Error!') % 如果不满足稳定性条件,显示“Error !” end实验结果:时间/s温度/℃中心点的冷却曲线x1min后二维温度场模拟图T /℃xy1min 后模拟等温线图x5min 后二维温度场模拟图T /℃xy5min 后模拟等温线图x10min后二维温度场模拟图T /℃xy10min 后模拟等温线图x10min 后二维温度场模拟图(不满足稳定性条件)yT /℃21时间/s温度/℃中心点的冷却曲线(不满足稳定性条件)。
通过在室内的某些位置布置适当的节点,采集回来室内的温湿度以及空气质量等实际参数。
首先对室内空间建模,用一个无限细化的三维矩阵来模拟出室内的温度分布情况,针对采集回来的数据,采用插值法和适当次数的拟合函数的拟合,得出三维矩阵的实际值的分布,最后结合matlab软件绘制出计算出的温度场的三维图像。
一.数据的采集与处理因为影响人的舒适感的温度层只是室内的某一高度范围内的温度,而温度传感器虽然是布置在一个平面内,但是采用插值法和拟合函数法是可以大致再现出影响人的舒适感的温度层的温度变化的。
同时,在构建出的三维模型中,用第三维表示传感器层面的温度.在传感器层面,传感器分布矩阵如下:X=【7.5 36。
5 65。
5】(模型内单位为cm)Y=【5.5 32。
5 59.5】Z=【z1 z2 z3;z4 z5 z6;z7 z8 z9;】(传感器采集到的实时参数)采用meshgrid(xi,yi,zi,…)产生网格矩阵;首先按照人的最小温度分辨值,将室内的分布矩阵按照同样的比例细化,均分,使取值点在坐标一定程度上也是接近于连续变化的,从而才能最大程度上使处理数据得来的分布值按最小分辨值连续变化!根据人体散热量计算公式:C=hc(tb-Ta)其中hc为对流交换系数;结合Gagge教授提出的TSENS热感觉指标可以计算出不同环境下人的对环境温度变化时人体温度感知分辨率,作为插值法的一个参考量,能使绘制出的温度场更加的符合人体的温度变化模式。
例如按照10cm的均差产生网格矩阵(实际上人对温度的分辨率是远远10cm大于这个值的,但是那样产生的网格矩阵也是异常庞大的,例如以0。
5cm为例,那么就可以获得116*108=12528个元素,为方便说明现已10cm为例):[xi yi]=meshgrid(7。
5:10:65.5,5。
5:10:59。
5)xi =7。
5000 17.5000 27.5000 37.5000 47.5000 57。
温度场模拟matlab代码:
clear,clc,clf
L1=8;L2=8;N=9;M=9;% 边长为8cm的正方形划分为8*8的格子
T0=500;Tw=100; % 初始和稳态温度
a=0.05; % 导温系数
tmax=600;dt=0.2; % 时间限10min和时间步长0.2s
dx=L1/(M-1);dy=L2/(N-1);
M1=a*dt/(dx^2);M2=a*dt/(dy^2);
T=T0*ones(M,N);
T1=T0*ones(M,N);
t=0;l=0;k=0;
Tc=zeros(1,600);% 中心点温度,每一秒采集一个点
for i=1:9
for j=1:9
if(i==1|i==9|j==1|j==9)
T(i,j)=Tw;% 边界点温度为100℃
else
T(i,j)=T0;
end
end
end
if(2*M1+2*M2<=1) % 判断是否满足稳定性条件
while(t<tmax+dt)
t=t+dt;
k=k+1;
for i=2:8
for j=2:8
T1(i,j)=M1*(T(i-1,j)+T(i+1,j))+M2*(T(i,j-1)+T(i,j+1))+(1-2*M1-2*M2)*T(i,j);
end
end
for i=2:8
for j=2:8
T(i,j)=T1(i,j);
end
end
if(k==5)
l=l+1;
Tc(l)=T(5,5);
k=0;
end
end
i=1:9;j=1:9;
[x,y]=meshgrid(i); figure(1);
subplot(1,2,1);
mesh(x,y,T(i,j))% 画出10min 后的温度场 axis tight;
xlabel('x','FontSize',14);ylabel('y','FontSize',14);zlabel('T/℃','FontSize',14) title('1min 后二维温度场模拟图','FontSize',18) subplot(1,2,2);
[C,H]=contour(x,y,T(i,j)); clabel(C,H);axis square;
xlabel('x','FontSize',14);ylabel('y','FontSize',14); title('1min 后模拟等温线图','FontSize',18) figure(2); xx=1:600;
plot(xx,Tc,'k-','linewidth',2)
xlabel('时间/s','FontSize',14);ylabel('温度/℃','FontSize',14);title('中心点的冷却曲线','FontSize',18)
else disp('Error!') % 如果不满足稳定性条件,显示“Error !” end
实验结果:
时间/s
温度/℃
中心点的冷却曲线
x
1min
后二维温度场模拟图
T /℃
x
y
1min 后模拟等温线图
x
5min 后二维温度场模拟图
T /℃
x
y
5min 后模拟等温线图
x
10min
后二维温度场模拟图
T /℃
x
y
10min 后模拟等温线图
x
10min 后二维温度场模拟图(不满足稳定性条件)
y
T /℃
21
时间/s
温度/℃
中心点的冷却曲线(不满足稳定性条件)。