第06篇 氰基丙烯酸酯类伤口快速胶粘剂研究进展
- 格式:doc
- 大小:51.00 KB
- 文档页数:11
技术研讨与交流II畫驚器&扯◎啊蛋虧0◎腮收稿日期:2018-12-17作者简介:李国遵(1988-),男,硕士,主要从事聚氨酯、聚豚的研发工作,发表多篇论文、专利。
E-mail:liguozun@。
聚氨酯胶粘剂的研究进展、合成、改性与应用李国遵,高之香,李士学,李建武,陈雨,赵苗(三友(天津)高分子技术有限公司,天津300211)摘要:通过查阅国内外相关文献资料,简要阐述了聚氨酯胶粘剂的性能、结构、合成、改性及应用等相关内容,综述了聚氨酯胶粘剂目前国内外的研究现状及研究进展,并对聚氨酯胶粘剂的发展做了展望。
关键词:聚氨酯胶粘剂;合成;改性;应用;研究进展中图分类号:TQ433.4+32文献标识码:A文章编号:1001-5922(2019)05-0177-04随着科学技术的发展,我国胶粘剂工业持续快速发展。
硅树脂、聚氨酯、环氧树脂、丙烯酸酯和其他各种胶粘剂广泛应用于各个领域円。
聚氨酯(PU)胶粘剂优异的机械性能、良好的耐低温性、耐酸碱性、耐油污性和与基材良好粘合性在众多材料中脱颖而出“。
聚氨酯胶粘剂是分子链中含有氨基甲酸酯基团(-NHCOO-)或(和)异氤酸酯基团(-NCO)的粘合剂。
分子链中大量的氨基甲酸酯、基甲酸酯、缩二和其他基团赋予聚氨酯胶粘剂优异的性能“81o1异氧酸酯聚氨酯胶粘剂的研究现状聚氨酯胶粘剂的合成是基于异氤酸酯独特的化学性质。
异氤酸酯是分子中含有异氤酸酯基团(-NCO)的化合物,该基团具有重叠双键排列的高度不饱和键结构,能与各种含活泼氢的化合物进行反应。
在聚氨酯胶粘剂领域,主要使用含有2个或多个-NCO特征基团的异氤酸酯。
根据产品在光照下是否发生黄变现象将聚氨酯胶粘剂分为通用型异氤酸酯聚氨酯胶粘剂和耐黄变型异氤酸酯聚氨酯胶粘剂。
1.1通用型异氧酸酯聚氨酯胶粘剂的研究现状通用氤酸酯,即芳香幅氤酸酯是目前聚珮工业使用最广泛的异氤酸酯,由于结构中与苯环相连的亚甲基易被氧徳解团Wt料处黄变罷常用的W1W氤酸酯有TDI、MDI和PAPI等。
第22卷第3期2023年5月杭州师范大学学报(自然科学版)JournalofHangzhouNormalUniversity(NaturalScienceEdition)Vol.22No.3May2023收稿日期:2022 07 15 修回日期:2022 10 26基金项目:杭州高层次留学回国人员(团队)在杭创业创新项目(202011108);杭州师范大学“本科生创新能力提升工程”项目(cx20221058);杭州师范大学“星光计划”学生创新创业项目(2022026).通信作者:梁媛媛(1980—),女,副教授,博士,主要从事功能高分子材料研究.E mail:liangyy@hznu.edu.cn犱狅犻:10.19926/j.cnki.issn.1674 232X.2023.03.002基于壳聚糖的水凝胶用于伤口敷料的研究进展黄雨欣,王 伟,杨 涛,孙 俊,吴彦彤,梁媛媛(杭州师范大学材料与化学化工学院,浙江杭州311121)摘 要:伤口敷料具有促进创面愈合和保护创面不受感染的特点,广泛应用于临床治疗.以天然多糖壳聚糖为原料构筑的水凝胶材料具有独特的三维网络结构和促进伤口愈合能力,在伤口敷料的应用方面受到关注.文章从水凝胶伤口敷料的性能要求如生物相容性、抗菌性能、黏合性和强度、止血性能及抗氧化性等出发,对近年来基于壳聚糖的水凝胶伤口敷料的设计和制备研究进行了总结与概括,并对该类水凝胶伤口敷料的未来发展和应用前景进行了展望.关键词:壳聚糖;水凝胶;伤口敷料中图分类号:R318.08 文献标志码:A文章编号:1674 232X(2023)03 0233 07伤口敷料是一类用于创伤、烧伤、溃疡等伤口覆盖的医用材料,其主要作用是吸收渗出液防止渗液感染.常见的传统敷料如医用脱脂棉、无菌纱布等,只能起到简单的物理屏蔽作用,容易与伤口黏合而在换药时造成二次伤害,且其透气性不佳,易引发细菌滋生及伤口感染[1].目前临床上创口不及时处理带来的后果主要有3类[2],即外伤细菌炎症、血液循环障碍、免疫攻击组织损坏.外伤细菌炎症一般是指外伤后的伤口发炎,往往因异物或其他因素导致的局部细菌感染而引起.血液循环障碍是指外伤后创口局部组织血管内血液含量增多,发生水肿、充血、出血,以及血栓形成、栓塞、梗死.而当细菌或病原体进入人体后,诱发机体产生免疫应答,在杀伤、清除病原体的同时损害宿主的组织细胞,称为免疫攻击组织损坏.壳聚糖(chitosan,CS)是天然存在的唯一碱性多糖,具有生物相容性良好、价格低廉易得等优势.有研究表明,CS具有促进组织再生的能力,在伤口愈合过程中可降低炎症反应,促进新生血管形成,减少瘢痕产生,遏制血液循环[3].以CS为原料构筑的水凝胶材料可以为伤口愈合过程提供相对湿润的环境,避免二次感染,有效降低免疫系统对本体的伤害,并能有效吸收渗出的组织液,使得伤口快速愈合;同时CS水凝胶可以作为载体实现生物活性物质(如药物、抗原、抗体、生长因子、干细胞等)的控制释放.因此,CS基伤口敷料有着良好的应用前景.本文将从CS基水凝胶敷料的性能如生物相容性、抗菌性能、黏合性和强度、止血性能及抗氧化性等出发,对近年基于CS的水凝胶伤口敷料的设计和制备研究进行概括与总结.Copyright ©博看网. All Rights Reserved.1 壳聚糖基水凝胶的制备图1 甲壳素和壳聚糖的分子结构式犉犻犵.1 犛狋狉狌犮狋狌狉犪犾犳狅狉犿狌犾犪狊狅犳犮犺犻狋犻狀犪狀犱犮犺犻狋狅狊犪狀 CS是甲壳素的脱乙酰化产物,而甲壳素是从虾、蟹等甲壳类动物的外壳及菌类、藻类植物的细胞壁中提取出的天然高分子.一般将脱乙酰度为55%的甲壳素称为CS,其结构式如图1所示.由于CS上有丰富的基团,如氨基、羟基等,通常可使用物理交联、化学交联和酶交联等方法来制备水凝胶.1.1 物理交联物理交联主要通过非化学作用(即非共价键作用,包括氢键作用、静电作用、配位作用等)交联形成网络结构.由于非共价作用较弱,故物理交联状态下的水凝胶一般不稳定,力学性能较差,可通过构建多重物理交联网络改善其力学性能.且物理交联能大大减少有毒化学交联剂的使用,符合绿色化学的理念,形成的水凝胶往往具有一定的自修复能力,拥有较宽的使用范围.CS分子链中含有羟基、氨基,可与其他聚合物通过氢键作用形成水凝胶网络,如通过循环冻融法制备聚乙烯醇(polyvinylalcohol,PVA)/CS共混水凝胶(PVA/CS)[4].该工作利用冷冻过程中水的结冰排出作用,使PVA分子链发生富集而形成晶区结构,通过多次循环冻融,PVA晶区的结晶度不断提高,从而形成以晶区为物理交联点的PVA网络,而PVA又可与CS分子链段通过氢键作用形成PVA CS物理交联网络,因此获得的PVA/CS水凝胶具有双层网络结构,有良好的抗溶胀性能和力学性能.此外,CS作为天然碱性多糖,可以通过其质子化氨基与阴离子聚电解质之间的强静电作用构筑聚电解质复合水凝胶.鲁程程等[5]通过两步法制备出完全物理交联的CS Al3+/聚丙烯酸(poly(acrylicacid),PAA)双网络凝胶,其中PAA与CS通过静电作用形成第一交联网络,PAA与Al3+通过配位作用形成第二交联网络.为进一步提高凝胶的机械性能,采用饱和NaCl溶液诱导CS分子链发生亲水—疏水转变,通过形成CS链缠结微区来提高凝胶的交联密度,再加上物理交联网络具有重新缔合和自恢复能力,该复合水凝胶具有良好的机械稳定性.1.2 化学交联CS分子链段中含有—OH和—NH2,通常采用甲醛、戊二醛、京尼平、甘油醛等为交联剂构筑凝胶网络(图2),如利用醛类交联剂上的醛基与CS链上的氨基发生席夫碱反应获得三维水凝胶,这类化学交联过程不可逆,形成的水凝胶性质稳定.动态交联的水凝胶是通过动态共价键或非共价键交联形成的,在剪切力的作用下可屈服流动,外力撤销后,又能自修复损伤结构,故可用于注射型凝胶伤口敷料的构筑.常见的动态交联相互作用包括席夫碱键[6]、酰腙键[7]、可逆氢键[8]、硼酸酯键[9]、金属配位[10]、主体 客体[11]、阴阳离子[12]和疏水相互作用[13]等.Xu等[14]采用N 羧乙基壳聚糖(N carboxyethylchitosan,CEC)、双键壳聚糖改性聚吡咯(chitosan modifiedpolypyrrole,DCP)和双醛端基聚氨酯(aldehyde terminateddifunctionalpolyurethane,DFPU)制备了CEC/DCP/DFPU(CDD)水凝胶,该水凝胶分子结构中除了存在席夫碱键,还存在离子和氢键相互作用,其中离子相互作用在交联和自愈过程中发挥着重要作用,增强了凝胶自愈性和可注射性.研究表明,CDD水凝胶表现出优异的剪切稀释行为,在高剪切作用下可发生凝胶—溶胶的转变,所以能够通过内径80μm的针头实现皮下注射,是细胞和药物微创递送的合适载体.432杭州师范大学学报(自然科学版)2023年 Copyright ©博看网. All Rights Reserved.图2 壳聚糖常见化学交联反应犉犻犵.2 犆狅犿犿狅狀犮犺犲犿犻犮犪犾犮狉狅狊狊 犾犻狀犽犻狀犵狉犲犪犮狋犻狅狀狊狅犳犮犺犻狋狅狊犪狀光诱导的化学交联反应具有操作简单、反应速率快的优点,且光具有非侵入性,副产物有限,交联反应程度在二维和三维空间中均可控.CS分子本身不具光敏性,将光敏性基团接枝于CS分子中,可以赋予CS光敏特性,还可破坏CS自身分子间的氢键作用,改善其水溶性[15].如丁海昌[16]在壳聚糖C6羟基引入烯丙基,光引发剂经过UV辐照后产生自由基,自由基进攻CS链上的烯丙基双键产生卡宾(carbenes)结构,卡宾相互碰撞后发生偶联,自由基进行转移后继续进攻双键,如此循环往复形成具有交联结构的水凝胶.1.3 酶交联反应酶通常可以有效地催化生化反应,酶法催化交联采用生物相容性优异的酶催化交联,因此得到的水凝胶材料也具有优异的生物相容性.辣根过氧化物酶(horseradishperoxidase,HRP)在H2O2存在下,可催化羟基酚,产生苯氧自由基,这些自由基通过氧化自偶联作用促进酚类化合物的聚合.利用该反应,Ha等[17]使用HRP催化羟苯基丙酸修饰的CS与4 羟基苯乙胺修饰的聚乙二醇之间的交联聚合反应,获得了具有良好生物相容性的CS基水凝胶.微生物谷氨酰胺转氨酶(microbialtransglutaminase,MTG)能催化蛋白质分子内或蛋白质分子间的交联,Hu等[18]在羧甲基壳聚糖分子链中通过化学接枝反应引入胶原蛋白多肽(collagenpolypeptide,CP),通过MTG催化CP支链发生交联反应,实现了羧甲基壳聚糖分子的交联.Chen等[19]利用葡萄糖氧化酶催化葡萄糖氧化反应,制备了一种超分子级联反应器用于糖尿病性慢性伤口的治疗.该反应器由CS、磺基丁基 β 环糊精(SBE β CD)、铁离子(Fe2+)和葡萄糖氧化酶(glucoseoxidase,GOX)通过离子作用和配位作用获得.GOX催化糖尿病人伤口处的葡萄糖产生Fe2+介导Fenton反应所需的H2O2,最终产生羟基自由基(·OH).而·OH对体外耐药细菌具有较高抑制作用,并能引发聚乙二醇二丙烯酸酯的自由基聚合反应,在伤口表面原位形成交联的水凝胶网络结构,水凝胶的形成和·OH的抗菌作用可协同促进糖尿病患者慢性伤口愈合.2 壳聚糖水凝胶伤口敷料的性能要求2.1 生物相容性由于水凝胶敷料直接与组织和细胞相互接触以促进伤口愈合,其生物相容性是首要因素,因此其制备原料不应引起机体的不良免疫或异物反应等.CS作为天然来源的多糖,虽然自身具有良好的生物相容性,但其分子内的氢键作用力较强,导致CS不溶于水、醇等许多典型的溶剂,只有在偏酸性的条件下溶解性较好[20],故而在构筑凝胶过程中常使用有机溶剂,这对凝胶敷料的生物相容性造成负面影响.另外,CS分532 第3期黄雨欣,等:基于壳聚糖的水凝胶用于伤口敷料的研究进展Copyright©博看网. All Rights Reserved.子结构中含有丰富的氨基基团,可以与醛类物质生成席夫碱而形成三维网状结构,在化学交联中常常使用小分子二醛作交联剂,而凝胶中小分子醛类交联剂残余往往会引起严重的炎症反应.因此,需采用长时间透析等方式彻底去除有机溶剂及未反应的交联剂等,但长时间的透析不仅耗时,还会导致凝胶网络过度溶胀,凝胶敷料的内部结构被破坏.为克服上述问题,目前主要采用以下2种策略来实现水凝胶生物相容性的改善:一是选择低毒的天然来源的交联剂,如京尼平是植物杜仲中提取的栀子苷经过β葡萄糖苷酶水解的产物,但使用京尼平交联的CS凝胶呈蓝色,凝胶的透明度会受到一定程度的影响[21].二是对CS进行化学改性,改善其水溶性的同时引入其他官能团实现壳聚糖的交联,从而避免醛类小分子交联剂的使用.如陈凯等[22]采用水溶性良好的羧甲基化壳聚糖与PVA、海藻酸钠复合,通过组分间的氢键、席夫碱相互作用而获得的复合水凝胶对细胞生长无副作用,有良好的生物相容性;童泽鑫等[23]利用羧丁酰壳聚糖接枝小分子胶原蛋白肽,以氧化普鲁兰多糖为交联剂,通过席夫碱反应制备得到羧丁酰壳聚糖/氧化普鲁兰复合水凝胶,体外细胞实验结果表明该水凝胶具有良好的生物相容性.2.2 抗菌性伤口愈合过程中的主要障碍是细菌感染,受损的组织失去屏障的保护后极易受到金黄色葡萄球菌、大肠杆菌等的侵袭.因此,水凝胶中往往会加入抗生素等抗菌性物质,但抗生素容易使细菌产生耐药性.以CS为原料构筑的水凝胶具有良好的抗菌性,依据相互作用理论模型,CS分子中含有游离的氨基,易被H+质子化,质子化的氨基带有正电荷,会与菌体细胞壁表面带负电荷的蛋白质、磷脂等产生静电吸引,继而破坏细菌的细胞膜导致细胞内成分泄漏,或者通过改变细菌外膜的渗透性,阻碍细菌对营养物质的吸收,使细菌缺乏营养而死亡[24].但也有研究者提出了不同的观点,认为CS中自由氨基(非质子化氨基)含量越高,抑菌能力越强.如Lu等[25]将CS溶解于LiOH/KOH/尿素碱性溶液中,以含有醛基端基的四臂聚乙二醇为交联剂,通过席夫碱反应制备CS水凝胶,同时加入含有端氨基的四臂聚乙二醇,对交联网络结构进行调节.抑菌实验结果表明,相比用酸溶解,采用LiOH/KOH/尿素碱性溶液溶解的CS,由于溶解主要通过破坏CS分子间的氢键作用实现,而非因酸性下的氨基质子化实现,因此CS结构中自由氨基得以保留,在含端氨基的四臂聚乙二醇的协同作用下,该凝胶对大肠杆菌和金黄色葡萄球菌的抗菌率接近100%.李明等[26]以羧甲基壳聚糖、氧化淀粉和单宁酸为原料,利用席夫碱反应制备羧甲基壳聚糖复合水凝胶,证明羧甲基壳聚糖上的自由氨基可以与细菌结合,破坏细菌细胞壁的完整性,抑菌活性高.此外,Xue等[27]将CS分子改性成为壳聚糖季铵盐,同时提高了CS的水溶性和抗菌能力.一般认为,壳聚糖季铵盐中季铵阳离子可与细菌细胞壁表面的酸性高分子相互作用,进一步改变细胞膜通透性,从而阻止营养物质透过细胞壁,使细菌不能进行新陈代谢,达到抗菌的目的[28].2.3 黏合性和强度水凝胶作为伤口敷料需要与伤口组织直接接触,其黏合性是评价水凝胶伤口敷料性能的标准之一.水凝胶良好的黏合性不仅可以减少传统敷料缠绕四肢给患者带来的束缚感,还可以促进凝胶内部负载的活性物质如生长因子等与伤口之间的相互作用.Yang等[29]发现黏合缝合拓扑可进一步加强水凝胶与皮肤之间的黏合强度.他们在丙烯酸弹性体(VHB)表面加入CS酸性溶液,CS与VHB表面可形成亚胺键和离子键,随后利用NH2与OH官能之间的氢键作用,CS链段可进入水凝胶内部与聚丙烯酰胺原位形成网络拓扑结构,由于这种拓扑结构强度与皮肤强度相当,该水凝胶对皮肤表现出较高的黏合强度.此外,在水凝胶的黏合性设计上也需考虑不同的使用场景,如对大量出血或者存在大量体液的伤口,需考虑水凝胶在湿态下的黏合强度.Du等[30]将疏水改性壳聚糖乳酸酯与咖啡酸改性的壳聚糖整合,制备了组织黏合性水凝胶.疏水改性可以排除血液和体液对黏结的干扰,促进咖啡酸修饰的壳聚糖中邻醌基团与组织表面胺或硫醇基团生成共价键,实现对湿性伤口的黏合.对于脚踝、膝盖、腕部等关节部位的伤口敷料,还需要考虑关节频繁运动和弯曲对凝胶强度的要求,一般可以通过调整交联密度或交联方式来控制水凝胶的机械性能.而双网络结构(double network)由于具有双层交联的网络结构,可以有效改善凝胶的强度和韧性,常用于凝胶敷料的构筑.如Wang等[31]在儿茶酚改性的甲基丙烯酰壳聚糖和甲基丙烯酰壳聚糖形成的共价632杭州师范大学学报(自然科学版)2023年 Copyright ©博看网. All Rights Reserved.交联网络基础上,利用儿茶酚基团与Fe3+之间的鳌合作用,构筑了双网络结构,提高了水凝胶的机械强度,并且由于儿茶酚基团与组织表面基团(氨基、巯基和咪唑基团等)存在共价相互作用,水凝胶对组织有较好的黏合能力,其搭接剪切强度可达到18kPa,为商品化的胶原蛋白胶的6倍.2.4 止血性能CS与血液接触时,CS上的游离氨基可以和血浆蛋白或血细胞上的酸性基团相互作用引起血栓,该过程通常被理解为血浆蛋白在CS上吸附,促进了血小板的黏附和激活,导致血栓形成从而达到凝血效果[32].在实际应用中凝胶敷料要达到止血效果,需要与创口表面紧密黏附.从分子结构上看,CS是甲壳素N 脱乙酰基的产物,与组织间的静电作用较弱,因此依赖氨基阳离子实现组织黏附的CS水凝胶止血能力有限,研究者们主要通过在凝胶中引入可与组织发生共价作用的基团或电荷来改善其止血效果.Sundaram等[33]将纳米生物玻璃(nano bioglass,nBG)和CS溶液混合,通过溶胶 凝胶法制备了CS/nBG复合水凝胶.该水凝胶具有优秀的止血性能,这源于CS的质子化氨基基团与nBG释放的Si、Ca、P等元素成分(以离子或离子基团形式)发生协同作用,激活了不同类型的凝血因子从而达到快速止血的效果.张冬英[34]制备的儿茶酚功能化壳聚糖/牡蛎肽温敏水凝胶能够明显缩短体外凝血时间达到高效止血作用,其中儿茶酚功能化壳聚糖组分可以提高组织中蛋白质的合成效率,促进血管、肉芽组织生成,为创伤愈合提供合适环境.2.5 抗氧化性长时间的炎症反应会使机体产生大量的活性氧(reactiveoxygenspecies,ROS),当细胞无法抵抗高浓度的ROS时就会出现阻碍伤口愈合的情况,所以伤口修复时还需注意伤口微环境中的ROS浓度.因此功能性伤口敷料需要具有一定的抗氧化性及降低炎症作用的效果.李航婷等[35]以鳗鱼鱼鳔胶原蛋白、CS和海藻酸钠为原料与Ca2+交联制得水凝胶.该水凝胶材料含有鳗鱼鱼鳔胶原蛋白,具有较好的抗氧化活性,与对照组相比,实验小鼠血清内的炎症因子(白介素 6、白介素 1β、肿瘤坏死因子)含量均减少,表明该CS基水凝胶可以抑制炎症反应的发生,有效促进伤口的愈合.Bergonzi等[36]将α 生育酚(维生素E,VitE)与CS溶液反应制得含有VitE的CS基油墨,通过3D打印获得具有抗氧化活性的支架,以帮助慢性伤口愈合.该支架在具有优良机械特性的同时,能缓慢释放VitE,从而具有优良的自由基清除能力,为组织的再生创造了良好的环境.Hao等[37]以硼酸盐保护的二氮二醇酯修饰的壳聚糖(chitosanmodifiedbyboronate protecteddiazeniumdiolat,CS B NO)为原料制备了一种可注射的水凝胶,CS B NO可以响应ROS刺激而释放NO,从而调节缺血/再灌注(ischemia/reperfusioninjury,I/R)损伤后的ROS/NO失衡.结果表明,在小鼠心肌I/R损伤模型中,CS B NO与传统释放NO的水凝胶相比,能更有效地减轻心脏损伤,促进心脏修复并改善心脏功能.调节ROS/NO可激活抗氧化防御系统,从而调节Nrf2 Keap1通路来防止I/R损伤诱导的氧化应激,抑制NF κB信号转导通路的过度激活来减少炎症.2.6 活性物质负载在临床中,药物缓释系统是一类用于人体内部的可以定点、定向控制药物释放的技术.利用水凝胶通过物理包埋固定化技术携带药物后,可以在特定的时间和环境下,使药物在体内通过扩散缓慢释放,同时水凝胶的降解也会进一步释放药物,使药物利用率和功效大大提高.CS在生物组织工程中对细胞的生长和增殖具有良好的效果,将生长因子、抗生素、疫苗等包埋在CS水凝胶中,不仅可以实现负载药物释放和输送,还可以发挥CS本身的优良作用.韩佳岐等[38]制备了一种邻苯二酚改性的壳聚糖水凝胶用于血管内皮生长因子的负载,具有良好的药物释放能力和抗菌性.Tan等[39]将CS与羧甲基化西米纸浆(carboxymethylsagopulp,CMSP)通过电子束辐交联获得水凝胶,该水凝胶具有pH敏感性:在酸性介质中,CMSP中的羧酸基团和CS中的氨基基团被质子化,水凝胶不发生溶胀,可限制负载药物的释放;当pH为6.8时,CMSP的羧基基团和CS的氨基去质子化,凝胶发生溶胀,药物开始释放且缓释时间可达32h.3 结论与展望综上所述,水凝胶伤口敷料在应用中不仅需要满足止血、抗菌等基础性能要求,还需要满足促进皮肤再732 第3期黄雨欣,等:基于壳聚糖的水凝胶用于伤口敷料的研究进展Copyright ©博看网. All Rights Reserved.生、防止产生瘢痕等更加复杂的应用要求,如根据伤口愈合不同阶段(炎症、增生、成熟)的特点,有效结合伤口微环境变化,发展具有皮肤生理结构和生理微环境的CS基敷料.这对水凝胶敷料的生物相容性、机械强度、湿性环境的黏合性能等提出了更高的要求.目前,基于CS的伤口敷料研究大多停留在实验室阶段,鲜有研究涉及CS衍生物或CS基凝胶与伤口接触后的代谢物对伤口愈合过程的影响及潜在风险.探索绿色环保、安全性高、成本低廉、适应人体多种需求的CS基水凝胶敷料的设计及制备方法,并且逐渐实现从外敷向人体内部组织的应用,这是以CS为代表的天然抗菌性多糖基水凝胶材料研究的重要内容和长远目标.参考文献:[1]YONETANIY,KUROKAWAM,AMANOH,etal.Thewounddressinginfluencedeffectivenessofcryotherapyafteranteriorcruciateligamentreconstruction:case controlstudycomparinggauzeversusfilmdressing[J].Arthroscopy,SportsMedicine,andRehabilitation,2022,4(3):e965 e968.[2]GAOBB,GUOMZ,LYUK,etal.Microneedledressing:intelligentsilkfibroinbasedmicroneedledressing(i SMD)[J].AdvancedFunctionalMaterials,2021,31(3):2170018.[3]CHENWH,CHENQW,CHENQ,etal.Biomedicalpolymers:synthesis,properties,andapplications[J].ScienceChinaChemistry,2022,65(6):1010 1075.[4]KALANTARIK,MOSTAFAVIE,SALEHB,etal.Chitosan/PVAhydrogelsincorporatedwithgreensynthesizedceriumoxidenanoparticlesforwoundhealingapplications[J].EuropeanPolymerJournal,2020,134:109853.[5]鲁程程,于振坤,杨园园,等.聚丙烯酸 Al3+/壳聚糖复合双网络水凝胶的制备与性能[J].复合材料学报,2022,39(12):5912 5922.[6]YANGC,GAOLL,LIUXY,etal.InjectableSchiffbasepolysaccharidehydrogelsforintraoculardrugloadingandrelease[J].JournalofBiomedicalMaterialsResearch,2019,107(9):1909 1916.[7]HYUNAJ,SEUNGHYUNS.Programmablelivingmaterialsconstructedwiththedynamiccovalentinterfacebetweensyntheticpolymersandengineered犅.狊狌犫狋犻犾犻狊[J].ACSAppliedMaterials&Interfaces,2022,14(18):20729 20738.[8]WANGXY,SONGRJ,JOHNSONM,etal.Aninjectablechitosan basedself healablehydrogelsystemasanantibacterialwounddressing[J].Materials,2021,14(20):5956.[9]童艳萍,肖艳.双重动态化学键交联水凝胶的制备及性能[J].功能高分子学报,2020,33(3):305 312.[10]ZHANGJH,CAOLM,CHENYK.Mechanicallyrobust,self healingandconductiverubberwithdualdynamicinteractionsofhydrogenbondsandborateesterbonds[J].EuropeanPolymerJournal,2022,168:111103.[11]CAITT,HUOSJ,WANGT,etal.Self healabletoughsupramolecularhydrogelscrosslinkedbypoly cyclodextrinthroughhost guestinteraction[J].CarbohydratePolymers,2018,193:54 61.[12]HUANGG,TANGZF,PENGSW,etal.Modificationofhydrophobichydrogelsintoastronglyadhesiveandtoughhydrogelbyelectrostaticinteraction[J].Macromolecules,2022,55(1):156 165.[13]DINGCC,TIANMD,FENGR,etal.Novelself healinghydrogelwithinjectable,pH responsive,strain sensitive,promotingwound healing,andhemostaticpropertiesbasedoncollagenandchitosan[J].ACSBiomaterialsScience&Engineering,2020,6(7):3855 3867.[14]XUJP,WONGCW,HSUSH.Aninjectable,electroconductivehydrogel/scaffoldforneuralrepairandmotionsensing[J].ChemistryofMaterials,2020,32(24):10407 10422.[15]ABDUL MONEMMM,KAMOUNEA,AHMEDDM,etal.Light curedhyaluronicacidcompositehydrogelsusingriboflavinasaphotoinitiatorforboneregenerationapplications[J].JournalofTaibahUniversityMedicalSciences,2021,16(4):529 539.[16]丁海昌.UV交联壳聚糖水凝胶的可控合成与pH/温度响应性溶胀行为[D].哈尔滨:哈尔滨工业大学,2020.[17]HAYJ,PHUONGLT,KYUNG HEEH,etal.Tunableandhightissueadhesivepropertiesofinjectablechitosanbasedhydrogelsthroughpolymerarchitecturemodulation[J].CarbohydratePolymers,2021,261:117810.[18]HUWQ,LIUM,YANGXS,etal.Modificationofchitosangraftedwithcollagenpeptidebyenzymecrosslinking[J].CarbohydratePolymers,2019,206:468 475.[19]CHENL,CHENY,ZHANGR,etal.Glucose activatednanoconfinementsupramolecularcascadereaction犻狀狊犻狋狌fordiabeticwoundhealing[J].ACSNano,2022,16(6):9929 9937.[20]BOZUYUKU,DOGANNO,KIZILELS.DeepinsightintoPEGylationofbioadhesivechitosannanoparticles:sensitivitystudyforthekeyparametersthroughartificialneuralnetworkmodel[J].ACSAppliedMaterials&Interfaces,2018,10(40):33945 33955.[21]NERI NUMAIA,PESSOAMG,PAULINOBN,etal.Genipin:anaturalbluepigmentforfoodandhealthpurposes[J].TrendsinFoodScience&Technology,2017,67:271 279.832杭州师范大学学报(自然科学版)2023年 Copyright ©博看网. All Rights Reserved.[22]陈凯,柴琦,王丰艳,等.基于3D打印构建载银聚乙烯醇 羧甲基壳聚糖 海藻酸钠水凝胶伤口敷料及性能表征[J].复合材料学报,2022,39(12):5879 5891.[23]童泽鑫,徐海星,樊李红,等.羧丁酰壳聚糖/氧化普鲁兰复合水凝胶的制备及其性能[J].武汉大学学报(理学版),2021,67(4):346 352.[24]TANGRL,ZHANGY,ZHANGY,etal.Synthesisandcharacterizationofchitosanbaseddyecontainingquaternaryammoniumgroup[J].CarbohydratePolymers,2016,139:191 196.[25]LUJW,CHENY,DINGM,etal.A4arm PEGmacromoleculecrosslinkedchitosanhydrogelsasantibacterialwounddressing[J].CarbohydratePolymers,2022,277:118871.[26]李明,刘杨,龚浩,等.羧甲基壳聚糖复合水凝胶的制备及其性能研究[J].中国海洋药物,2022,41(2):19 27.[27]XUEH,HULC,XIONGY,etal.Quaternizedchitosan matrigel polyacrylamidehydrogelsaswounddressingforwoundrepairandregeneration[J].CarbohydratePolymers,2019,226:115302.[28]TANHL,MAR,LINCC,etal.Quaternizedchitosanasanantimicrobialagent:antimicrobialactivity,mechanismofactionandbiomedicalapplicationsinorthopedics[J].InternationalJournalofMolecularSciences,2013,14(1):1854 1869.[29]YANGJW,BAIRB,LIJY,etal.Designmoleculartopologyforwet dryadhesion[J].ACSAppliedMaterials&Interfaces,2019,11(27):24802 24811.[30]DUXC,LIUYJ,YANHY,etal.Anti infectiveandpro coagulantchitosan basedhydrogeltissueadhesiveforsuturelesswoundclosure[J].Biomacromolecules,2020,21(3):1243 1253.[31]WANGL,ZHANGXH,YANGK,etal.Anoveldouble crosslinking double networkdesignforinjectablehydrogelswithenhancedtissueadhesionandantibacterialcapabilityforwoundtreatment[J].AdvancedFunctionalMaterials,2020,30(1):1904156.[32]DINGCC,TIANMD,FENGR,etal.Novelself healinghydrogelwithinjectable,pH responsive,strain sensitive,promotingwound healing,andhemostaticpropertiesbasedoncollagenandchitosan[J].ACSBiomaterialsScience&Engineering,2020,6(7):3855 3867.[33]SUNDARAMMN,AMIRTHALINGAMS,MONYU,etal.Injectablechitosan nanobioglasscompositehemostatichydrogelforeffectivebleedingcontrol[J].InternationalJournalofBiologicalMacromolecules,2019,129:936 943.[34]张冬英.儿茶酚功能化壳聚糖/牡蛎肽温敏水凝胶的制备及其性能研究[D].湛江:广东海洋大学,2020.[35]李航婷,金明月,李诺营,等.鱼鳔胶原蛋白 壳聚糖 海藻酸钠水凝胶促小鼠皮肤伤口愈合研究[J].湖北农业科学,2022,61(10):127 131.[36]BERGONZIC,BIANCHERAA,REMAGGIG,etal.Biocompatible3Dprintedchitosan basedscaffoldscontainingα tocopherolshowingantioxidantandantimicrobialactivity[J].AppliedSciences,2021,11(16):7253.[37]HAOT,QIANM,ZHANGYT,etal.Aninjectabledual functionhydrogelprotectsagainstmyocardialischemia/reperfusioninjurybymodulatingROS/NOdisequilibrium[J].AdvancedScience,2022,9(15):2105408.[38]韩佳岐,田瑗,姜秋,等.负载血管内皮生长因子的邻苯二酚壳聚糖体外药物缓释性能及抗菌性研究[J].中国实验诊断学,2022,26(3):413 418.[39]TANLS,TANHL,DEEKONDAK,etal.Fabricationofradiationcross linkeddiclofenacsodiumloadedcarboxymethylsagopulp/chitosanhydrogelforentericandsustaineddrugdelivery[J].CarbohydratePolymerTechnologiesandApplications,2021,2:100084.犚犲狊犲犪狉犮犺犘狉狅犵狉犲狊狊狅犳犆犺犻狋狅狊犪狀 犫犪狊犲犱犎狔犱狉狅犵犲犾狊犳狅狉犠狅狌狀犱犇狉犲狊狊犻狀犵狊HUANGYuxin,WANGWei,YANGTao,SUNJun,WUYantong,LIANGYuanyuan(CollegeofMaterial,ChemistryandChemicalEngineering,HangzhouNormalUniversity,Hangzhou311121,China)犃犫狊狋狉犪犮狋:Wounddressingsarewidelyusedinclinicaltreatmentbecauseoftheircharacteristicsofpromotingwoundhealingandprotectingwoundsfrominfection.Hydrogelsbasedonnaturalpolysaccharidechitosan,whichhaveauniquethree dimensionalnetworkstructureforwoundhealing,haveattractedextensiveattentionsinapplicationofwounddressings.Basedontheperformancerequirementsofhydrogelwounddressings,suchasbiocompatibility,antibacterialproperties,adhesionandstrength,hemostaticpropertiesandantioxidantproperties,thispapersummarizedrelativeresearchesondesignandpreparationofchitosan basedhydrogelwounddressings,andlookedforwardtothefuturedevelopmentandapplicationprospectsonchitosan basedhydrogelwounddressings.犓犲狔狑狅狉犱狊:chitosan;hydrogels;wounddressings932 第3期黄雨欣,等:基于壳聚糖的水凝胶用于伤口敷料的研究进展Copyright ©博看网. All Rights Reserved.。
Vol.20 No.2Apr. 2021第20卷第2期2021年4月现代农药Modem Agrochemicals♦综述#专%♦甲氧基丙烯酸酯类农药缓控释制剂的研究进展陈 歌,曹立冬!,赵鹏跃,曹 冲,李凤敏,黄啟良!(中国农业科学院植物保护研究所,北京100193)摘要:近年来,通过先进的功能材料和加工工艺进行甲氧基丙烯酸酯类农药缓控释制剂的制备,可有效解决该类农药易光解及对水生生物的毒性问题,这已经成为该类农药的研究重点°笔者综述 了甲氧基丙烯酸酯类农药的开发研究现状、国内剂型登记情况、缓控释制剂的制备方法、释放机理及其在农药领域的应用状况,探讨了甲氧基丙烯酸酯类农药缓控释制剂在农药实际应用中存在的问题,并对其应用前景进行了展望,旨在为甲氧基丙烯酸酯类农药新剂型的研发及减施增效应用 提供一定的技术参考和理论指导"关键词:甲氧基丙烯酸酯类杀菌剂;载体材料;制备方法;缓控释制剂;应用中图分类号:S 4*2.2; TQ 455文献标志码:A doi : 10.3969/j.issn.1671-5284.2021.02.002Research Progress on Sustained and Controlled Release of Strobilurin FungicidesChen Ge, Cao Lidong : Zhao Pengyue, Cao Chong, Li Fengmin, Huang Qiliang N(Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China)Abstract : In recent years, the preparation of new sustained and controlled release formulations (SCRF) have becomethe focus of research, which aims to solve the problem of strobilurin fungicides mainly including easy photolysis and toxicity to aquatic organisms. This paper summarized the development and research status of strobilurin fungicides, thedomestic registration of formulations, the preparation methods of SCRF, the release mechanisms and application in thefield of pesticide researches. The problems in the practical application of SCRF of strobilurin fungicides were discussed,and the application prospects were prospected, aiming at providing certain technical reference and theoretical guidance for the research and development of new formulations of strobilurin fungicides and application with reduced dosage andincreased efficiency.Key words : strobilurin fungicides; carrier material; preparation methods; sustained and controlled release formulation;application甲氧基丙烯酸酯类(strobilurins )物质最早是在 1977年由德国科学家从嗜球果伞(.Strobilurus tena-cellus ) 菌丝体中发现j1k 。
丙烯酸酯胶粘剂标准丙烯酸酯胶粘剂是一种重要的工业胶粘剂,在许多不同的领域和应用中被广泛使用。
为了确保丙烯酸酯胶粘剂的质量和性能,制定了一系列的标准来进行规范和评价。
下面是与丙烯酸酯胶粘剂相关的参考内容。
1. GB/T 7125-2008《胶粘剂纸基布剥离强度测定方法》该标准规定了测定联系剂的剥离强度的方法。
通过对纸基布上涂布的胶粘剂剥离强度的测试,可以评估胶粘剂的附着力和粘合性能。
2. GB/T 4851-2012《丙烯酸酯胶粘剂——基本要求和试验方法》该标准主要规定了丙烯酸酯胶粘剂的基本要求和试验方法。
其中包括物理性能、粘接性能、化学性能、耐热性能、耐水性能、可燃性能等方面的测试项目和评价方法,确保胶粘剂的质量和使用性能符合要求。
3. GB/T 4852-2017《丙烯酸酯胶带》该标准规定了丙烯酸酯胶带的技术要求、试验方法和标志、包装、运输、储存要求等方面的内容。
通过对丙烯酸酯胶带的各项指标和性能进行评估,确保其质量和可靠性。
4. GB/T 4853-2017《丙烯酸酯胶粘剂泡沫塑料剥离强度测定方法》该标准规定了测定丙烯酸酯胶粘剂与泡沫塑料(例如聚乙烯、聚丙烯等)剥离强度的方法。
通过对剥离强度的测试,可以评估胶粘剂在泡沫材料上的粘接性能,确保粘结的可靠性。
5. GB/T 26963-2011《胶粘剂薄膜剥离强度测定方法》该标准规定了胶粘剂薄膜剥离强度的测试方法。
通过对胶粘剂薄膜的剥离强度进行测量,可以评估胶粘剂的粘接性能和附着力。
6. GB/T 26964-2011《胶粘剂抗剪切性能测定方法》该标准规定了胶粘剂的抗剪切性能测定方法。
通过对粘结件在剪切载荷下的力学性能进行测试和评估,可以判断胶粘剂的耐剪切性能和粘结强度。
以上标准涵盖了丙烯酸酯胶粘剂所涉及的物理性能、粘接性能、化学性能、耐热性能、耐水性能、剥离强度、抗剪切性能等方面的评价项目和测试方法。
这些标准的制定和遵循,可以保证丙烯酸酯胶粘剂的质量和性能符合要求,并确保其在各种不同应用中的可靠性和稳定性。
中国组织工程研究 第20卷 第47期 2016–11–18出版Chinese Journal of Tissue Engineering Research November 18, 2016 Vol.20, No.47P .O. Box 10002, Shenyang 110180 7112·研究原著·www.CRTER .org张飞,男,内蒙古自治区乌兰察布市人,汉族,硕士,主治医师,主要从事普通外科方面的研究。
通讯作者:李剑锋,博士,副主任医师,内蒙古医科大学第二附属医院康复科,内蒙古自治区呼和浩特市 010050中图分类号:R318 文献标识码:B 文章编号:2095-4344 (2016)47-07112-07 稿件接受:2016-10-22合成α-氰基丙烯酸正丁酯医用胶用于肝脏止血张 飞1,赵 君2,孟兴凯3,李剑锋2 (1内蒙古自治区人民医院普外科,内蒙古自治区呼和浩特市 010020;2内蒙古医科大学第二附属医院康复科,内蒙古自治区呼和浩特市 010050;3内蒙古医科大学附属医院普外科,内蒙古自治区呼和浩特市 010010)引用本文:张飞,赵君,孟兴凯,李剑锋. 合成α-氰基丙烯酸正丁酯医用胶用于肝脏止血[J].中国组织工程研究,2016,20(47):7112-7118.DOI: 10.3969/j.issn.2095-4344.2016.47.017 ORCID: 0000-0002-2065-8147(张飞)文章快速阅读:文题释义:表面活性剂:表面活性剂的选取是一种含有多个醚键的聚合物,它对人体无毒副作用,既有亲水基团,同时又能与胶黏剂发生交联反应,因此,可以使胶黏剂更好的在湿润的创面黏合止血,避免了目前市场上医用胶亲水性差,止血效果不理想的缺点。
α-氰基丙烯酸酯:是众多化学合成医用黏合剂之一,因其自身突出的优点被广泛应用于临床。
它的主要成分是长链酯单体,之所以能在瞬间发挥其强黏结作用,是因为迅速发生了阴离子聚合。
FPC用改性丙烯酸酯胶粘剂的固化研究陈伟;陈文求;余洋;张雪平;李桢林;范和平【期刊名称】《中国胶粘剂》【年(卷),期】2024(33)1【摘要】改性丙烯酸酯类胶粘剂应用于挠性印制电路板(FPC)及其基材时,其固化程度对性能有着决定性的影响。
本文以自制的环氧树脂改性的丙烯酸酯类胶粘剂为例,通过动态差示扫描量热仪(DSC)从理论上分析其非等温固化的动力学行为,以研究其在室温时的储存稳定性和高温固化的工艺条件。
然后通过傅里叶变换红外光谱仪(FT-IR)研究其在室温以及125~300℃温度范围内的固化反应历程,以保证该胶粘剂应用于FPC的热固性胶膜/片的固化性能或效果。
研究结果表明:(1)通过非等温DSC测试,确定了改性丙烯酸酯胶粘剂的固化动力学方程,由此推算其在10~50℃的常规储存温度下的反应速率常数K值低至10~(-5) min~(-1)级别及以下,具有优异的B阶稳定性;同时在180℃及以上的K值达到10~(-1) min~(-1)级别,可以满足其高温烘烤迅速固化的使用要求。
(2)由动态DSC测试得到的三种特征温度,进而推算本胶膜的理论固化温度为182℃,且在此温度下实现100%固化需时约100 min,并通过DSC测试进行了验证。
(3)通过FT-IR对比验证了以上高温固化的反应历程,其在200℃处理后环氧基基本反应完全,这与以上分析的结果一致。
【总页数】6页(P16-20)【作者】陈伟;陈文求;余洋;张雪平;李桢林;范和平【作者单位】华烁科技股份有限公司;华烁电子材料(武汉)有限公司;江汉大学湖北省化学研究院【正文语种】中文【中图分类】TQ433【相关文献】1.氧化-还原固化体系对丙烯酸酯胶粘剂固化反应影响的研究2.膨胀单体对UV固化环氧丙烯酸酯胶粘剂的改性研究3.改性环氧丙烯酸酯胶粘剂预聚体增韧改性研究4.FPC基材用改性丙烯酸酯胶黏剂的制备与性能研究5.紫外光/湿气双重固化改性聚氨酯丙烯酸酯胶粘剂因版权原因,仅展示原文概要,查看原文内容请购买。
覆铜板资讯2021年第2期氰酸酯是电气电子材料以及高性能复合材料领域中使用的最重要高性能热固性材料之一。
为了了解用作环氧树脂固化剂的氰酸酯的整体情况,本文对包括商品化的各种骨架结构氰酸酯的化学结构和CAS 编号进行了研究和分类。
环氧树脂和氰酸酯之间的固化反应存在多种形式,由于其中包括氰酸酯的自聚反应,因此不存在固定的当量配比。
根据研究论文引用的数据,重点考查了反应与配比的关系。
选择了环氧树脂/氰酸酯固化体系的一些基本特性进行评价,并提出了最佳配比。
这些性能包括:固化行为、玻璃化转变温度、拉伸和弯曲性能、冲击强度、热膨胀、热稳定性、吸水率和介电性能。
1.环氧树脂及固化物氰酸酯简介环氧树脂(EP )广泛用于电子材料和复合材料领域,具有举足轻重的作用。
然而,在先进技术领域对材料耐热性水平提出更高要求的时候,环氧树脂的耐热性比不上有些高耐热网状聚合物,因此环氧树脂的使用受到限制。
为了提高环氧树脂的耐热性,人们做了各种尝试,除了使用常规芳香族胺或耐热型苯基树脂作为环氧树脂固化剂以外,还使用了一些其他的耐热性固化剂。
作为一个典型的应用例子,是氰酸酯(CE )引起了人们的注意。
CE 与双马来酰亚胺(BMI )的复合体系双马来酰亚胺/氰酸酯树脂(俗称BT 树脂),BT 树脂与环氧树脂(EP )组合使用,在电子材料和复合材料领域中已开发出了很多高耐热材料。
用于BT 树脂的最基本的CE 是双酚A 型CE 。
但近年来,新开发了多种骨架结构类型的CE ,并且对这些CE 在赋予环氧树脂(EP )耐热性方面进行了研究。
因此,我们调查了迄今为止已经开发的CE 的类型和CAS 编号,并将其化学结构与市面上销售的CE 一起分类整理后汇总于表中。
在日本发表的论文中,对于CE 作为环氧氰酸酯作为环氧树脂固化剂的研究进展(1)陕西荣泰联信电子科技有限公司王金龙编译摘要:本文对环氧树脂固化剂的氰酸酯,在品种、性能、应用等方面作了全面、深入的阐述,并反映并总结了氰酸酯固化剂,当前的技术新发展、新应用。
丙烯酸酯结构胶水丙烯酸酯结构胶水是一种重要的工程胶水,被广泛应用于建筑、汽车、航空航天等工业领域。
其独特的优点使它在各种结构性粘合任务中表现出色。
以下是对丙烯酸酯结构胶水的一些详细介绍。
一、组成和反应原理丙烯酸酯结构胶水主要由丙烯酸酯单体、引发剂、稳定剂和其他助剂组成。
当胶水受到外部能量(如热、紫外线等)的刺激时,引发剂会引发单体聚合,形成高分子聚合物,这个过程称为固化。
在这个过程中,丙烯酸酯单体发生聚合反应,形成坚韧的网状结构,提供强大的粘附力和耐久性。
二、性能特点1.粘附力强:丙烯酸酯结构胶水具有出色的粘附力,能够粘合各种材料,如金属、玻璃、陶瓷和塑料等。
这主要得益于其高分子聚合物的化学结构,这种结构可以与不同材料产生强烈的化学键合。
2.耐久性好:由于其强大的聚合物结构和优秀的粘附力,丙烯酸酯结构胶水具有很高的耐久性。
它可以承受极端温度、湿气、紫外线和其他环境因素,保持粘合的稳定性和强度。
3.快速固化:在适当的条件下,丙烯酸酯结构胶水可以迅速固化,大大缩短了操作时间。
这对于许多工业应用来说是一个重要的优点。
4.抗冲击和震动:固化后的丙烯酸酯结构胶水具有很好的抗冲击和抗震动性能,能够承受较大的外力作用,防止粘合部位因外力而松动或开裂。
5.储存稳定性:丙烯酸酯结构胶水具有良好的储存稳定性,可以在室温下长时间保存而不影响其使用性能。
三、应用领域由于丙烯酸酯结构胶水的优异性能,它被广泛应用于各种工业领域。
在建筑行业中,它可以用来粘合玻璃、石材和金属材料等;在汽车行业中,它可以用于制造和维修过程中各种材料的粘合;在航空航天领域,由于其对各种材料的优秀粘附力和耐久性,丙烯酸酯结构胶水也是不可或缺的工程材料。
四、注意事项使用丙烯酸酯结构胶水时,需要注意安全事项。
由于它含有易燃的有机溶剂和其他化学物质,应远离火源并存放在阴凉通风的地方。
此外,使用时应佩戴防护眼镜、手套和口罩等个人防护装备。
综上所述,丙烯酸酯结构胶水是一种高性能的工程胶水,具有出色的粘附力、耐久性、快速固化和储存稳定性等特点,广泛应用于各种工业领域。
氰基丙烯酸酯类伤口快速胶粘剂研究进展 前 言 伤口快速胶粘剂,是一种医用胶粘剂,而医用胶粘剂又可为两大类:一是适于粘连骨骼等的硬组织胶粘剂,如甲基丙烯酸甲酯骨水泥;另一类是适于粘接皮肤、脏器、神经、肌肉、血管、粘膜等的软组织胶粘剂。一般采用α-氰基丙烯酸酯类为医用化学合成型胶(α-cyanoacrylate)或纤维蛋白生物型胶(fib ringlue),如WBA生物胶粘剂。纤维蛋白生物型胶是从异体或自体血液中产生的,它富含纤维蛋白原和因子Ⅷ,对脆弱拟杆菌、大肠杆菌和金葡杆菌等有杀菌作用。耳鼻喉科专家们把这种蛋白胶用于各种动物和人的伤口上,结果令人满意。但是使用异体血制的蛋白胶有传染肝炎和爱滋病的可能性。自体血产品较安全,但不适合急症医治需要,因为要临时从伤员自己身上抽血制取纤维蛋白生物胶再来粘合自己的伤口,这是很难做到的[2]。并且纤维蛋白生物胶粘合速度慢、强度不高,不适合紧急治疗,因而人们把注意力放在氰基丙烯酸酯类胶粘剂的研究上。 1 氰基丙烯酸酯类胶粘剂的历史发展 1959年美国发明了Eastman910粘接剂(α-氰基丙烯酸甲酯)[3],它具有对玻璃、五金、橡胶、塑料等材料的快速粘连作用。Coover等人[4]发现它能粘结生物组织、被作为一类新型医用胶粘剂使用。20世纪60年代初生物粘接剂风靡一时,在动物实验和临床应用中取得了丰硕成果]。但到70年代中期,世界各国对它的兴趣有所减弱,主要原因唯恐引起癌症。但20多年来,数以千万计的病例还没有发现产生肿瘤的后果。因此,目前国内外对医用胶粘剂的研究又活跃起来。在临床应用方面,氰基丙烯酸酯类胶粘剂用于闭合创口、皮肤移植、管腔器官连接以及肝、肾、肺、脾、胰、胃肠道等损伤的止血。此外,眼科、骨科、口腔科都广泛地使用了氰基丙烯酸酯类胶粘剂。氰基丙烯酸酯类胶粘剂主要成分是长链酯单体,用于组织后,在室温下就能形成一层薄膜覆盖伤口。早期产品有引起局部炎症和骨损伤的副作用,并且早期的α-氰基丙烯酸酯多采用氰乙酸酯与甲醛反应来合成,需用催化剂甲醛和苯等有毒溶剂,由于医用胶粘剂性能指标要求严格,致使合成工艺复杂、成本高。经逐步努力,人们采用无毒溶剂,无催化剂条件合成α-氰基丙烯酸乙酯获得成功。此法特点是分离提纯简单,预聚体易于裂解,产品纯度高等。 有人用经精制的产品用于人鼻成型术粘合,无并发症发生。Mizrahis曾报告在急诊室用α-氰基丙烯酸正丁酯粘合儿童面部、头皮、四肢共1500余处伤口,一周后仅10处(0 6%)裂开,28处(1 8%)感染。如果把胶粘剂作间断点用,可使烧灼感减轻。随着α-氰基丙烯酸乙酯合成工艺的发展,其优点得到明显展示,应用范围和前景将越来越广阔,目前,加拿大和欧洲一些国家使用胶粘剂已相当普遍[2]。 2 氰基丙烯酸酯类胶粘剂的特性 氰基丙烯酸酯胶粘剂为单组分、液态、无溶剂型胶粘剂,具有室温固化、固化速度快、粘合力强等特点,其结构式为:NC-C=CH2COOR其中R为1-16个碳原子的直链或带支链的烷基、芳基、烷氧基、环烷基等,如用氰乙酸乙酯与多聚甲醛反应就可以合成α-氰基丙烯酸乙酯。在微量阴离子存在时,它能产生瞬间聚合反应。对橡胶、金属、塑料、陶瓷、玻璃、生物体组织等极性材料都能产生较强的粘合。蛋白质是组成生物体中各种细胞的基础物质,是氨基酸的线型高聚物,首尾由-NH2及-COOH组成。有机胺类是该类酯单体聚合的重要催化剂,所以当氰基丙烯酸酯用于生物体组织时会迅速聚合而起到粘接作用。氰基丙烯酸酯类胶粘剂是有一定局部毒性的。有人运用荧光显微技术研究了聚合后的氰基丙烯酸酯对细胞的作用,结果发现聚合后的氰基丙烯酸酯微粒可以进入组织细胞,其降解产物可能导致细胞壁的溶解。 Nesburn等曾用甲酯、异丁酯、正辛酯等对单层细胞进行培养和对新鲜弥散细胞作用进行研究。结果表明,正辛酯无明显毒性,异丁酯有极小毒性,而甲酯则毒性较大,它可以影响细胞膜的代谢而致细胞死亡。[9]但是,氰基丙烯酸酯类胶粘剂的毒性是短暂的、可消失的。氰基丙烯酸酯类胶粘剂同生物胶粘剂一样对细菌有抑菌作用。其中对金黄色和白色葡萄球菌、四联球菌、枯草杆菌均有高度抑菌作用,对溶血性链球菌、甲型链球菌、肺炎双球菌、绿脓杆菌、大肠杆菌、变形杆菌均有抑菌作用,对酵母菌的抑菌作用较低[9]。操作方便应是胶粘剂所具备的重要条件。在这方面氰基丙烯酸酯类胶粘剂较目前其它医用胶粘剂有更大的优越性。因为这类胶液用量极微达到精确粘合,其聚合速度或粘稠度藉改性剂的加入得到改变,还可以在其中加入颜料或X线显影剂直接由体表注入体内而达到精确应用。此胶粘剂聚合迅速适用于穿透伤漏口迅速闭合。胶粘剂聚合后具有一定的柔韧性是医用胶粘剂所期望的特性,然而目前氰基丙烯酸酯类胶粘剂在这方面尚不能达到要求,其它如硅酮类胶粘剂虽然具备柔韧平滑的特点,但其粘合质量远不如氰基丙烯酸酯。另外还有很多因素可以影响氰基丙烯酸酯类胶粘剂的粘合力和持续期:如胶粘剂的类型和纯度、应用的技术、粘连组织的类型和表面的性质与状态以及代谢的情况。 3 氰基丙烯酸酯类胶粘剂的应用研究 3 1 胶粘剂代替传统缝合技术的必要性 到目前为止,组织的再建仍然是以缝合为主要操作方法,但是有些部位是难以缝合的,再加上传统的外科手术缝合和器官组织的止血,不仅存在操作费时、需替代材料修复、增加手术和组织修补的困难,而且存在组织的炎性反应、感染、增生、破裂,甚至出现组织器官的损伤和不吸收等有害作用。如果能以胶粘剂代替传统的缝合,将是外科手术的一次革命。促使基础与临床学者去探索和研制一种理想的伤口快速胶粘剂来代替缝合。对氰基丙烯酸酯的组织粘合性能的发现及其对手术的可用性,为外科新的操作方式提供了可能。虽然这些胶粘剂在手术中应用的毒性作用目前认识尚不统一,但实验证明,大多数手术若用氰基丙烯酸高烷基酯如异丁酯、正辛酯等来完成,是可以被组织很好耐受的。 3.2 胶粘剂的应用研究 从1959年该胶粘剂被发现开始,不仅在制作方法和性能检测方面做了大量的研究和改进,而且在临床上得到广泛应用,几乎涉及到所有手术。 3.2 1 在单纯皮肤裂伤手术中的应用 以往人们都采用清创、局麻、缝合的方法。但如果对一小手术,如此做法未免有些麻烦。吴本秀等采用涂抹伤口快速胶粘剂的方法来解决。经彻底清创后,不用麻醉、止血,术者利用左手食、拇指在距创缘0 6~0 8cm处轻轻按后,起着压迫止血的作用,并能使创缘合拢对齐,右手持备用的胶粘剂,滴于伤口处使其能将创口完全覆盖上。等2min后两手指即可慢慢交叉式松开,观察伤口未再出血,无裂开后覆盖纱布。如遇到创口深达肌肉或骨膜,且有明显活动性出者,应按常规彻底清创后,局麻,分别结扎出血点,深层组织对缝,不留死腔,皮肤层仍用上述方法粘合,术后依创口部位深浅、污染程度、酌情给予相应处理。 3.2 2 在胸腔手术中的应用 开胸手术中因炎症粘连、瘤体过大及血运丰富和某些部位的损伤出血,其处理从来都是胸外科医生的一大难题。尽管一些先进的手术器材不断应用于临床,如现代化的电刀,激光和氩气刀,大大减少了术中的出血,但仍有部分病例由于粘连面广泛,剥离面血运丰富,单纯用电刀止血并不很理想,采用医用伤口快速胶粘剂为外科医生提供了一个全新的止血手段。此胶粘剂是以α-氰基丙烯酸正丁酯为主要成分,经加入阻聚剂、增稠剂、增塑剂及稳定剂等配制而成的一种透明液体,其粘合的主要对象是软组织,在其与微量水分、血液、组织液混合后数十秒钟内,在创面固化成网状膜,使血液凝固,并产生较大的胶结强度,以达到封闭创面及粘合组织的目的,对解决缝合术难以奏效的广泛渗血、泄漏、瘘管微小间隙创面等有效。方法可以采用医用伤口快速胶粘剂直接滴胶法或加用明胶海绵、自体组织等间接粘合法。滴胶均于瞬间粘合,固化一次成功,达到手术止血、防漏、粘合的良好效果,几乎无不良反应。 3 2 3 在眼科手术中的应用 在眼科手术中,缝合术往往需要医生具备很好的技术,手术要求条件也很高,由于要对眼部进行局麻,如果麻醉不当,对眼的损伤将是很大的。并且在手术中,针缝法如果稍微不慎,这对眼的威胁将是无法估量的。如果采用粘合法,就会变得很方便了。氰基丙烯酸酯类胶粘剂由于有一定的毒性和刺激作用,在眼科手术中一般选择聚合热低的如正辛酯为佳。其用于眼科实验和临床主要可归为以下三类;(1)用于外伤伤口、变性穿通的粘合以及用于眼球感染、溃疡等。(2)用于粘合手术切口及处理术后并发症。(3)粘合异体材料及其它。氰基丙烯酸酯类胶粘剂在眼科的应用以角膜疾病方面最为广泛。对于角膜小而不整齐的伤口,缝合后仍不能完全闭合,常有房水漏出,这种情况下使用胶粘剂是最佳选择。另外,角膜缘部分是眼科手术最常见的切口处,临床上将胶粘剂用于此部位已不罕见。应该指出,在角膜上应用胶粘剂,还要考虑胶粘剂下面是否有具抵抗力的细菌生长和角膜感染的发生,Cavanaugh等报道了三例在角膜应用胶粘剂后发生的角膜感染,他认为胶粘剂对组织的毒性作用、微生物的移地作用、应用治疗性接触镜和长期的广谱抗生素都可能促使粘合术发生角膜感染,而又被不透明的聚合物遮盖不易发觉,且其症状可能由于聚合物对眼组织的物理刺激作用而变的不透明, 所以感染初期常不被发现[9,17]。如果胶粘剂能在聚合后仍保持透明将在眼科具有十分重要的意义,可惜氰基丙烯酸酯类胶粘剂的聚合后变成白色不透明状,这是它在眼科应用的一个缺点,但同时也是它今后可发展的一个方向。 3.2 4 在其它方面的应用 除上述的几个方面以外,氰基丙烯酸酯类还可以应用于修补脑脊液鼻漏及颅内动脉瘤的加固及输卵管和肠瘘的粘堵。以往切口脑脊漏液的处理多采用局部换药、局部加压和加固缝合等方法,但由于漏口皮缘被脑脊液浸泡影响愈合能力,往往效果不佳,脑脊漏液易引起感染,应尽早封闭漏口;采用α-氰基丙烯酸正辛酯和α-氰基丙烯酸正丁酯(α-cyanoacry