动量守恒之滑块、子弹打木块模型
- 格式:doc
- 大小:94.00 KB
- 文档页数:10
§动量守恒定律常见模型子弹打击木块类模型例题1:设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,设木块对子弹的阻力恒为f ,求:(1)木块至少多长子弹才不会穿出?(2)子弹在木块中运动了多长时间?变式:若不固定木块时,子弹穿透木块后的速度为v 0/3,现固定木块,其它条件相同,则子弹穿过木块时的而速度为多少?例题2:如图质量为M 的模板B 静止在光滑的水平面上,一质量为m 的长度可忽略的小木块A 以速度v 0水平地沿模板的表面滑行,已知小木块与木板间的动摩擦因数为µ,求:(1)木板至少多长小木块才不会掉下来?(2)小木块在木板上滑行了多长时间?拓展1:上题中,如果已知木板长为L ,(端点为A 、B ,中点为O),问v 0在什么范围内才能使小木块滑到OB 之间相对木块静止?v 0拓展2:如图所示,一辆质量m=2kg 的平板车左端放有质量M=3kg 的小滑块,滑块与平板车之间的动摩擦因数µ=0。
4。
开始时平板车和滑块共同以2m/s 的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短、且碰撞后平板车速度大小保持不变,但方向与原来相反。
平板车足够长,以至滑块不会滑出平板车右端(g=10m/s 2).求:(1)平板车第一次与墙壁碰撞后想做运动的最大距离。
(2)平板车第二次与墙壁碰撞前瞬间的速度.(3)为使滑块始终不会滑到平板车右端,平板车至少多长?拓展3:两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L.导轨上面横放着两根导体棒ab 和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0。
若两导体棒在运动中始终不接触,求: (1)在运动中产生的较耳热最多是多少?(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?人船模型动量守恒定律的两个推论:推论1:当系统的动量守恒时,任意一段时间内的平均动量也守恒;推论2:当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。
动量定理、动能定理专题-⼦弹打⽊块模型动量定理、动能定理专题----⼦弹打⽊块模型⼀、模型描述:此模型主要是指⼦弹击中未固定的光滑⽊块的物理场景,如图所⽰。
其本质是⼦弹和⽊块在⼀对⼒和反作⽤⼒(系统内⼒)的作⽤下,实现系统内物体动量和能量的转移或转化。
⼆、⽅法策略:(1) 运动性质:在该模型中,默认⼦弹撞击⽊块过程中的相互作⽤⼒是恒恒⼒,则⼦弹在阻⼒的作⽤下会做匀减速直线性运动;⽊块将在动⼒的作⽤下做匀加速直线运动。
这会存在两种情况:(1)最终⼦弹尚未穿透⽊块,(2)⼦弹穿透⽊块。
(2) 基本规律:如图所⽰,研究⼦弹未穿透⽊块的情况:三、图象描述:在同⼀个v-t坐标中,两者的速度图线如图甲所⽰。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分⾯积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图⼄所⽰。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对⽐出物块的对地位移和⼦弹的相对位移,从⽽从能量的⾓度快速分析出系统产⽣的热量⼀定⼤于物块动能的⼤⼩。
四、模型迁移⼦弹打⽊块模型的本质特征是物体在⼀对作⽤⼒与反作⽤⼒(系统内⼒)的冲量作⽤下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙⽊板上滑动、⼀静⼀动的同种电荷追碰运动,⼀静⼀动的导体棒在光滑导轨上切割磁感线运动、⼩球从光滑⽔平⾯上的竖直平⾯内弧形光滑轨道最低点上滑等等,如图所⽰。
(1)典型例题:例1.如图所⽰,质量为M的⽊块静⽌于光滑的⽔平⾯上,⼀质量为m、速度为的⼦弹⽔平射⼊⽊块且未穿出,设⽊块对⼦弹的阻⼒恒为F,求:(1)⼦弹与⽊块相对静⽌时⼆者共同速度为多⼤?(2)射⼊过程中产⽣的内能和⼦弹对⽊块所做的功分别为多少?(3)⽊块⾄少为多长时⼦弹才不会穿出?1. ⼀颗速度较⼤的⼦弹,以速度v ⽔平击穿原来静⽌在光滑⽔平⾯上的⽊块,设⽊块对⼦弹的阻⼒恒定,则当⼦弹⼊射速度增⼤为2v 时,下列说法正确的是( )A. ⼦弹对⽊块做的功不变B. ⼦弹对⽊块做的功变⼤C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:⼦弹的⼊射速度越⼤,⼦弹击中⽊块所⽤的时间越短,⽊块相对地⾯的位移越⼩,⼦弹对⽊块做的功W =fs 变⼩,选项AB 错误;⼦弹相对⽊块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产⽣的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
动量守恒定理应用之滑块子弹打木块模型动量守恒定理应用之滑块、子弹打木块模型动量守恒定理应用的几种模型分析动量守恒定律中常常涉及这样几种模型:人船模型,子弹打木块模型,滑块模型,弹簧模型等1人船模型:这是一种通过平均动量守恒来解决的问题。
解决问题时,画一个物体位移关系的草图,找出物体之间的位移关系。
【例1】质量为m的小船长为l浮在静水中。
开始时质量为m的人站在船头,人和船均处于静止状态。
若此人从船头走到船尾,不计水的阻力,则船将前进的距离为a、 ml/(m+m)b、ml/(m+m)c、ml/(m-m)d、ml/(m-m)【解析】以人和船组成的系统为研究对象,由于人从船头走向船尾,系统在水平方向上不受外力作用,所以水平方向动量守恒,人起步前人和船均静止系统的总动量为零。
以河岸为参考系有0=mv船→岸+mv人→岸人走船走人停船停。
整个过程中,每一时刻系统都满足动量守恒定律,位移x=v平均t,所以0=ml船→岸+ml人→岸,根据位移关系可知l=l 船→岸+l人→岸,解得l船→岸=ml/(m+m)【答案】a人船模型通常涉及速度。
在求解对象时,我们必须分析它与哪个参考系有关。
如果给定的速度不是相同的参考系,则必须将其转换为相同的参考系。
2.子弹击中木块模型:这类问题以系统为研究对象,水平方向满足动量守恒条件。
然而,由于摩擦,系统的机械能不守恒,损失的机械能等于摩擦和相对位移的乘积。
解决问题时最好画一个运动草图,物体位移之间的关系非常直观。
【例题2】:质量为m、长为l的木块静止在光滑水平面上,现有一质量为m的子弹以水平初速v0射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。
【分析】:如图所示,子弹穿过木块的阻力为f,木块的速度为V,位移为为s,则子弹位移为(s+l)以子弹木块为系统,由动量守恒定律得:mv0=mv+mv(1)动能定理中的2L,对于子弹-f(s+L)=1mv2?1mv0(2)22v0vs对于木块FS=1mv2?0(3)2m2m2由①式得v=m(v0?v)代入③式有fs=1m?m2(v0?v)2④11111 M22② + ④ 得到FL=1mv0?mv2?mv2?mv0?{mv2?m[(v0?v)]2}222222m注意:这类问题存在临界条件,即子弹射出和留在滑块中。
专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。
滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹穿出的情况。
①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。
1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。
2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。
子弹打击木块模型原理方法
子弹打击木块模型是一个经典的物理实验,它可以帮助我们理
解动量、能量和力学原理。
这个实验的原理和方法涉及到多个方面。
首先,让我们从原理方面来看。
当一颗子弹以一定的速度击中
木块时,它会传递动能给木块。
根据动量守恒定律,子弹的动量会
转移给木块,使得木块获得一个与子弹动量相等但方向相反的动量。
这个过程中,子弹和木块之间会发生碰撞,从而产生力。
根据牛顿
第三定律,子弹对木块施加的力与木块对子弹施加的力大小相等、
方向相反。
这些原理帮助我们理解了子弹打击木块的基本过程。
其次,我们来看具体的实验方法。
首先需要准备一个木块作为
靶标,然后使用枪支发射子弹来击中木块。
在实验过程中,需要测
量子弹的速度、木块的质量以及木块被击中后的速度变化,以便计
算动量转移和能量转化的情况。
通过实验数据的分析,我们可以验
证动量守恒和能量守恒定律,并进一步理解碰撞和力学原理。
除了物理原理和实验方法,我们还可以从工程应用、安全性等
角度来考虑子弹打击木块模型。
在工程应用方面,这个实验可以帮
助我们设计防弹材料和结构,以增强对子弹的抵抗能力。
在安全性
方面,这个实验也提醒我们在使用枪支时要格外小心,以避免意外伤害。
总的来说,子弹打击木块模型涉及了动量、能量、力学原理以及实验方法、工程应用和安全性等多个方面。
通过全面理解和研究这个模型,我们可以更好地认识物理规律,指导工程实践,并加强安全意识。
2023-2024(上)全品学练考高中物理选择性必修第一册第1章动量守恒定律专题课:“子弹打木块”模型和“滑块—木板”模型学习任务一“子弹打木块”模型[模型建构]模型图示模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两种情景(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:mv0=(m+M)v能量守恒:Q=F f·x=12m v02-12(M+m)v2(2)子弹穿透木块动量守恒:mv0=mv1+Mv2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)例1一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平打进木块并留在其中.设子弹与木块之间的相互作用力大小为F f.(1)子弹、木块相对静止时的速度为多大?(2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中,子弹、木块发生的位移以及子弹打进木块的深度分别为多少?(4)系统损失的机械能、系统增加的内能分别为多少?(5)要使子弹不射出木块,木块至少为多长?变式1如图所示,木块静止在光滑水平面上,两颗不同的子弹A、B从木块两侧同时射入木块,最终都停在木块内,这一过程中木块始终保持静止.若子弹A射入的深度大于子弹B射入的深度,则()A .子弹A 的质量一定比子弹B 的质量大B .入射过程中子弹A 受到的阻力比子弹B 受到的阻力大C .子弹A 在木块中运动的时间比子弹B 在木块中运动的时间长D .子弹A 射入木块时的初动能一定比子弹B 射入木块时的初动能大变式2 如图所示,A 、B 两个木块用弹簧连接,它们静止在光滑水平面上,A 和B 的质量分别为99m 和100m.一颗质量为m 的子弹以速度v 0水平射入木块A 内没有穿出,则在之后的运动过程中弹簧的最大弹性势能为多少?学习任务二 “滑块—木板”模型[模型建构]模型 图示模型 特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能.(2)若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大. 求解 方法 (1)求速度:根据动量守恒定律求解,研究对象为一个系统;(2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q=F f Δx 或Q=E 初-E 末,研究对象为一个系统.例2 如图所示,质量m=4 kg 的物体,以水平速度v 0=5 m/s 滑上静止在光滑水平面上的平板小车,小车质量M=6 kg,物体与小车车面之间的动摩擦因数μ=0.3,g 取10 m/s 2,设小车足够长,求:(1)小车和物体的共同速度; (2)物体在小车上滑行的时间;(3)在物体相对小车滑动的过程中,系统产生的摩擦热.变式3 如图所示,在光滑水平地面上固定足够高的挡板,距离挡板s=3 m 处静止放置质量M=1 kg 、长L=4 m 的小车,一质量m=2 kg 的滑块(可视为质点)以v 0=6 m/s的初速度滑上小车左端,带动小车向右运动,小车与挡板碰撞时被粘住不动,已知滑块与小车表面间的动摩擦因数μ=0.2,g取10 m/s2.(1)求滑块与小车的共同速度大小;(2)当滑块与小车共速时,小车与挡板的距离和滑块与小车右端的距离分别为多少?(3)若滑块与挡板碰撞时为弹性碰撞,求全过程中滑块克服摩擦力做的功.例3 (多选)[2022·浙江学军中学月考] 如图所示,质量为8m,长度一定的长木板放在光滑的水平面上,质量为m,可视为质点的物块放在长木板的最左端,质量为m的子弹以水平向右的速度v0射入物块且未穿出(该过程的作用时间极短可忽略不计),经时间t0物块以v0的速度离开5长木板的最右端,重力加速度为g,则下列说法正确的是()A.长木板最终的速度大小为v010B.长木板的长度为5v0t016m v02C.子弹射入物块的过程中损失的机械能为920D.物块与长木板间的动摩擦因数为3v010gt01.(子弹打木块模型)(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块,若射击下层,子弹刚好不射出.若射击上层,则子弹刚好能射进一半厚度,如图所示,上述两种情况相比较()A.子弹损失的动能一样多B.子弹射击上层时,从射入到共速所经历时间较长C.系统产生的热量一样多D.子弹与上层摩擦力较大2.(滑块—木板模型)(多选)[2022·厦门双十中学月考] 如图甲所示,一长木板静止于光滑水平桌面上,t=0时,小物块以速度v0滑到长木板上,图乙为物块与木板运动的v-t图像,图中t1、v0、v1已知,重力加速度大小为g,由此可求得()A.木板的长度B.物块与木板的质量之比C.物块与木板之间的动摩擦因数D.从t=0开始到t1时刻,木板获得的动能3.(动量综合应用)如图所示,一质量m1=0.45 kg的平顶小车静止在光滑的水平轨道上.质量m2=0.5 kg的小物块(可视为质点)静止在车顶的右端.一质量为m0=0.05 kg的子弹、以水平速度v0=100 m/s射中小车左端并留在车中,最终小物块相对地面以2 m/s的速度滑离小车.已知子弹与车的作用时间极短,物块与车顶面的动摩擦因数μ=0.8,认为最大静摩擦力等于滑动摩擦力.g取10 m/s2,求:(1)子弹相对小车静止时小车速度的大小;(2)小车的长度L.[反思感悟]专题课:“子弹打木块”模型和“滑块—木板”模型例1(1)mM+m v0(2)Mmv0F f(M+m)(3)Mm(M+2m)v022F f(M+m)2Mm2v022F f(M+m)2Mmv022F f(M+m)(4)Mmv022(M+m)Mmv022(M+m)(5)Mmv022F f(M+m)[解析] (1)设子弹、木块相对静止时的速度为v,以子弹初速度的方向为正方向,由动量守恒定律得mv0=(M+m)v解得v=mM+mv0(2)设子弹在木块内运动的时间为t,对木块,由动量定理得F f t=Mv-0解得t=Mmv0F f(M+m)(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示.对子弹,由动能定理得-F f x 1=12mv 2-12m v 02解得x 1=Mm (M+2m )v 022F f (M+m )2对木块,由动能定理得F f x 2=12Mv 2 解得x 2=Mm 2v 022F f (M+m )2子弹打进木块的深度等于相对位移的大小,即x 相=x 1-x 2=Mmv 022F f(M+m ) (4)系统损失的机械能为E损=12m v 02-12(M+m )v 2=Mmv 022(M+m )系统增加的内能为Q=F f ·x 相=Mmv 022(M+m )系统增加的内能等于系统损失的机械能(5)假设子弹恰好不射出木块,有F f L=12m v 02-12(M+m )v 2解得L=Mmv 022F f(M+m )因此木块的长度至少为Mmv 022F f(M+m )变式1 D [解析] 由于木块始终保持静止状态,则两子弹对木块的推力大小相等,即两子弹所受的阻力大小相等,设为F f ,根据动能定理得,对子弹A 有-F f d A =0-E k A ,得E k A =F f d A ,对子弹B 有-F f d B =0-E k B ,得E k B =F f d B ,由于d A >d B ,则有子弹射入时的初动能E k A >E k B ,故B 错误,D 正确.两子弹和木块组成的系统动量守恒,则有√2m A E kA =√2m B E kB ,而E k A >E k B ,则m A <m B ,故A 错误.子弹A 、B 从木块两侧同时射入木块,木块始终保持静止,分析得知,两子弹在木块中运动的时间必定相等,否则木块就会运动,故C 错误. 变式21400m v 02[解析] 子弹射入木块A 的极短时间内,弹簧未发生形变(实际上是形变很小,忽略不计),设子弹和木块A 获得共同速度v ,由动量守恒定律得mv 0=(m+99m )v之后木块A (含子弹)开始压缩弹簧推动B 前进,当A 、B 速度相等时,弹簧的压缩量最大,设此时弹簧的弹性势能为E p ,A 、B 的共同速度为v 1,对A (含子弹)、B 组成的系统,由动量守恒定律得(m+99m )v=(m+99m+100m )v 1由机械能守恒定律得12(m+99m )v 2=12(m+99m+100m )v 12+E p联立解得E p =1400m v 02.例2 (1)2 m/s (2)1 s (3)30 J[解析] (1)小车和物体组成的系统动量守恒,规定向右为正方向,则mv 0=(m+M )v解得v=mv 0m+M =4×54+6 m/s =2 m/s(2)物体在小车上做匀减速直线运动 根据牛顿第二定律可知-μmg=ma 解得a=-μg=-3 m/s 2则物体在小车上滑行的时间为t=v -v 0a=2-5-3s =1 s(3)根据能量守恒定律,系统产生的摩擦热为ΔQ=12m v 02-12(m+M )v 2=12×4×52 J -12×(4+6)×22 J =30 J变式3 (1)4 m/s (2)1 m 1 m (3)36 J[解析] (1)设滑块与小车的共同速度为v 1,二者相对运动过程中根据动量守恒定律,有mv 0=(M+m )v 1 解得v 1=4 m/s(2)设达到共速时小车移动的距离为s 1,对小车,根据动能定理有μmgs 1=12M v 12-0代入数据解得s 1=2 m小车与挡板的距离s 2=s-s 1=1 m设滑块与小车的相对位移为L 1,对系统,根据能量守恒定律,有μmgL 1=12m v 02-12(m+M )v 12代入数据解得L 1=3 m滑块与小车右端的距离L 2=L-L 1=1 m 其位置情况如图乙所示(3)共速后小车未碰撞挡板时小车与滑块间的摩擦力消失而没有做功,如图丙所示.直到小车碰撞挡板被粘住静止,滑块又开始在小车上继续向右做初速度v 1=4 m/s 的匀减速直线运动,由于与挡板发生弹性碰撞,滑块速度大小不变,设返回的路程为L 3,由动能定理,有-μmg (L 2+L 3)=0-12m v 12解得L 3=3 m,说明滑块不会从车左端掉下 全过程中滑块克服摩擦力做的功 W=μmg (L+s 1-L 2)+μmg (L 2+L 3)=36 J .例3 BD [解析] 子弹、物块、木板整个系统,整个过程根据动量守恒定律,有mv 0=2m ·v 05+8m ·v ,求得长木板最终的速度大小为v=340v 0,故A 错误;子弹射入物块的过程中,时间极短.子弹及物块根据动量守恒定律有mv 0=2m ·v',求得v'=v02,该过程系统损失的机械能为ΔE=12m v 02-12·2mv'2,联立两式可求得ΔE=14m v 02,故C 错误;子弹射入物块后到从长木板滑离时,运动的位移大小为x 1=v t 0=v '+25v 02=(v 02+v 05)2t 0=720v 0t 0,长木板滑动位移大小为x 2=v2t 0=340v 02t 0=380v 0t 0,则长木板的长度为L=x 1-x 2=516v 0t 0,故B 正确;对长木板,整个过程根据动量定理有μ·2mgt 0=8mv ,可求得物块与长木板间的动摩擦因数为μ=3v10gt 0,故D 正确.随堂巩固1.ACD [解析] 子弹射入滑块的过程中,将子弹和滑块看成一个整体,合外力为0,动量守恒,所以两种情况下子弹和滑块的最终速度相同,所以末动能相同,故系统损失的动能一样多,产生的热量一样多,A 、C 正确;子弹射击滑块上层能射进一半厚度,射击滑块下层刚好不射出,说明在上层所受的摩擦力比下层大,根据动量定理可知,两种情况下滑块对子弹的冲量相同,子弹射击上层所受摩擦力大,所以从入射到共速经历的时间短,B 错误,D 正确.2.BC [解析] 木板在光滑水平桌面上,物块滑上木板后,系统动量守恒,由图像可知,最终物块与木板以共同速度v 1运动,有mv 0=(M+m )v 1,-μmg Δx=12(M+m )v 12-12m v 02,Δx=(v 0+v 12-v 12)t 1,可求出物块与木板的质量之比及物块与木板之间的动摩擦因数,但求不出木板的长度,A 错误,B 、C 正确;由于木板质量未知,故不能求出木板获得的动能,D 错误. 3.(1)10 m/s (2)2 m[解析] (1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得 m 0v 0=(m 0+m 1)v 1 解得v 1=10 m/s .(2)三物体组成的系统动量守恒,由动量守恒定律得 (m 0+m 1)v 1=(m 0+m 1)v 2+m 2v 3 解得v 2=8 m/s由能量守恒可得12(m 0+m 1)v 12=μm 2gL+12(m 0+m 1)v 22+12m 2v 32解得L=2 m .专题课:“子弹打木块”模型和“滑块—木板”模型建议用时:40分钟1.(多选)[2022·北京西城区期中] 如图,一表面光滑的平板小车放在光滑水平面上,木块和轻弹簧置于小车表面,轻弹簧一端与固定在小车上的挡板连接,整个装置静止.一颗子弹以一定速度水平射入木块,留在木块中并与木块一起向前滑行,与弹簧接触后压缩弹簧.不计挡板与弹簧质量,弹簧始终在弹性限度内.下列说法正确的是 ( )A .子弹射入木块过程中,子弹与木块组成的系统动量及机械能均守恒B .子弹和木块一起压缩弹簧过程中,子弹、木块、小车组成的系统动量及机械能均守恒C .整个过程,子弹、木块、小车组成的系统所损失的机械能等于子弹与木块摩擦产生的热量及弹簧的弹性势能之和D .其他条件不变时,若增大小车的质量,弹簧的最大压缩量增大2.(多选)如图所示,小车在光滑的水平面上向左运动,木块水平向右在小车的水平车板上运动,且未滑出小车.下列说法中正确的是 ( )A .若小车的初动量大于木块的初动量,则木块先减速运动再加速运动后匀速运动B .若小车的初动量大于木块的初动量,则小车先减速运动再加速运动后匀速运动C .若小车的初动量小于木块的初动量,则木块先减速运动后匀速运动D .若小车的初动量小于木块的初动量,则小车先减速运动后匀速运动 3.(多选)[2022·湖南常德期中] 质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.重力加速度为g ,设碰撞都是弹性的,则整个过程中,系统损失的动能为 ( )A .12mv 2B .12·mMm+Mv 2C .12NμmgLD .NμmgL4.如图所示,质量为2 kg 的小车以2.5 m/s 的速度沿光滑的水平面向右运动,现在小车上表面上方1.25 m 高度处将一质量为0.5 kg 的可视为质点的物块由静止释放,经过一段时间物块落在小车上,最终两者一起水平向右匀速运动.重力加速度g 取10 m/s 2,忽略空气阻力,下列说法正确的是 ( )A .物块释放0.3 s 后落到小车上B .若只增大物块的释放高度,则物块与小车的共同速度变小C .物块与小车相互作用的过程中,物块和小车的动量守恒D.物块与小车相互作用的过程中,系统损失的能量为7.5 J5.长木板A放在光滑的水平面上,质量为m=2 kg的另一物体B以水平速度v0=2 m/s滑上原来静止的长木板A的上表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图所示,重力加速度g取10 m/s2.则下列说法正确的是()A.木板获得的动能为2 JB.系统损失的机械能为4 JC.木板A的最小长度为2 mD.A、B间的动摩擦因数为0.16.[2022·江苏镇江期中] 质量为m的子弹以某一初速度v0击中静止在水平地面上质量为M的木块,并陷入木块一定深度后与木块相对静止,甲、乙两图表示了这一过程开始和结束时子弹和木块可能的相对位置,设地面粗糙程度均匀,木块对子弹的阻力大小恒定,则下列说法中正确的是()A.无论m、M、v0的大小和地面粗糙程度如何,都只可能是甲图所示的情形B.若M较大,则可能是甲图所示情形;若M较小,则可能是乙图所示情形C.若v0较小,则可能是甲图所示情形;若v0较大,则可能是乙图所示情形D.若地面较粗糙,则可能是甲图所示情形;若地面较光滑,则可能是乙图所示情形7.[2022·石家庄二中月考] 如图所示,一轻质弹簧两端分别连着质量均为m的滑块A和的子弹以水平速度v0射入A中不再穿出B,两滑块都置于光滑的水平面上.今有质量为m4(时间极短),则弹簧在什么状态下滑块B具有最大动能?其值是多少?8.[2022·杭二中月考] 如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),重力加速度g取10 m/s2.子弹射入后,求:(1)子弹和物块一起向右滑行的最大速度v1;(2)木板向右滑行的最大速度v2;(3)物块在木板上滑行的时间t.专题课:“子弹打木块”模型和“滑块—木板”模型建议用时:40分钟1.(多选)[2022·北京西城区期中] 如图,一表面光滑的平板小车放在光滑水平面上,木块和轻弹簧置于小车表面,轻弹簧一端与固定在小车上的挡板连接,整个装置静止.一颗子弹以一定速度水平射入木块,留在木块中并与木块一起向前滑行,与弹簧接触后压缩弹簧.不计挡板与弹簧质量,弹簧始终在弹性限度内.下列说法正确的是()A.子弹射入木块过程中,子弹与木块组成的系统动量及机械能均守恒B.子弹和木块一起压缩弹簧过程中,子弹、木块、小车组成的系统动量及机械能均守恒C.整个过程,子弹、木块、小车组成的系统所损失的机械能等于子弹与木块摩擦产生的热量及弹簧的弹性势能之和D.其他条件不变时,若增大小车的质量,弹簧的最大压缩量增大2.(多选)如图所示,小车在光滑的水平面上向左运动,木块水平向右在小车的水平车板上运动,且未滑出小车.下列说法中正确的是()A.若小车的初动量大于木块的初动量,则木块先减速运动再加速运动后匀速运动B.若小车的初动量大于木块的初动量,则小车先减速运动再加速运动后匀速运动C.若小车的初动量小于木块的初动量,则木块先减速运动后匀速运动D .若小车的初动量小于木块的初动量,则小车先减速运动后匀速运动 3.(多选)[2022·湖南常德期中] 质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.重力加速度为g ,设碰撞都是弹性的,则整个过程中,系统损失的动能为 ( )A .12mv 2B .12·mMm+Mv 2C .12NμmgLD .NμmgL4.如图所示,质量为2 kg 的小车以2.5 m/s 的速度沿光滑的水平面向右运动,现在小车上表面上方1.25 m 高度处将一质量为0.5 kg 的可视为质点的物块由静止释放,经过一段时间物块落在小车上,最终两者一起水平向右匀速运动.重力加速度g 取10 m/s 2,忽略空气阻力,下列说法正确的是 ( )A .物块释放0.3 s 后落到小车上B .若只增大物块的释放高度,则物块与小车的共同速度变小C .物块与小车相互作用的过程中,物块和小车的动量守恒D .物块与小车相互作用的过程中,系统损失的能量为7.5 J5.长木板A 放在光滑的水平面上,质量为m=2 kg 的另一物体B 以水平速度v 0=2 m/s 滑上原来静止的长木板A 的上表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图所示,重力加速度g 取10 m/s 2.则下列说法正确的是( )A .木板获得的动能为2 JB .系统损失的机械能为4 JC .木板A 的最小长度为2 mD.A、B间的动摩擦因数为0.16.[2022·江苏镇江期中] 质量为m的子弹以某一初速度v0击中静止在水平地面上质量为M的木块,并陷入木块一定深度后与木块相对静止,甲、乙两图表示了这一过程开始和结束时子弹和木块可能的相对位置,设地面粗糙程度均匀,木块对子弹的阻力大小恒定,则下列说法中正确的是()A.无论m、M、v0的大小和地面粗糙程度如何,都只可能是甲图所示的情形B.若M较大,则可能是甲图所示情形;若M较小,则可能是乙图所示情形C.若v0较小,则可能是甲图所示情形;若v0较大,则可能是乙图所示情形D.若地面较粗糙,则可能是甲图所示情形;若地面较光滑,则可能是乙图所示情形7.[2022·石家庄二中月考] 如图所示,一轻质弹簧两端分别连着质量均为m的滑块A和的子弹以水平速度v0射入A中不再穿出B,两滑块都置于光滑的水平面上.今有质量为m4(时间极短),则弹簧在什么状态下滑块B具有最大动能?其值是多少?8.[2022·杭二中月考] 如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),重力加速度g取10 m/s2.子弹射入后,求:(1)子弹和物块一起向右滑行的最大速度v1;(2)木板向右滑行的最大速度v2;(3)物块在木板上滑行的时间t.专题课:“子弹打木块”模型和“滑块—木板”模型1.CD [解析] 子弹射入木块并留在木块中,子弹与木块组成的系统受合外力等于零,因此动量守恒,因子弹与木块是完全非弹性碰撞,机械能减少最多,即机械能不守恒,A 错误;子弹和木块一起压缩弹簧过程中,子弹、木块、小车组成的系统受合外力等于零,动量守恒,由于压缩弹簧,即对弹簧做功,弹簧的弹性势能增加,子弹、木块、小车组成的系统机械能减少,机械能不守恒,B 错误;由能量守恒定律可知,整个过程,子弹、木块、小车组成的系统所损失的机械能等于子弹与木块摩擦产生的热量及弹簧的弹性势能之和,C 正确;设子弹的质量为m 1,速度为v 0,木块的质量为m ,小车的质量为M ,子弹射入木块后速度为v 1,向右为正方向,由动量守恒定律可得m 1v 0=(m 1+m )v 1,解得v 1=m 1vm 1+m ,此后对子弹、木块、小车组成的系统,规定向右为正方向,由动量守恒定律可得(m 1+m )v 1=(m 1+m+M )v 2,由机械能守恒定律可得12(m 1+m )v 12-12(m 1+m+m )v 22=E pm ,联立解得弹簧的弹性势能为E pm =m 12v 022(m 1+mM+1)(m 1+m ),由此可见其他条件不变时,若增大小车的质量,弹簧的弹性势能增大,弹簧的最大压缩量增大,D 正确.2.AC [解析] 小车和木块组成的系统在水平方向上不受外力,系统在水平方向上动量守恒,若小车的初动量大于木块的初动量,则最后相对静止时整体的动量方向向左,木块先减速运动再反向加速运动后匀速运动,小车先减速运动再匀速运动,故A 正确,B 错误;同理若小车的初动量小于木块的初动量,则最后相对静止时整体的动量方向向右,则木块先减速运动后匀速运动,小车先减速运动再加速运动后匀速运动,C 正确,D 错误.3.BD [解析] 设物块与箱子相对静止时共同速度为v 1,则由动量守恒定律得mv=(M+m )v 1,得v 1=mvM+m ,系统损失的动能为ΔE k 系=12mv 2-12(M+m )v 12=Mmv 22(M+m ),A错误,B 正确.根据能量守恒定律得知,系统产生的内能等于系统损失的动能,根据功能关系得知,系统产生的内能等于系统克服摩擦力做的功,则有Q=ΔE k 系=NμmgL.C 错误,D 正确. 4.D [解析] 物块下落的时间为t=√2ℎg =√2×1.2510s=0.5 s,A 错误;物块与小车相互作用的过程中,物块与小车组成的系统在水平方向的动量守恒,在竖直方向的动量不守恒,由水平方向动量守恒得Mv 0=(M+m )v ,可知,释放高度变大,水平方向的共同速度不变,B 、C 错误;在整个过程中,由能量守恒定律得系统损失的机械能ΔE=mgh+12M v 02-12(M+m )v 2,代入数据可得ΔE=7.5 J,D 正确.5.D [解析] 由题图可知,最终木板获得的速度为v=1 m/s,A 、B 组成的系统动量守恒,以B 的初速度方向为正方向,由动量守恒定律得mv 0=(M+m )v ,解得M=2 kg,则木板获得的动能为E k =12Mv 2=12×2×12 J =1 J,故A 错误;系统损失的机械能ΔE=12m v 02-12(m+M )v 2,代入数据解得ΔE=2 J,故B 错误;v-t 图像中图线与t 轴所围的面积表示位移,由题图得到0~1 s 内B 的位移为x B =12×(2+1)×1 m =1.5 m,A 的位移为x A =12×1×1 m =0.5 m,则木板A 的最小长度为L=x B -x A =1 m,故C 错误;由题图可知,B 的加速度a=Δv Δt=1-21m/s 2=-1 m/s 2,负号表示加速度的方向,由牛顿第二定律得-μmg=ma ,解得μ=0.1,故D 正确.6.A [解析] 在子弹射入木块的瞬间,子弹与木块间的摩擦力远远大于木块与地面间的摩擦力,故地面光滑与粗糙效果相同,子弹和木块构成一系统,在水平方向上合外力为零,在水平方向上动量守恒,规定向右为正方向,设子弹与木块的共同速度为v ,根据动量守恒定律有mv 0=(m+M )v ,木块在水平面上滑行的距离为s ,子弹射入并穿出木块的过程中对木块运用动能定理得F f s=12Mv 2=Mm 2v 022(m+M )2,根据能量守恒定律得Q=F f d=12m v 02-12(m+M )v 2=Mmv 022(M+m ),则d>s ,不论速度、质量大小关系和地面粗糙程度如何,都只可能是甲图所示的情形,故选A . 7.当弹簧第一次恢复原长时281m v 02[解析] 子弹射入A 中时,因时间极短,且A 与B 用弹簧相连,故可认为B 未参与此过程,则子弹与A 组成的系统动量守恒.设子弹与A 的共同速度为v A ,则有m4v 0=(m +m4)v A 解得v A =v05此后,弹簧被压缩,B 加速,当弹簧再次恢复原长时,弹簧的弹性势能为零,B 有最大速度v B m ,即有最大动能E km .此过程相当于以速度v A 运动的滑块A (内含子弹)与静止滑块B 发生弹性碰撞,应用弹性正碰的结论,有v B m =2(m+m4)m+m+m 4·v05=29v 0 E km =12m (29v 0)2=281m v 02.8.(1)6 m/s (2)2 m/s (3)1 s[解析] (1)子弹射入物块后和物块一起向右滑行的初速度即最大速度,由动量守恒定律得m 0v 0=(m 0+m )v 1, 解得v 1=6 m/s .(2)当子弹、物块、木板三者共速时,木板的速度最大,由动量守恒定律得(m 0+m )v 1=(m 0+m+M )v 2, 解得v 2=2 m/s .(3)对物块和子弹组成的系统,由动量定理得-μ(m 0+m )gt=(m 0+m )v 2-(m 0+m )v 1, 解得t=1 s .。
动量守恒定律中的典型模型1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。
一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。
例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。
设木块对子弹的阻力F恒定。
求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V0水平向右运动,则子弹的最终速度是多少例2、如图所示,在光滑水平面上放有质量为2m的木板,木板左端放一质量为m的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离L2、人船模型例3、一条质量为M,长为L的小船静止在平静的水面上,一个质量为m的人站立在船头.如果不计水对船运动的阻力,那么当人从船头走到船尾时,船的位移多大?例4、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?3、弹簧木块模型例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。
则( )A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒 B .当两物块相距最近时,甲物块的速率为零C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0D .甲物块的速率可能达到5m/s例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.(1)求弹簧第一次最短时的弹性势能(2)何时B 的速度最大,最大速度是多少?4、碰撞、爆炸、反冲Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零)(1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ②222211222211'21'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,②2220212121BB A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=,C B Amv oBAv B =02v m m m BA A+.若m A =m B ,则v A = 0 ,v B = v 0 ,即质量相等的两物体发生弹性碰撞的前后,两物体速度互相交换(这一结论也适用于B 初速度不为零时).(4)完全非弹性碰撞有两个主要特征.①碰撞过程中系统的动能损失最大.②碰后两物体速度相等. Ⅱ、形变与恢复(1)在弹性形变增大的过程中,系统中两物体的总动能减小,弹性势能增大,在形变减小(恢复)的过程中,系统的弹性势能减小,总动能增大.在系统形变量最大时,两物体速度相等.(2)若形变不能完全恢复,则相互作用过程中产生的内能增量等于系统的机械能损失. Ⅲ、反冲(1)物体向同一方向抛出(冲出)一部分时(通常一小部分),剩余部分将获得相反方向的动量增量,这一过程称为反冲.(2)若所受合外力为零或合外力的冲量可以忽略,则反冲过程动量守恒.反冲运动中,物体的动能不断增大,这是因为有其他形式能转化为动能.例如火箭运动中,是气体燃烧释放的化学能转化为火箭和喷出气体的动能.例8、一个不稳定的原子核质量为M ,处于静止状态,放出一个质量为m 的粒子后反冲。
动量守恒之滑块、子弹打木块模型lv 0 v S动量守恒定律的应用1—— 子弹打木块模型模型:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=222121mv mv - ② 对木块 fs=0212-MV ③由①式得 v=)(0v v Mm - 代入③式有 fs=2022)(21v v MmM -•④②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=--结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=ΔE 系统= fS 相问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件?v 0A B②作出作用过程中二者的速度-时间图像,你会有什么规律发现?例题:一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A .)(21020v v v m - B.)(00v v mv - C.s vdv v m 2)(0- D.vd S v v m )(0-滑块、子弹打木块模型练习1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
v 0 AB v 0 l2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系。
⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看) 到出发点的距离。
3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从A 2v 0 v 0B CA v 0 5mB长木板C 两端相向水平地滑上长木板。
如图示。
设物块A 、B 与长木板C 间的动摩擦因数为μ,A 、B 、C 三者质量相等。
⑴若A 、B 两物块不发生碰撞,则由开始滑上C 到A 、B 都静止在C 上为止,B 通过的总路程多大?经历的时间多长?⑵为使A 、B 两物块不发生碰撞,长木板C 至少多长?4.在光滑水平面上静止放置一长木板B ,B 的质量为M=2㎏同,B 右端距竖直墙5m ,现有一小物块 A ,质量为m=1㎏,以v 0=6m/s 的速度从B 左端水平地滑上B 。
如图所示。
A 、B 间动摩擦因数为μ=0.4,B 与墙壁碰撞时间极短,且碰撞时无能量损失。
取g=10m/s 2。
求:要使物块A 最终不脱离B 木板,木板B 的最短长度是多少?L v 0m vv 05.如图所示,在光滑水平面上有一辆质量为M=4.00㎏的平板小车,车上放一质量为m=1.96㎏的木块,木块到平板小车左端的距离L=1.5m ,车与木块一起以v=0.4m/s 的速度向右行驶,一颗质量为m 0=0.04㎏的子弹以速度v 0从右方射入木块并留在木块内,已知子弹与木块作用时间很短,木块与小车平板间动摩擦因数μ=0.2,取g=10m/s 2。
问:若要让木块不从小车上滑出,子弹初速度应满足什么条件?6.一质量为m 、两端有挡板的小车静止在光滑水平面上,两挡板间距离为1.1m ,在小车正中放一质量为m 、长度为0.1m 的物块,物块与小车间动摩擦因数μ=0.15。
如图示。
现给物块一个水平向右的瞬时冲量,使物块获得v 0 =6m/s 的水平初速度。
物块与挡板碰撞时间极短且无能量损失。
求:⑴小车获得的最终速度;⑵物块相对小车滑行的路程; ⑶物块与两挡板最多碰撞了多少次; ⑷物块最终停在小车上的位置。
参考答案AC A :⎪⎩⎪⎨⎧+-=+=2200)(2121)(v m M mv Q v m M mv C :⎪⎩⎪⎨⎧⋅=-==df Q v m v mv Mv fS 202)(21211. 金属块在板上滑动过程中,统动量守恒。
金属块最终停在什么位置要进行判断。
假设金属块最终停在A 上。
三者有相同速度v ,相对位移为x ,则有⎪⎩⎪⎨⎧⋅-==2200321213mv mv mgx mv mv μ 解得:L m x φ34=,因此假定不合理,金属块一定会滑上B 。
设x 为金属块相对B 的位移,v 1、v 2表示A 、B 最后的速度,v 0′为金属块离开A 滑上B 瞬间的速度。
有:在A 上⎪⎩⎪⎨⎧⋅-'-=+'=21201010022121212mv v m mv mgL mv v m mv μ 全过程⎪⎩⎪⎨⎧⋅--=++=2221202102212121)(2mv mv mv x L mg mv mv mv μ联立解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=='='=s m s m v s m v v sm s m v /65/21/34)(0/31/12001或或舍或 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧===m x sm v sm v 25.0/65/3121*解中,整个物理过程可分为金属块分别在A 、B 上滑动两个子过程,对应的子系统为整体和金属块与B 。
可分开列式,也可采用子过程→全过程列式,实际上是整体→部分隔离法的一种变化。
2.⑴A 恰未滑离B 板,则A 达B 最左端时具有相同速度v ,有 Mv 0-mv 0=(M+m)v ∴ 0v mM mM v +-= M >m, ∴ v >0,即与B 板原速同向。
⑵A 的速度减为零时,离出发点最远,设A 的初速为v 0,A 、B 摩擦力为f ,向左运动对地最远位移为S ,则2120-=mv fS 而v 0最大应满足 Mv 0-mv 0=(M+m)v 220)(21)(21v m M v m M fl +-+=解得:l MmM s 4+= 3.⑴由A 、B 、C 受力情况知,当B 从v 0减速到零的过程中,C 受力平衡而保持不动,此子过程中B 的位移S 1和运动时间t 1分别为:gv t g v S μμ01201,2== 。
然后B 、C 以μg 的加速度一起做加速运动。
A 继续减速,直到它们达到相同速度v 。
对全过程:m A ·2v 0-m B v 0=(m A +m B +m C )v ∴ v=v 0/3B 、C 的加速度 g m m g m a CBA μμ21=+= ,此子过程B 的位移 gvg v t g v g v S μμμ3229202222====运动时间 ∴ 总路程gvt t t g v S S S μμ35,18110212021=+==+=总时间⑵A 、B 不发生碰撞时长为L ,A 、B 在C 上相对C的位移分别为L A 、LB ,则 L=L A +L Bgv L v m m m v m v m gL m gL m C B A B A B B A A μμμ37)(2121)2(212022020=++-+=+解得:*对多过程复杂问题,优先考虑钱过程方程,特别是ΔP=0和Q=fS 相=ΔE 系统。
全过程方程更简单。
4.A 滑上B 后到B 与墙碰撞前,系统动量守恒,碰前是否有相同速度v 需作以下判断:mv 0=(M+m)v, ①v=2m/s此时B 对地位移为S 1,则对B :2121Mv mgS =μ ②S=1m <5m,故在B 与墙相撞前与A 已达到相同速度v ,设此时A 在B 上滑行L 1距离,则 221)(2121v m M mv mgL +-=μ ③ L 1=3m【以上为第一子过程】此后A 、B 以v 匀速向右,直到B 与墙相碰(此子过程不用讨论),相碰后,B 的速度大小不变,方向变为反向,A 速度不变(此子过程由于碰撞时间极短且无能量损失,不用计算),即B 以v 向左、A 以v 向右运动,当A 、B 再次达到相同速度v ′时:Mv-mv=(M+m)v ′ ④ v ′=2/3 m/s 向左,即B 不会再与墙相碰,A 、B 以v ′向左匀速运动。
设此过程(子过程4)A 相对B 移动L 2,则222)(21)(21v m M v m M mgL '+-+=μ ⑤ L 2=1、33m L=L 1+L 2=4.33m为木板的最小长度。
*③+⑤得 220)(2121v m M mv mgL '+-=μ实际上是全过程方程。
与此类问题相对应的是:当P A 始终大于P B 时,系统最终停在墙角,末动能为零。
5.子弹射入木块时,可认为木块未动。
子弹与木块构成一个子系统,当此系统获共同速度v 1时,小车速度不变,有 m 0v 0-mv=(m 0+m)v 1 ① 此后木块(含子弹)以v 1向左滑,不滑出小车的条件是:到达小车左端与小车有共同速度v 2,则 (m 0+m)v 1-Mv=(m 0+m+M)v 2 ②22221)(2121)(21)(v M m m Mv v m m gL m m ++-++=+μ ③ 联立化简得: v 02+0.8v 0-22500=0 解得 v 0=149.6m/s 为最大值, ∴v 0≤149.6m/s 6. ⑴当物块相对小车静止时,它们以共同速度v 做匀速运动,相互作用结束,v 即为小车最终速度 mv 0=2mv v=v 0/2=3m/s⑵2222121mv mv mgS ⋅-=μ S=6m ⑶次65.615.0==+--=dl S n ⑷物块最终仍停在小车正中。
*此解充分显示了全过程法的妙用。