2020高一数学新教材必修1教案学案 第三章 函数的概念及性质总结及测试(解析版)
- 格式:pdf
- 大小:395.68 KB
- 文档页数:11
第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.函数的概念对吗?(2)f(x)与f(a)有何区别与联系?提示:(1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y 是自变量的函数,当x 允许取某一具体值时,相应的y 值为与该自变量值对应的函数值.y =f (x )仅仅是函数符号,不表示“y 等于f 与x 的乘积”.在研究函数时,除用符号f (x )外,还常用g (x ),F (x ),G (x )等来表示函数.(2)f (x )与f (a )的区别与联系:f (a )表示当x =a 时,函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,一般情况下,它是一个变量,f (a )是f (x )的一个特殊值,如一次函数f (x )=3x +4,当x =8时,f (8)=3×8+4=28是一个常数.2.区间及有关概念 (1)一般区间的表示设a ,b ∈R ,且a <b ,规定如下:(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示. (2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.1.函数y =1x +1的定义域是( ) A .[-1,+∞) B .[-1,0) C .(-1,+∞) D .(-1,0) 2.若f (x )=11-x 2,则f (3)=________. 3.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________;(2){x|x>1}用区间表示为________.函数的概念【例1】(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.1.下列四个图象中,不是函数图象的是()A B C D2.下列各组函数中是相等函数的是()A .y =x +1与y =x 2-1x -1 B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2 求函数值【例2】 设f (x )=2x 2+2,g (x )=1x +2, (1)求f (2),f (a +3),g (a )+g (0)(a ≠-2),g (f (2)). (2)求g (f (x )).[思路点拨] (1)直接把变量的取值代入相应函数解析式,求值即可; (2)把f (x )直接代入g (x )中便可得到g (f (x )).函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则.3.已知f (x )=x 3+2x +3,求f (1),f (t ),f (2a -1)和f (f (-1))的值. 求函数的定义域[探究问题]1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域? 提示:不可以.如f (x )=x +1x 2-1.倘若先化简,则f (x )=1x -1,从而定义域与原函数不等价.2.若函数y =f (x +1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y =f (x )的定义域是什么?提示:[1,2]是自变量x 的取值范围. 函数y =f (x )的定义域是x +1的范围[2,3]. 【例3】 求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.(变结论)在本例求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.1.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合.这也是求某函数定义域的依据.2.函数的定义主要包括定义域和定义域到值域的对应法则,因此,判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.函数符号y=f(x)是学习的难点,它是抽象符号之一.首先明确符号“y=f(x)”为y是x的函数,它仅仅是函数符号,不是表示“y等于f与x的乘积”.1.思考辨析(1)区间表示数集,数集一定能用区间表示.()(2)数集{x|x≥2}可用区间表示为[2,+∞].()(3)函数的定义域和对应关系确定后,函数的值域也就确定了.()(4)函数值域中每一个数在定义域中一定只有一个数与之对应.()(5)函数的定义域和值域一定是无限集合.( ) 2.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =x 2C .y =|x |D .y =3x 3 3.将函数y =31-1-x的定义域用区间表示为________.4.已知函数f (x )=x +1x , (1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.3.1.2 函数的表示法 第1课时 函数的表示法函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗? 提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x )=⎩⎨⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.1.已知函数f (x )由下表给出,则f (3)等于( )2.二次函数的图象的顶点为(0,-1),对称轴为y 轴,则二次函数的解析式可以为( )A .y =-14x 2+1B .y =14x 2-1 C .y =4x 2-16 D .y =-4x 2+16 3.已知函数y =f (x )的图象如图所示,则其定义域是______.函数的三种表示方法【例1】 某商场新进了10台彩电,每台售价3 000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域的特征;③图象法中要注意是否连线.1.(1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )A B C D(2)由下表给出函数y=f(x),则f(f(1))等于()图象的画法及应用【例2】作出下列函数的图象并求出其值域.(1)y=-x,x∈{0,1,-2,3};(2)y=2x,x∈[2,+∞);(3)y=x2+2x,x∈[-2,2).描点法作函数图象的三个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图.(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象.(3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心圈.提醒:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.2.画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).函数解析式的求法[探究问题]已知f(x)的解析式,我们可以用代入法求f(g(x)),反之,若已知f(g(x)),如何求f(x).提示:若已知f(g(x))的解析式,我们可以用换元法或配凑法求f(x).【例3】(1)已知f(x+1)=x-2x,则f(x)=________;(2)已知函数f(x)是一次函数,若f(f(x))=4x+8,则f(x)=________;(3)已知函数f(x)对于任意的x都有f(x)-2f(-x)=1+2x,则f(x)=________.[思路点拨](1)用换元法或配凑法求解;(2)用待定系数法求解;(3)用方程组法求解.1.(变条件求函数解析式的四种常用方法(1)待定系数法:若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(2)换元法:设t=g(x),解出x,代入f(g(x)),求f(t)的解析式即可.(3)配凑法:对f(g(x))的解析式进行配凑变形,使它能用g(x)表示出来,再用x 代替两边所有的“g(x)”即可.(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:应用换元法求函数解析式时,务必保证函数在换元前后的等价性.1.函数有三种常用的表示方法,可以适时的选择,以最佳的方式表示函数.2.作函数图象必须要让作出的图象反映出图象的伸展方向,与x轴、y轴有无交点,图象有无对称性,并标明特殊点.3.求函数解析式的主要方法有:代入法、待定系数法、换元法、解方程组法(消元法),注意有的函数要注明定义域.1.思考辨析(1)任何一个函数都可以用解析法表示.()(2)函数的图象一定是定义区间上一条连续不断的曲线.()2.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x-1B.f(x)=3x+1 C.f(x)=3x+2 D.f(x)=3x+43.已知函数f(x),g(x)分别由下表给出.4.已知函数f(x)=x2-2x(-1≤x≤2).(1)画出f(x)图象的简图;(2)根据图象写出f(x)的值域.第2课时分段函数分段函数如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数是一个函数还是几个函数? 提示:分段函数是一个函数,而不是几个函数.1.下列给出的式子是分段函数的是( )①f (x )=⎩⎨⎧x 2+1,1≤x ≤5,2x ,x <1.②f (x )=⎩⎨⎧ x +1,x ∈R ,x 2,x ≥2.③f (x )=⎩⎨⎧ 2x +3,1≤x ≤5,x 2,x ≤1.④f (x )=⎩⎨⎧x 2+3,x <0,x -1,x ≥5.A .①②B .①④C .②④D .③④ 2.函数y =⎩⎨⎧x ,x ≥0,-x ,x <0的值域是________.3.函数f (x )=⎩⎨⎧x +1,x ≤1,-x +3,x >1,则f (f (4))=________.分段函数的求值问题【例1】已知函数f (x )=⎩⎨⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52的值;(2)若f (a )=3,求实数a 的值.1.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.已知函数值求字母取值的步骤: (1)先对字母的取值范围分类讨论. (2)然后代入不同的解析式中. (3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.1.函数f (x )=⎩⎨⎧x -3,x ≥10,f (f (x +5)),x <10,则f (7)=________.分段函数的解析式【例2】 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 关于x 的函数解析式,并画出大致图象.[思路点拨] 可按点E 所在的位置分E 在线段AB ,E 在线段AD 及E 在线段CD 三类分别求解.1.当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.2.通过本例让学生初步尝试用分段函数解决实际问题的意识,培养学生的建模素养.2.某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算). 如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分段函数的图象及应用[探究问题]1.函数f (x )=|x -2|能用分段函数的形式表示吗?能否作出其图象? 提示:能.f (x )=⎩⎨⎧x -2,x ≥2,2-x ,x <2.函数f (x )的图象如图所示.2.结合探究点1,你能说一下画含有绝对值的函数图象的方法吗? 提示:含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.【例3】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示f (x ); (2)画出f (x )的图象; (3)写出函数f (x )的值域.[思路点拨] (1)分-2<x <0和0≤x ≤2两种情况讨论,去掉绝对值可把f (x )写成分段函数的形式;(2)利用(1)的结论可画出图象;(3)由(2)中得到的图象,找到图象最高点和最低点的纵坐标,可得值域.把本例条件改为“分段函数图象的画法作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.1.分段函数是一个函数,而不是几个函数.2.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.3.分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一直角坐标系中,根据分段函数每段的定义区间和表达式依次画出图象,要注意确定每段图象的端点是空心点还是实心点,各段函数图象组合到一起就可得到整个分段函数的图象.1.思考辨析(1)分段函数由几个函数构成.( )(2)函数f (x )=⎩⎨⎧x +1,x ≤1,-x +3,x >1是分段函数.( )2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( )A.15 B .3 C.23 D.1393.函数y =f (x )的图象如图所示,则其解析式为________.4.已知f (x )=⎩⎨⎧x 2,-1≤x ≤1,1,x >1或x <-1.(1)画出f (x )的图象; (2)求f (x )的定义域和值域.3.2 函数的基本性质 3.2.1 单调性与最大(小)值 第1课时 函数的单调性1.增函数与减函数的定义12提示:定义中的x1,x2有以下3个特征:(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.思考2:函数y=1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.1.函数y =f (x )的图象如图所示,其增区间是( ) A .[-4,4] B .[-4,-3]∪[1,4] C .[-3,1] D .[-3,4]2.下列函数中,在区间(0,+∞)上是减函数的是( ) A .y =-1x B .y =x C .y =x 2 D .y =1-x 3.函数f (x )=x 2-2x +3的单调减区间是________. 求函数的单调区间【例1】 求下列函数的单调区间,并指出该函数在其单调区间上是增函数还是减函数.(1)f (x )=-1x ;(2)f (x )=⎩⎨⎧2x +1,x ≥1,5-x ,x <1;(3)f (x )=-x 2+2|x |+3.求函数单调区间的方法(1)利用基本初等函数的单调性,如本例(1)和(2),其中分段函数的单调区间要根据函数的自变量的取值范围分段求解;(2)利用函数的图象,如本例(3).提醒:若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开,如本例(3).1.(1)根据如图所示,写出函数在每一单调区间上函数是增函数还是减函数;(2)写出y =|x 2-2x -3|的单调区间. 函数单调性的判定与证明【例2】 证明函数f (x )=x +1x 在(0,1)上是减函数. [思路点拨] 设元0<x 1<x 2<1―→作差:f (x 1)-f (x 2) ――→变形判号:f (x 1)>f (x 2)――→结论减函数利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.2.试用函数单调性的定义证明:f (x )=2x x -1在(1,+∞)上是减函数.函数单调性的应用[探究问题]1.若函数f (x )是其定义域上的增函数,且f (a )>f (b ),则a ,b 满足什么关系.如果函数f (x )是减函数呢?提示:若函数f (x )是其定义域上的增函数,那么当f (a )>f (b )时,a >b ;若函数f (x )是其定义域上的减函数,那么当f (a )>f (b )时,a <b .2.决定二次函数f (x )=ax 2+bx +c 单调性的因素有哪些? 提示:开口方向和对称轴的位置,即字母a 的符号及-b2a 的大小.【例3】 (1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[思路点拨] (1)分析f (x )的对称轴与区间的关系――→数形结合建立关于a 的不等式――→ 求a 的范围(2)f (2x -3)>f (5x -6)――――――――――――――――→f (x )在(-∞,+∞)上是增函数建立关于x 的不等式――→ 求x 的范围1.(变条件函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.1.定义单调性时应强调x 1,x 2在其定义域内的任意性,其本质是把区间上无限多个函数值的大小比较转化为两个任意值的大小比较.2.证明函数的单调性(利用定义)一定要严格遵循设元、作差、变形、 定号、结论的步骤,特别在变形上,一定要注意因式分解、配方等技巧的运用,直到符号判定水到渠成才可.3. 已知函数单调性求参数的范围时,要树立两种意识:一是等价转化意识, 如f (x )在D 上递增,则f (x 1)<f (x 2)⇔x 1<x 2.二是数形结合意识,如处理一(二)次函数及反比例函数中的含参数的范围问题.1.思考辨析(1)所有的函数在其定义域上都具有单调性.( )(2)若函数y =f (x )在区间[1,3]上是减函数,则函数y =f (x )的单调递减区间是[1,3].( )(3)函数f (x )为R 上的减函数,则f (-3)>f (3).( )(4)若函数y =f (x )在定义域上有f (1)<f (2),则函数y =f (x )是增函数.( ) (5)若函数f (x )在(-∞,0)和(0,+∞)上单调递减,则f (x )在(-∞,0)∪(0,+∞)上单调递减.( )2.如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法错误的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性 3.如果函数f (x )=x 2-2bx +2在区间[3,+∞)上是增函数,则b 的取值范围为( )A .b =3B .b ≥3C .b ≤3D .b ≠3 4.证明:函数y =x x +1在(-1,+∞)上是增函数.第2课时 函数的最大(小)值函数最大值与最小值提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才是函数的最大值,否则不是.1.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是()A.-1,0B.0,2 C.-1,2 D.12,22.设函数f(x)=2x-1(x<0),则f(x)()A.有最大值B.有最小值C.既有最大值又有最小值D.既无最大值又无最小值3.函数f(x)=1x,x∈[1,2],则f(x)的最大值为________,最小值为________.利用函数的图象求函数的最值(值域)【例1】 已知函数f (x )=⎩⎨⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在直角坐标系内画出f (x )的图象;(2)根据函数的图象写出函数的单调区间和值域.利用图象求函数最值的方法 (1)画出函数y =f (x )的图象;(2)观察图象,找出图象的最高点和最低点;(3)写出最值,最高点的纵坐标是函数的最大值,最低点的纵坐标是函数的最小值.1.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x ,x >1,求f (x )的最大值、最小值.利用函数的单调性求最值(值域)【例2】 已知函数f (x )=2x +1x +1. (1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[2,4]上的最大值和最小值.1.利用单调性求函数的最大(小)值的一般步骤 (1)判断函数的单调性. (2)利用单调性求出最大(小)值. 2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.2.求函数f(x)=x+4x在[1,4]上的最值.函数最值的实际应用【例3】一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元.(年利润=年销售总收入-年总投资)(1)求y(万元)与x(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?解实际应用题的四个步骤(1)审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量的条件关系.(2)建模:建立数学模型,列出函数关系式.(3)求解:分析函数性质,利用数学知识探究问题解法(一定注意自变量的取值范围).(4)回归:数学问题回归实际问题,写出答案.3.将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润为多少?二次函数的最值问题[探究问题]1.二次函数f (x )=ax 2+bx +c (a >0)的对称轴与区间[m ,n ]可能存在几种位置关系,试画草图给予说明?提示:2.求二次函数f (x )=ax 2+bx +c 在[m ,n ]上的最值,应考虑哪些因素? 提示:若求二次函数f (x )在[m ,n ]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.【例4】 已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值. [思路点拨] f (x )=x 2-ax +1――→分类讨论分析x =a 2与[0,1]的关系――→数形结合求f (x )的最大值1.在题设条件不变的情况下,求f (x )在[0,1]上的最小值.2.在本例条件不变的情况下,若a =1,求f (x )在[t ,t +1](t ∈R )上的最小值.二次函数在闭区间上的最值设f (x )=ax 2+bx +c (a >0),则二次函数f (x )在闭区间[m ,n ]上的最大值、最小值有如下的分布情况:1.函数的最大(小)值,包含两层意义:一是存在,二是在给定区间上所有函数值中最大(小)的,反映在函数图象上,函数的图象有最高点或最低点.2.求函数的最值与求函数的值域类似,常用的方法是:(1)图象法,即画出函数的图象,根据图象的最高点或最低点写出最值;(2)单调性法,一般需要先确定函数的单调性,然后根据单调性的意义求出最值;(3)对于二次函数还可以用配方法研究,同时灵活利用数形结合思想和分类讨论思想解题.3.通过函数最值的学习,渗透数形结合思想,树立以形识数的解题意识.1.思考辨析(1)任何函数都有最大(小)值.()(2)函数f(x)在[a,b]上的最值一定是f(a)(或f(b)).()(3)函数的最大值一定比最小值大.()2.函数y=x2-2x,x∈[0,3]的值域为()A.[0,3]B.[-1,0] C.[-1,+∞)D.[-1,3]3.函数y=ax+1在区间[1,3]上的最大值为4,则a=______.4.已知函数f(x)=2x-1(x∈[2,6]).(1)判断函数f(x)的单调性,并证明;(2)求函数的最大值和最小值.3.2.2 奇偶性 第1课时 奇偶性的概念函数的奇偶性提示:定义域关于原点对称.1.下列函数是偶函数的是( )A .y =xB .y =2x 2-3 C .y =1xD .y =x 2,x ∈[0,1]2.下列图象表示的函数具有奇偶性的是( )A B C D3.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1 D .无法确定4.若f (x )为R 上的偶函数,且f (2)=3,则f (-2)=________. 函数奇偶性的判断【例1】 判断下列函数的奇偶性: (1)f (x )=x 3+x ;(2)f (x )=1-x 2+x 2-1; (3)f (x )=2x 2+2xx +1;(4)f (x )=⎩⎨⎧x -1,x <0,0,x =0,x +1,x >0.判断函数奇偶性的两种方法 (1)定义法:(2)图象法:1.下列函数中,是偶函数的有________.(填序号) ①f (x )=x 3;②f (x )=|x |+1;③f (x )=1x 2; ④f (x )=x +1x ;⑤f (x )=x 2,x ∈[-1,2]. 奇偶函数的图象问题【例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.2.如图是函数f(x)=1x2+1在区间[0,+∞)上的图象,请据此在该坐标系中补全函数f(x)在定义域内的图象,请说明你的作图依据.利用函数的奇偶性求值[探究问题]1.对于定义域内的任意x,若f(-x)+f(x)=0,则函数f(x)是否具有奇偶性?若f(-x)-f(x)=0呢?提示:由f(-x)+f(x)=0得f(-x)=-f(x),∴f(x)为奇函数.由f(-x)-f(x)=0得f(-x)=f(x),∴f(x)为偶函数.2.若f(x)是奇函数且在x=0处有定义,则f(0)的值可求吗?若f(x)为偶函数呢?提示:若f(x)为奇函数,则f(0)=0;若f(x)为偶函数,无法求出f(0)的值.【例3】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;(2)已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,则f(3)=________.[思路点拨](1)f(x)是偶函数――→定义域关于原点对称求a的值――→图象关于y轴对称求b的值(2)令g(x)=x7-ax5+bx3+cx―→判断g(x)的奇偶性―→计算g(-3)―→代入求得f(3)利用奇偶性求参数的常见类型及策略(1)定义域含参数:奇、偶函数f(x)的定义域为[a,b],根据定义域关于原点对称,利用a+b=0求参数.(2)解析式含参数:根据f(-x)=-f(x)或f(-x)=f(x)列式,比较系数即可求解.3.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.1.奇偶性是函数“整体”性质,只有对函数f(x)定义域内的每一个值x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇函数(或偶函数).2.函数的奇偶性是其相应图象特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.1.思考辨析(1)函数f(x)=x2,x∈[0,+∞)是偶函数.()(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.()(3)不存在既是奇函数,又是偶函数的函数.()(4)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.()2.函数f(x)=|x|+1是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知函数f (x )=ax 2+2x 是奇函数,则实数a =______.4.已知函数y =f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示.(1)请补出完整函数y =f (x )的图象; (2)根据图象写出函数y =f (x )的增区间; (3)根据图象写出使f (x )<0的x 的取值集合.第2课时 奇偶性的应用用奇偶性求解析式【例1】 (1)函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求f (x )的解析式;(2)设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式.[思路点拨] (1)设x <0,则-x >0――→当x >0f (x )=-x +1求f (-x )――→奇函数得x <0时f (x )的解析式――→奇函数的性质f (0)=0――→分段函数f (x )的解析式(2)f (x )+g (x )=1x -1――→用-x 代式中x得f (-x )+g (-x )=1-x -1――→奇偶性得f (x )-g (x )=-1x +1――→解方程组得f (x ),g (x )的解析式把本例(2)利用函数奇偶性求解析式的方法(1)“求谁设谁”,既在哪个区间上求解析式,x 就应在哪个区间上设. (2)要利用已知区间的解析式进行代入.(3)利用f (x )的奇偶性写出-f (x )或f (-x ),从而解出f (x ).提醒:若函数f (x )的定义域内含0且为奇函数,则必有f (0)=0,但若为偶函数,未必有f (0)=0.函数单调性和奇偶性的综合问题[探究问题]1.如果奇函数f (x )在区间(a ,b )上单调递增,那么f (x )在(-b ,-a )上的单调性如何?如果偶函数f (x )在区间(a ,b )上单调递减,那么f (x )在(-b ,-a )上的单调性如何?提示:如果奇函数f (x )在区间(a ,b )上单调递增,那么f (x )在(-b ,-a )上单调递增;如果偶函数f (x )在区间(a ,b )上单调递减,那么f (x )在(-b ,-a )上单调递增.2.你能否把上述问题所得出的结论用一句话概括出来?提示:奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.3.若偶函数f (x )在(-∞,0)上单调递增,那么f (3)和f (-2)的大小关系如何?。
第 1 页 共 14 页 2020-2021学年高中数学必修一第三章《函数的概念与性质》测试卷一.单项选择题(共10小题,每小题5分,共50分)1.已知函数f (x )的定义域是[﹣1,1],则函数g (x )=1−x 的定义域是( ) A .[0,1] B .(0,1) C .[0,1) D .(0,1]2.函数f (x )满足f (x )﹣2f (1﹣x )=x ,则函数f (x )等于( ) A .x−23 B .x+23 C .x ﹣1 D .﹣x +13.函数f (2x ﹣1)的定义域是[1,2],则函数f (x +1)的定义域是( )A .[1,3]B .[2,4]C .[0,1]D .[0,2] 4.若当x ∈[0,m ]时,函数y =x 2﹣3x ﹣4的值域为[−254,﹣4],则实数m 的取值范围是( )A .(0,4]B .[32,4]C .[32,3]D .[32,+∞] 5.函数f (x )=√2x −x 2的单调递增区间为( )A .(﹣∞,1)B .(1,2)C .(0,1)D .(1,+∞) 6.函数f (x )=3x+22x+1,x ∈[3,+∞)的值域是( ) A .[117,+∞) B .[32,+∞) C .[117,2) D .(32,117] 7.已知函数f (x )=x 5+ax 3+bx ﹣8,若f (﹣3)=10,则f (3)=( )A .﹣26B .26C .18D .108.设函数f (x )=x 3+(a ﹣1)x 2+ax ,若f (x )为奇函数,则a 的值为( )A .0B .1C .﹣1D .1或09.某商场以每件30元的价格购进一种商品,试销售中发现,这种商品每天的销量m (件)与每件的售价x (元)满足一次函数:m =162﹣3x .若要每天获得最大的销售利润,每件商品的售价应定为( )A .30元B .42元C .54元D .越高越好10.已知定义在R 上的偶函数f (x )满足f (x )=f (2﹣x ),且x ∈[0,1]时,f (x )=x 2,则f(−112)=( ) A .14 B .12 C .34D .1。
高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。
【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。
一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。
【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。
以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。
医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。
高中数学必修一第三章函数的概念与性质知识点梳理单选题>0,1、已知函数f(x)=(m2−m−1)x m3−1是幂函数,对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2若a,b∈R,a+b<0,则f(a)+f(b)的值()A.恒大于0B.恒小于0C.等于0D.无法判断答案:B解析:根据函数为幂函数以及函数在(0,+∞)的单调性,可得m,然后可得函数的奇偶性,结合函数的单调性以及奇偶性,可得结果.由题可知:函数f(x)=(m2−m−1)x m3−1是幂函数则m2−m−1=1⇒m=2或m=−1>0又对任意的x1,x2∈(0,+∞)且x1≠x2,满足f(x1)−f(x2)x1−x2所以函数f(x)为(0,+∞)的增函数,故m=2所以f(x)=x7,又f(−x)=−f(x),所以f(x)为R单调递增的奇函数由a+b<0,则a<−b,所以f(a)<f(−b)=−f(b)则f(a)+f(b)<0故选:B>小提示:本题考查幂函数的概念以及函数性质的应用,熟悉函数单调递增的几种表示,比如f(x1)−f(x2)x1−x20,[f(x1)−f(x2)]⋅(x1−x2)>0,属中档题.<0,且f(2)=0,则不2、定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)x2−x1等式xf(x)>0的解集是()A.(−2,2)B.(−2,0)∪(2,+∞)C.(−∞,−2)∪(0,2)D.(−∞,−2)∪(2,+∞)分析:依题意可得f(x)在[0,+∞)上单调递减,根据偶函数的性质可得f (x )在(−∞,0)上单调递增,再根据f(2)=0,即可得到f (x )的大致图像,结合图像分类讨论,即可求出不等式的解集; 解:因为函数f(x)满足对任意的x 1,x 2∈[0,+∞),(x 1≠x 2),有f (x 2)−f (x 1)x 2−x 1<0,即f(x)在[0,+∞)上单调递减,又f (x )是定义在R 上的偶函数,所以f (x )在(−∞,0)上单调递增, 又f(2)=0,所以f (−2)=f (2)=0,函数的大致图像可如下所示:所以当−2<x <2时f (x )>0,当x <−2或x >2时f (x )<0, 则不等式xf(x)>0等价于{f(x)>0x >0 或{f(x)<0x <0,解得0<x <2或x <−2,即原不等式的解集为(−∞,−2)∪(0,2); 故选:C3、已知函数f (x )对于任意x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,且当x >0时,f (x )>2,若已知f (2)=3,则不等式f (x )+f (2x −2)>6的解集为( ) A .(2,+∞)B .(1,+∞)C .(3,+∞)D .(4,+∞)分析:设g (x )=f (x )−2,分析出函数g (x )为R 上的增函数,将所求不等式变形为g (3x −2)>g (4),可得出3x −2>4,即可求得原不等式的解集. 令g (x )=f (x )−2,则f (x )=g (x )+2,对任意的x 、y ∈R ,总有f (x )+f (y )=f (x +y )+2,则g (x )+g (y )=g (x +y ), 令y =0,可得g (x )+g (0)=g (x ),可得g (0)=0,令y =−x 时,则由g (x )+g (−x )=g (0)=0,即g (−x )=−g (x ), 当x >0时,f (x )>2,即g (x )>0,任取x 1、x 2∈R 且x 1>x 2,则g (x 1)+g (−x 2)=g (x 1−x 2)>0,即g (x 1)−g (x 2)>0,即g (x 1)>g (x 2), 所以,函数g (x )在R 上为增函数,且有g (2)=f (2)−2=1,由f (x )+f (2x −2)>6,可得g (x )+g (2x −2)+4>6,即g (x )+g (2x −2)>2g (2), 所以,g (3x −2)>2g (2)=g (4),所以,3x −2>4,解得x >2. 因此,不等式f (x )+f (2x −2)>6的解集为(2,+∞). 故选:A. 4、函数f(x)=0√x−2定义域为( )A .[2,+∞)B .(2,+∞)C .(2,3)∪(3,+∞)D .[2,3)∪(3,+∞) 答案:C分析:要使函数有意义,分母不为零,底数不为零且偶次方根被开方数大于等于零. 要使函数f(x)=0√x−2有意义,则{x −3≠0x −2>0,解得x >2且x ≠3, 所以f(x)的定义域为(2,3)∪(3,+∞). 故选:C.小提示:具体函数定义域的常见类型: (1)分式型函数,分母不为零;(2)无理型函数,偶次方根被开方数大于等于零;(3)对数型函数,真数大于零;(4)正切型函数,角的终边不能落在y轴上;(5)实际问题中的函数,要具有实际意义.5、下列函数既是偶函数又在(0,+∞)上单调递减的是()A.y=x+1x B.y=−x3C.y=2−|x|D.y=−1x2答案:C分析:逐项判断函数奇偶性和单调性,得出答案.解析:A项y=x+1x,B项y=−x3均为定义域上的奇函数,排除;D项y=−1x2为定义域上的偶函数,在(0,+∞)单调递增,排除;C项y=2−|x|为定义域上的偶函数,且在(0,+∞)上单调递减.故选:C.6、函数f(x)为奇函数,g(x)为偶函数,在公共定义域内,下列结论一定正确的是()A.f(x)+g(x)为奇函数B.f(x)+g(x)为偶函数C.f(x)g(x)为奇函数D.f(x)g(x)为偶函数答案:C分析:依次构造函数,结合函数的奇偶性的定义判断求解即可.令F1(x)=f(x)+g(x),则F1(−x)=f(−x)+g(−x)=−f(x)+g(x)≠−F1(x),且F1(−x)≠F1(x),∴F1(x)既不是奇函数,也不是偶函数,故A、B错误;令F2(x)=f(x)g(x),则F2(−x)=f(−x)g(−x)=−f(x)g(x)=−F2(x),且F2(−x)≠F2(x),∴F2(x)是奇函数,不是偶函数,故C正确、D错误;故选:C7、已知f(2x−1)=4x2+3,则f(x)=().A.x2−2x+4B.x2+2x C.x2−2x−1D.x2+2x+4答案:D分析:利用换元法求解函数解析式. 令t =2x −1,则x =t+12,f (t )=4(t+12)2+3=t 2+2t +4;所以f(x)=x 2+2x +4. 故选:D.8、下列四组函数中,表示相同函数的一组是( ) A .f(x)=x 2−x x,g (x )=x −1B .f(x)=√x 2,g(x)=(√x)2C . f (x )=x 2−2,g (t )=t 2-2D .f (x )=√x +1⋅√x −1,g(x)=√x 2−1 答案:C分析:根据相同函数的判断原则进行定义域的判断即可选出答案. 解:由题意得: 对于选项A :f(x)=x 2−x x的定义域为{x|x ≠0},g(x)=x −1的定义域为R ,所以这两个函数的定义域不同,不表示相同的函数,故A 错误;对于选项B :f(x)=√x 2的定义域为R ,g(x)=(√x)2的定义域为{x|x ≥0},所以这两个函数的定义域不同,不表示相同的函数,故B 错误;对于选项C :f (x )=x 2−2的定义域为R ,g (t )=t 2−2的定义域为R ,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C 正确;对于选项D :f (x )=√x +1⋅√x −1的定义域为{x|x ≥1},g(x)=√x 2−1的定义域为{x|x ≤−1或x ≥1},所以这两个函数的定义域不同,不表示相同的函数,故D 错误. 故选:C 多选题9、已知f(2x −1)=4x 2,则下列结论正确的是A .f(3)=9B .f(−3)=4C .f(x)=x 2D .f(x)=(x +1)2答案:BD解析:利用换元法求出f(x)的解析式,再对选项进行一一验证,即可得答案. 令t =2x −1⇒x =t+12,∴f(t)=4(t+12)2=(t +1)2.∴f(3)=16,f(−3)=4,f(x)=(x +1)2. 故选:BD.小提示:本题考查换元法求函数的解析式、函数值的求解,考查运算求解能力,属于基础题.10、已知函数f (x )={kx +1,x ≤0log 2x,x >0,下列是关于函数y =f [f (x )]+1的零点个数的判断,其中正确的是( )A .当k >0时,有3个零点B .当k <0时,有2个零点C .当k >0时,有4个零点D .当k <0时,有1个零点 答案:CD解析:令y =0得f [f (x )]=−1,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.令y =f [f (x )]+1=0,得f [f (x )]=−1,设f (x )=t ,则方程f [f (x )]=−1等价为f (t )=﹣1, ①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .小提示:本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.11、下列函数既是偶函数,在(0,+∞)上又是增函数的是()A.y=x2+1B.y=2x C.y=|x|D.y=|1x−x|答案:AC分析:根据偶函数的定义和增函数的性质,逐个分析判断即可得解.对A,开口向上,且对称轴为x=0,所以y=x2+1是偶函数,在(0,+∞)上是增函数,故A正确;对B,y=2x为奇函数,故B错误;对C,y=|x|为偶函数,当x∈(0,+∞)时,y=x为增函数,故C正确;对D,令f(x)=|1x −x|,f(−x)=|1−x+x|=|1x−x|=f(x)为偶函数,当x∈(0,1),y=1x−x为减函数,故D错误,故选:AC填空题12、有对应法则f:(1)A={0,2},B={0,1},x→x2;(2)A={-2,0,2},B={4},x→x2;(3)A=R,B={y|y>0},x→1x2;(4)A=R,B=R,x→2x+1;(5)A={(x,y)|x,y∈R},B=R,(x,y)→x+y.其中能构成从集合A到集合B的函数的有________(填序号).答案:(1)(4)分析:利用函数的定义判断.(1)由函数的定义知,正确;(2)当x=0时,B中不存在数值与之对应,故错误;(3)当x=0时,B中不存在数值与之对应,故错误;(4)由函数的定义知,正确;(5)因为集合A不是数集,故错误;所以答案是:(1)(4)13、函数y=√7+6x−x2的定义域是_____.答案:[−1,7].分析:由题意得到关于x的不等式,解不等式可得函数的定义域.由已知得7+6x−x2≥0,即x2−6x−7≤0解得−1≤x≤7,故函数的定义域为[−1,7].小提示:求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.14、已知函数f(x)={|lnx|,x>0,x2+4x+3,x≤0,若函数g(x)=[f(x)]2−4f(x)+m+1恰有8个零点,则m的范围为___________.答案:2≤m<3解析:设f(x)=t,则g(x)=[f(x)]2−4f(x)+m+1=0,转化为t2−4t+m+1=0,由g(x)有8个零点,转化为方程f(x)=t,t∈(0,3]有4个不同的实根,即m+1=−t2+4t在t∈(0,3]内有2个不同的实根,利用数形结合法求解.画出函数f(x)={|lnx|,x>0,x2+4x+3,x≤0,的图像如图所示,设f(x)=t,由g(x)=[f(x)]2−4f(x)+m+1=0,得t2−4t+m+1=0.因为g(x)有8个零点,所以方程f(x)=t有4个不同的实根,结合f(x)的图像可得在t∈(0,3]内有4个不同的实根.所以方程t2−4t+m+1=0必有两个不等的实数根,即m+1=−t2+4t在t∈(0,3]内有2个不同的实根,画出函数y=−t2+4t的图象,如图所示:结合图像可知,3≤m+1<4,故2≤m<3.小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解解答题15、已知幂函数f(x)=(m2−2m+2)x3k−k2(k∈Z)是偶函数,且在(0,+∞)上单调递增.(1)求函数f(x)的解析式;(2)若f(2x−1)<f(2−x),求x的取值范围:(3)若实数a,b(a,b∈R∗)满足2a+3b=7m,求3a+1+2b+1的最小值.答案:(1)f(x)=x2;(2)(−1,1);(3)2.分析:(1)由幂函数定义得m值,由单调性得k的范围,结合奇偶性得k值.(2)利用偶函数和单调性解不等式;(3)由(1)得2a+3b=7,用“1”的代换凑配出定值,由基本不等式得最小值.(1)f(x)是幂函数,则m2−2m+2=1,m=1,又f(x)是偶函数,所以3k−k2=k(3−k)是偶数,f(x)在(0,+∞)上单调递增,则3k−k2>0,0<k<3,所以k=1或2.所以f(x)=x2;(2)由(1)偶函数f(x)在[0,+∞)上递增,f(2x−1)<f(2−x)⇔f(|2x−1|)<f(|2−x|)⇔|2x−1|2<|2−x|2⇔−1<x<1.所以x的范围是(−1,1).(3)由(1)2a+3b=7,2(a+1)+3(b+1)=12,a>0,b>0,3 a+1+2b+1=112(3a+1+2b+1)[2(a+1)+3(b+1)]=112(12+9(b+1)a+1+2(a+1)b+1)≥112(12+2√9(b+1)a+1×4(a+1)b+1)=2,当且仅当9(b+1)a+1=4(a+1)b+1,即a=2,b=1时等号成立.所以3a+1+2b+1的最小值是2.。
3。
1。
3 函数的奇偶性第2课时学习目标1.掌握函数奇偶性的简单应用。
2.了解函数图像的对称轴、对称中心满足的条件。
自主预习1.函数的奇偶性与单调性的性质(1)若f(x)为奇函数且在区间[a,b](a<b)上为增函数(减函数),则f(x)在[—b,—a]上为(函数),即在关于原点对称的区间上单调性.(2)若f(x)为偶函数且在区间[a,b](a〈b)上为增函数(减函数),则f(x)在[-b,-a]上为(函数),即在关于原点对称的区间上单调性.2.奇偶函数的运算性质在公共定义域内:(1)两个奇函数的和函数是函数,积函数是函数;(2)两个偶函数的和函数、积函数都是函数;(3)一个奇函数、一个偶函数的积函数是函数。
3.函数的对称轴与对称中心(1)若函数f(x)的定义域为D,对∀x∈D都有f(T+x)=f (T—x)(T为常数),则x=是f(x)的对称轴.(2)若函数f(x)的定义域为D,对∀x∈D都有f(a+x)+f(a-x)=2b(a,b为常数),则是f(x)的对称中心.课堂探究题型一利用奇偶性求函数解析式例1(1)函数f(x)是R上的偶函数,且当x<0时,f(x)=x(x-1),则当x〉0时,f(x)=。
(2)函数f(x)为R上的奇函数,当x〉0时,f(x)=-2x2+3x+1,则f(x)=.【训练1】(1)设函数f(x)是定义在R上的奇函数,当x〈0时,f(x)=-x2-x,求函数f(x)的解析式;(2)已知f(x)是R上的偶函数,当x∈(0,+∞)时,f(x)=x2+x—1,当x∈(-∞,0)时,求f(x)的解析式.题型二利用奇偶性研究函数的性质例2研究函数f(x)=x2—2|x|+1的单调性,并求出f(x)的最值.【训练2】研究函数f(x)=x+1的单调性,并写出函数的值x域。
题型三证明函数图像的对称性例3求证:二次函数f(x)=—x2—2x+1的图像关于x=-1对称。
【训练3】证明函数f(x)=x的图像关于点(—1,1)对x+1称.课堂练习1。
第三章函数的概念与性质小结与复习教案第1课时一、内容和内容解析1.内容函数的概念、表示和函数单调性的复习课2. 内容解析这是在学生已经学习完本章内容的基础上进行的复习课,复习课一共两节课,这是第一节复习课.在这一章中,学生从用变量之间依赖关系描述函数上升到用集合语言和对应关系刻画函数,建立了完整的函数概念,并体会集合语言和对应关系在刻画函数概念中的作用.这是一个难点,因此在复习的过程中还要巩固.除此之外,还要了解构成函数的要素,能求简单函数的定义域,能根据实际的情况用不同的函数表示方法表示函数,了解简单的分段函数,并能简单应用.同样地,在研究函数单调性的过程中,能够使用符号化的语言来描述,这是学生学习这部分内容时的一个难点. 这样一种从形象直观到定性刻画再到定量刻画的研究过程,以及通过引入数学符号、借助代数语言精确刻画刻画定量变化规律的方法,体现了数学抽象的一般过程,对于培养学生的数学抽象能力具有重要意义.基于以上分析,确定教学重点:复习建立在集合与对应关系的函数概念以及函数单调性的符号语言刻画和单调性的应用.二、目标和目标解析1.目标(1)理解函数的概念和表示方法,并能应用函数的概念解决一些问题;(2)掌握函数单调性的概念,会用符号语言表达单调性、最值,理解它们的作用和实际意义;(3)能用定义证明简单函数的单调性;(4)能运用所学的知识解决一些数学问题和实际问题.2.目标解析达成上述目标的标志是:(1)能用集合间的对应关系的观点定义函数,能根据实际的问题表示函数;(2)知道用符号语言刻画函数单调性时,“任意”“都有”等关键词的含义;能够从函数图象,或通过代数推理,得出函数的单调递增、单调递减区间;知道函数的单调性反映了现实世界中事物在量的增加或减小上的变化趋势.(3)会用函数单调性的定义,按一定的步骤证明函数的单调性;(4)会用函数最大值、最小值的定义,按一定的步骤求函数的最大(小)值.三、教学问题诊断分析学生已经学习了相关的知识,在这节复习课上,要巩固前面学习的相关内容,让学生进一步体会用数学的语言和符号化的方式表达数学概念,表达函数的概念、函数的性质等.作为复习课,在教学的过程中也要充分利用信息技术展示函数的对应关系、函数的单调变化规律、函数的最值等,也可以用表格形式加强自变量从小到大时函数值的大小变化趋势等,数形结合地提出问题,给学生设置一条从定性到定量、从粗糙到精确的归纳过程,引导学生逐步抽象出函数单调性的定义,再通过辨析、练习帮助学生理解定义.另外,在教学的过程中,还要有一定的习题,让学生通过习题,自己体会函数的概念和函数的性质等,通过习题,体会这些概念和性质的应用,并体会一些内容的综合运用.根据以上分析,确定教学难点是:符号化的语言表述,对量词的使用和运用函数的单调性解决问题.四、教学支持条件分析为使学生更好地理解形式化定义,降低归纳定义过程中的难度,可利用计算工具,采用动态方式展现函数图象、展示变化规律等.五、教学过程设计(一)引入问题1:初中函数概念和高中函数概念的区别是什么?(1)请说出初中函数的定义;(2)请说出高中函数的定义;(3)辨析这两者有什么不同.师生活动:教师提出问题,前2个问题学生自主回答,第3个问题由学生之间讨论、分析并总结.设计意图:让学生复习函数的概念,并通过对比初中和高中的概念区别,进一步体会函数是建立在集合间的对应关系.(二)函数的概念和表示法的巩固师生活动:学生先独立思考,计算,黑板板书(或者利用信息技术将学生的书写过程展示).设计意图:让学生体会在一个熟知的二次函数中,利用单调性解决数学问题.(四)课堂小结问题11:回答下列问题(1)在解决有关函数概念的问题,以及利用函数的概念解决其他问题的时候,有什么需要特别注意的问题吗?(2)在处理函数单调性的问题时,有什么需要注意的吗?师生活动:学生先独立思考,然后讨论,发表观点,教师进行归纳.设计意图:让学生进一步体会和注意,处理有关函数问题的时候,需要注意的问题.六、目标检测设计设计意图:本题通过绘制函数图象,能够观察出(也可以严格的证明)它是一个增函数,因此将f(2-a2)>f(a)转化为1-a2>a,解二次不等式得到结果. 这道题目将分段函数,函数的图象,函数的单调性充分综合,是检测学生综合运用本章知识分析和解决问题的能力.。
3.1 函数的概念及其表示3.1.1 函数的概念【学习目标】1. 函数的概念 (1)函数的定义设A ,B 是 ,如果对于集合A 中的 ,按照某种确定的对应关系f ,在集合B 中都有 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作 . (2)函数的定义域与值域函数y =f (x )中,x 叫做 , A 叫做函数的定义域,与x 的值相对应的y 值叫做 ,函数值的集合 叫做函数的值域.显然,值域是集合B 的 . (3)对应关系f :除解析式、图象表格外,还有其他表示 对应关系的方法,引进符号f 统一表示对应关系. 注意:判断对应关系是否为函数的2个条件 ①A 、B 必须是非空数集.①A 中任意一元素在B 中有且只有一个元素与之对应. 2.函数的三要素由函数的定义可知,一个函数的构成要素为: 、 和 。
3.相同函数值域是由 和 决定的,如果两个函数的定义域和 相同,我们就称这两个函数是同一函数.两个函数如果仅对应关系相同,但定义域不同,则它们相同的函数. 4. 区间及有关概念 (1)一般区间的表示.设a ,b ①R ,且a <b ,规定如下:{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2)特殊区间的表示.定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号【小试牛刀】判断正误(正确的打“√”,错误的打“×”)(1)根据函数的定义,定义域中的一个x可以对应着不同的y.()(2)函数的定义域和值域一定是无限集合.()(3)函数的定义域和对应关系确定后,函数的值域也就确定了.()(4)两个函数相同指定义域和值域相同的函数.()(5)f(x)=3x+4与f(t)=3t+4是相同的函数.()(6)函数值域中每一个数在定义域中有唯一的数与之对应.()(7)函数f(2x-1)的定义域指2x-1的取值范围.()【经典例题】题型一函数关系的判定例1(1) 若集合M={x|0≤x≤2},N={y|0≤y≤3},则下列图形给出的对应中能构成从M到N的函数f:M→N的是()(2)下列各题的对应关系是否给出了实数集R上的一个函数?为什么?①f:把x对应到3x+1;①g:把x对应到|x|+1;①h:把x对应到1x;①r:把x对应到x.[跟踪训练] 1 设M={x|-2≤x≤2},N={y|0≤y≤2},函数y=f(x)的定义域为M,值域为N,对于下列四个图象,不可作为函数y=f(x)的图象的是()题型二已知函数的解析式求定义域求函数定义域的几种类型(1)若f(x)是整式,则函数的定义域是R.(2)若f(x)是分式,则应考虑使分母不为零.(3)若f(x)是偶次根式,则被开方数大于或等于零.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际情境的解析式,则应符合实际情境,使其有意义.例2 求下列函数的定义域.(1)y=2+3x-2;(2)y=x2-2x-3;(3)y=3-x·x-1;(4)y=(x-1)0+2x+1;[跟踪训练] 2 求下列函数的定义域:(1)y=(x+1)2x+1--x2-x+6. (2)y=10-x2|x|-3.题型三函数相同判断两个函数为同一函数的方法判断两个函数是否为同一函数,要先求定义域,若定义域不同,则不是同一函数;若定义域相同,再化简函数的解析式,看对应关系是否相同.注意:(1)在化简解析式时,必须是等价变形.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.例3下列各组函数:①f(x)=x2-xx,g(x)=x-1;①f(x)=xx,g(x)=xx;①f(x)=(x+3)2,g(x)=x+3;①f(x)=x+1,g(x)=x+x0;①汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t≤5)与一次函数g(x)=80x(0≤x≤5).其中表示相等函数的是________(填上所有正确的序号).[跟踪训练] 3 (1)与函数y=x-1为同一函数的是()A.y=x2-xx B.m=(n-1)2C.y=x-x0D.y=3(t-1)3(2)判断以下各组函数是否表示相等函数:①f(x)=(x)2;g(x)=x2.①f(x)=x2-2x-1;g(t)=t2-2t-1.题型四求抽象函数的定义域两类抽象函数的定义域的求法(1)已知f(x)的定义域,求f(g(x))的定义域:若f(x)的定义域为[a,b],则f(g(x))中a≤g(x)≤b,从中解得x的取值集合即为f(g(x))的定义域.(2)已知f(g(x))的定义域,求f(x)的定义域:若f(g(x))的定义域为[a,b],即a≤x≤b,求得g(x)的取值范围,g(x)的值域即为f(x)的定义域.例4 (1)设函数f(x)=x,则f(x+1)等于什么?f(x+1)的定义域是什么?(2)若函数y=f(x)的定义域是[0,+∞),那么函数y=f(x+1)的定义域是什么?[跟踪训练] 4 已知函数f(x)的定义域为[1,3],求函数f(2x+1)的定义域.注意:定义域是x的取值范围,f(x)中的x与f(2x+1)中的2x+1是相对应的.例5 (1)已知函数y=f(x)的定义域为[-2,3],求函数y=f(2x-3)的定义域;(2)已知函数y=f(2x-3)的定义域是[-2,3],求函数y=f(x+2)的定义域.[跟踪训练] 5(1)函数f(2x+1)的定义域为[1,3],求函数f(x)的定义域.(2)函数f(1-x)的定义域为[1,3],求函数f(2x+1)的定义域。
2020年新高一数学必修一知识点总结第三章函数的概念与性质3.1函数的概念及其表示1.函数是刻画变量间对应关系的数学模型和工具。
2.函数问题的共同特征:①定义域、值域均为非空数集;②定义域和值域间有一个对应关系;③对于定义域中的任何一个自变量,在值域中都有唯一确定的数与之对应。
3.函数中的对应关系可用解析式、图象、表格等表示,为了表示方便,引进符号f 统一表示对应关系。
【注】函数符号()y f x =是由德国数学家莱布尼茨在18世纪引入的。
4.函数定义一般地,设,A B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。
5.函数的三要素:①定义域;②对应关系;③值域。
6.(1)函数的定义域和对应关系可以确定出函数的值域,即一个函数的值域是由它的定义域和对应关系决定的。
(2)没有特别说明的情况下,函数的定义域默认是使其有意义的自变量取值范围。
如y =,则默认定义域是{}0x x ≠(3)实际问题中的函数定义域要根据实际情况定.如:匀速直线运动中位移、速度和时间的关系:()s t v t = ,隐含着0t ≥。
6.几个特殊函数的定义域和值域(1)正比例函数()0y kx k =≠,定义域和值域都为全体实数R。
(2)一次函数()0y kx b k =+≠,定义域和值域都为全体实数R。
(3)反比例函数()0k y k x=≠,定义域为{}0x x ≠,值域为{}0y y ≠。
(4)一元二次函数()20y ax bx c a =++≠,定义域为R。
①当0a >时,值域为244ac b y y a ⎧⎫-⎪⎪≥⎨⎬⎪⎪⎩⎭;②当0a <时,值域为244ac b y y a ⎧⎫-⎪⎪≤⎨⎬⎪⎪⎩⎭。
(名师选题)部编版高中数学必修一第三章函数的概念与性质带答案知识点总结(超全)单选题1、如图,可以表示函数f (x )的图象的是( )A .B .C .D .2、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要3、若函数f (x )=ax 2+2x −1在区间(−∞,6)上单调递增,则实数a 的取值范围是( )A .[−16,0]B .(−16,0)C .(−16,+∞)D .(−16,1)4、设函数f(x)=1−x 1+x ,则下列函数中为奇函数的是( )A .f (x −1)−1B .f (x −1)+1C .f (x +1)−1D .f (x +1)+15、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 6、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8 7、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( )A .(1,2)B .(7,11)C .(4,16)D .(3,5)8、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 多选题9、下列函数中,在(0,+∞)上单调递增且图像关于y 轴对称的是( )A .f (x )=x 3B .f (x )=x 2C .f (x )=√xD .f (x )=|x |10、下列各组函数中,两个函数是同一函数的有( )A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1 C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 11、有如下命题,其中真命题的标号为( )A .若幂函数y =f (x )的图象过点(2,12),则f (3)>12B .函数f (x )=a x−1+1(a >0 且a ≠1)的图象恒过定点(1,2)C .函数f (x )=x 2−1在(0,+∞)上单调递减D .若函数f (x )=x 2−2x +4在区间[0,m ]上的最大值为4,最小值为3,则实数m 的取值范围是[1,2]填空题12、已知幂函数f (x )=(m 2−3m +3)x m+1的图象关于原点对称,则满足(a +1)m >(3−2a )m 成立的实数a 的取值范围为___________.13、已知函数f (x )={3x −1,x ≥12−x +3,x <1,则f (−2)=________.部编版高中数学必修一第三章函数的概念与性质带答案(十三)参考答案1、答案:D分析:根据函数的概念判断根据函数的定义,对于一个x,只能有唯一的y与之对应,只有D满足要求故选:D2、答案:A分析:要使函数f(x)=(m2+m−1)x m是幂函数,且在(0,+∞)上为增函数,求出m=1,可得函数g(x)为奇函数,即充分性成立;函数g(x)=2x−m2⋅2−x为奇函数,求出m=±1,故必要性不成立,可得答案.要使函数f(x)=(m2+m−1)x m是幂函数,且在(0,+∞)上为增函数,则{m 2+m−1=1m>0,解得:m=1,当m=1时,g(x)=2x−2−x,x∈R,则g(−x)=2−x−2x=−(2x−2−x)=−g(x),所以函数g(x)为奇函数,即充分性成立;“函数g(x)=2x−m2⋅2−x为奇函数”,则g(x)=−g(−x),即2x−m2⋅2−x=−(2−x−m2⋅2x)=m2⋅2x−2−x,解得:m=±1,故必要性不成立,故选:A.3、答案:A分析:讨论a的取值,可知a=0符合题意,当a≠0时,结合二次函数的性质可得不等式组,求得a的范围,综合可得答案.当a=0时,函数f(x)=2x−1在R上单调递增,所以f(x)在(−∞,6)上单调递增,则a=0符合题意;当a≠0时,函数f(x)是二次函数,又f(x)在(−∞,6)上单调递增,由二次函数的性质知,{−1a≥6a<0,解得−16≤a<0.综上,实数a的取值范围是[−16,0], 故选:A.4、答案:B分析:分别求出选项的函数解析式,再利用奇函数的定义即可.由题意可得f(x)=1−x 1+x =−1+21+x , 对于A ,f (x −1)−1=2x −2不是奇函数;对于B ,f (x −1)+1=2x 是奇函数;对于C ,f (x +1)−1=2x+2−2,定义域不关于原点对称,不是奇函数; 对于D ,f (x +1)+1=2x+2,定义域不关于原点对称,不是奇函数. 故选:B小提示:本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.5、答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1, 解得−12≤x <0. 当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1,解得12≤x ≤32.综上:−12≤x ≤0或12≤x ≤32. 故选:A6、答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可. 解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B7、答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.8、答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可. 由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0,对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3 ,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞).故选:A9、答案:BD分析:根据单调性与奇偶性可得答案关于A 选项,函数f (x )=x 3为奇函数,其图像关于原点对称,故A 错误;关于B 选项,函数f (x )=x 2为偶函数,其图像图像关于y 轴对称,且函数f (x )在(0,+∞)上单调递增,故B 正确;关于C 选项,函数f (x )=√x 的定义域是[0,+∞),故函数f (x )为非奇非偶函数,故C 错误;关于D 选项,函数f (x )=|x |的定义域为R ,f (−x )=|−x |=|x |=f (x ),所以函数f (x )为偶函数,当x >0时,f (x )=x ,所以函数f (x )在(0,+∞)上单调递增,故D 正确.故选:BD.10、答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B ,f(x)=x +1,g(x)=x +1(x ≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B 不正确;对于C ,f(x)={1,x >0−1,x <0 ,g (x )={1,x >0−1,x <0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C 正确;对于D ,f (t )=|t −1|与g (x )=|x −1|的对应关系和定义域都相同,所以两个函数为同一函数,故D 正确. 故选:ACD11、答案:BD分析:由f (x )所过点可求得幂函数f (x )解析式,由此得到f (3)<12,知A 错误; 由f (1)=2恒成立可知f (x )过定点(1,2),知B 正确;由二次函数的性质可知C 错误;由二次函数的最值可确定自变量的范围,即可确定m 的范围,知D 正确.对于A ,令f (x )=x α,则2α=12,解得:α=−1,∴f (x )=x −1,∴f (3)=13<12,A 错误;对于B ,令x −1=0,即x =1时,f (1)=1+1=2,∴f (x )恒过定点(1,2),B 正确;对于C,∵f(x)为开口方向向上,对称轴为x=0的二次函数,∴f(x)在(0,+∞)上单调递增,C错误;对于D,令f(x)=4,解得:x=0或x=2;又f(x)min=f(1)=3,∴实数m的取值范围为[1,2],D正确. 故选:BD.12、答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)13、答案:7分析:根据题意直接求解即可解:因为f(x)={3x−1,x≥12−x+3,x<1,所以f(−2)=22+3=7,所以答案是:7。
第三章《函数的概念与性质》单元检测卷解析版(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列所示的图形中,可以作为函数y =f (x )的图象是( )解析 作直线x =a 与曲线相交,由函数的概念可知,定义域中任意一个自变量对应唯一的函数值,∴y 是x 的函数,那么直线x =a 移动中始终与曲线只有一个交点,于是可排除A ,B ,C ,只有D 符合,故选D. 答案 D2.函数f (x )=1+x +1x 的定义域是( ) A.[-1,+∞) B.(-∞,0)∪(0,+∞) C.[-1,0)∪(0,+∞)D.R解析 ⎩⎪⎨⎪⎧1+x ≥0,x ≠0,解得-1≤x <0或x >0,区间表示为[-1,0)∪(0,+∞),故选C. 答案 C3.下列函数中,与函数y =x (x ≥0)有相同图象的一个是( ) A.y =x 2B.y =(x )2C.y =3x 3D.y =x 2x解析 y =x 2=|x |,x ∈R ;y =(x )2=x ,x ≥0;y =3x 3=x ,x ∈R ;y =x 2x =x ,x >0,所以选B. 答案 B4.幂函数的图象过点⎝ ⎛⎭⎪⎫2,14,则它的单调递增区间是( )A.(0,+∞)B.[0,+∞)C.(-∞,0)D.(-∞,+∞)解析 设幂函数y =x α,则2α=14,解得α=-2,所以y =x -2,故函数y =x -2的单调递增区间是(-∞,0). 答案 C5.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A.y =x B.y =|x |+1 C.y =-x 2+1D.y =-1x解析 A :y =x 是奇函数,故不符合题意;B :y =|x |+1是偶函数,在(0,+∞)上单调递增,故正确;C :y =-x 2+1是偶函数,在区间(0,+∞)上单调递减,不合题意,D :y =-1x 是奇函数,不合题意.故答案为B. 答案 B6.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A.x +1 B.2x -1 C.-x +1D.x +1或-x -1解析 设f (x )=kx +b (k ≠0),则f [f (x )]=k (kx +b )+b =k 2x +kb +b =x +2,∴⎩⎪⎨⎪⎧k 2=1,kb +b =2,∴⎩⎪⎨⎪⎧k =1,b =1,故选A. 答案 A7.已知f (x )为奇函数,当x >0时,f (x )=-x 2+2x ,则f (x )在[-3,-1]上是( ) A.增函数,最小值为-1 B.增函数,最大值为-1 C.减函数,最小值为-1 D.减函数,最大值为-1解析 f (x )=-x 2+2x ,图象为开口向下,对称轴为x =1的抛物线, 所以x >0时f (x )在[1,3]上是减函数.因为f (x )为奇函数图象关于原点对称,所以函数f (x )在[-3,-1]也是减函数. 所以在[-3,-1]上f (x )max =f (-3)=-f (3)=-(-32+2×3)=3, f (x )min =f (-1)=-f (1)=-(-12+2×1)=-1,故C 正确. 答案 C8.函数f (x )=|x -1|的图象是( )解析 由题函数f (x )=|x -1|的图象相当于函数f (x )=x 向右平移一个单位,然后将x 轴下方的部分对折到x 轴上方即可,故选B. 答案 B9.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -7 (x ≤1),a x (x >1)是R 上的增函数,则a 的取值范围是( ) A.[-4,0) B.(-∞,-2] C.[-4,-2]D.(-∞,0)解析 ∵f (x )在R 上为增函数,∴需满足⎩⎪⎨⎪⎧-a2≥1,a <0,-1-a -7≤a ,即-4≤a ≤-2,故选C. 答案 C10.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两点,那么-1<f (x )<1的解集是( ) A.(-3,0) B.(0,3)C.(-∞,-1]∪[3,+∞)D.(-∞,0]∪[1,+∞)解析 由已知f (0)=-1,f (3)=1, ∴-1<f (x )<1,即f (0)<f (x )<f (3), ∵f (x )在R 上递增,∴0<x <3,∴-1<f (x )<1的解集为(0,3).故答案为B. 答案 B 11.已知函数f (x )=x +2x -1,记f (2)+f (3)+f (4)+…+f (10)=m ,f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫14+…+f ⎝ ⎛⎭⎪⎫110=n ,则m +n =( ) A.-9 B.9 C.10D.-10解析 ∵函数f (x )=x +2x -1,∴f (x )+f ⎝ ⎛⎭⎪⎫1x =x +2x -1+1x+21x -1=-1,∵f (2)+f (3)+f (4)+…+f (10)=m , f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫14+…+f ⎝ ⎛⎭⎪⎫110=n ,∴m +n =9×(-1)=-9.故选A. 答案 A12.已知函数f (x )是定义域为R 的偶函数,且对任意x 1,x 2∈(-∞,0],当x 1≠x 2时总有f (x 1)-f (x 2)x 1-x 2>0,则满足f (1-2x )-f ⎝ ⎛⎭⎪⎫-13>0的x 的范围是( )A.⎝ ⎛⎭⎪⎫13,23 B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 解析 由题意,f (x )在(-∞,0]上是增函数,又f (x )是定义域为R 的偶函数,故f (x )在[0,+∞)上是减函数.由f (1-2x )-f ⎝ ⎛⎭⎪⎫-13>0可得f (1-2x )>f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫13,即f (|1-2x |)>f ⎝ ⎛⎭⎪⎫13,所以|1-2x |<13,解得13<x <23.答案 A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 解析 由f (x )是偶函数,所以f (x )=f (-x ), 即(x +a )(x -4)=(-x +a )(-x -4),解得a =4. 答案 414.若函数f (x )=x 2-x 12,则满足f (x )<0的x 的取值范围为________. 解析 设函数y 1=x 2,函数y 2=x 12,则f (x )<0, 即y 1<y 2.在同一平面直角坐标系中作出函数y 1与y 2的图象,如图所示,则由数形结合得x ∈(0,1).答案 (0,1)。
函数的性质(第一课时)"运用一 性质法判断单调性。
【例1】函数()2f x x 2x 3=--的单调递减区间为( )A .(),1∞-B .(),2∞-C .()1,∞D .()2,∞+【答案】A【解析】函数()2f x x 2x 3=--的二次项的系数大于零,∴抛物线的开口向上,二次函数的对称轴是x 1=,∴函数的单调递减区间是(),1∞- 故选:A . 【触类旁通】1.下列函数在区间(-∞,0)上为增函数的是( )A. y =1B. y =-1x+2 C. y =-x 2-2x -1 D. y =1+x 2·【答案】B【解析】y=1 在区间(-∞,0)上不增不减; y=-1x+2在区间(-∞,0)上单调递增; y=-x2-2x-1在区间(-∞,0)上有增有减; y=1+x2在区间(-∞,0)上单调递减;所以选B.2.函数y=x2-6x+10在区间(2,4)上是( )A. 递减函数B. 递增函数C. 先递减再递增D. 先递增再递减【答案】C【解析】由于二次函数的开口向上,并且对称轴方程为x=3,所以函数在(2,4)上是先减后增.运用二定义法判断单调性-【例2】已知函数f(f)=f+1f,证明f(x)在[1,+∞)上是增函数;【思路分析】用单调性定义证明,先任取两个变量且界定大小,再作差变形看符号.【答案】证明:在[1,+∞)上任取x1,x2,且x1<x2(2分)f(f1)−f(f2)=f1+1f1−(f2+1f2)(1分)=(f1−f2)⋅f1f2−1f1f2(1分)∵x1<x2∴x1﹣x2<0∵x1∈[1,+∞),x2∈[1,+∞)∴x1x2﹣1>0∴f(x1)﹣f(x2)<0即f(x1)<f(x2)@故f(x)在[1,+∞)上是增函数(2分)【触类旁通】1.求证:函数f (x )=1x 2在(0,+∞)上是减函数,在(-∞,0)上是增函数. 【证明】见解析【解析】对于任意的x 1,x 2∈(-∞,0),且x 1<x 2,有f (x 1)-f (x 2)=1x 21-1x 22】=x 22-x 21x 21x 22=x 2-x 1x 2+x 1x 21x 22∵x 1<x 2<0,∴x 2-x 1>0,x 1+x 2<0,x 21x 22>0.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴函数f (x )=1x 2在(-∞,0)上是增函数.对于任意的x 1,x 2∈(0,+∞),且x 1<x 2,有f (x 1)-f (x 2)=x 2-x 1x 2+x 1x 21x22.∵0<x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,x 21x 22>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴函数f (x )=1x 2在(0,+∞)上是减函数. (【思路总结】2.用定义法证明函数f(x)=在(√2,+∞)上是增函数;【答案】见解析【解析】f(x)=f2=−√2−(−√2)f2=−1−√2f2任意设√2<x1<x2,则f(x1)﹣f(x2)=−√2f1−√2−√2f2−√2=(√2−1)[−√2−√2]=(√2−1)12(f−√2)(f−√2),∵√2<x1<x2,∴x1﹣x2<0,x1−√2>0,x2−√2>0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),·∴函数f(x)在(√2,+∞)上是增函数;运用三图像法判断单调性【例3】(1)f(x)=3|x|;(2)f(x)=|x2+2x-3|;(3)f(x)=-x2+2|x|+3.【答案】见解析【解析】(1)f(x)=3|x|=3,0,3,0.x xx x≥⎧⎨-<⎩图象如图所示.函数f(x)的单调递减区间为(-∞,0],单调递增区间为[0,+∞).&(2)令g (x )=x 2+2x -3=(x +1)2-4.先作出函数g (x )的图象,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图象翻到x 轴上方就得到函数f (x )=|x 2+2x -3|的图象,如图所示.由图象易得:函数f (x )的递增区间是[-3,-1],[1,+∞);函数f (x )的递减区间是(-∞,-3],[-1,1].(3)f (x )=-x 2+2|x |+3=2223,0,23,<0.x x x x x x ⎧-++≥⎪⎨--+⎪⎩ 图象如图所示.由图象可知,函数f (x )的单调区间为(-∞,-1],(-1,0],(0,1],(1,+∞),其中单调减区间为(-1,0]和(1,+∞),单调增区间为(-∞,-1]和(0,1] 【触类旁通】…1.函数()232=||f x x x -+的单调递增区间是( )A .3,2⎡⎫+∞⎪⎢⎣⎭B .31,2⎡⎤⎢⎥⎣⎦和[)2,+∞C .(],1-∞和3,22⎡⎤⎢⎥⎣⎦D .3,2⎛⎤-∞ ⎥⎝⎦和[)2,+∞【答案】B【解析】()2=|32|f x x x -+,当2x ≥或1x ≤时,()2=32f x x x -+;当12x <<时,()22=3f x x x -+-,:如图所示,函数的单调递增区间是31,2⎡⎤⎢⎥⎣⎦和[)2,+∞.故选B.2.(2019·邗江区赤岸中学高二月考(文))函数3y x x =-的单调减区间为______.【答案】3,32⎛⎫ ⎪⎝⎭【解析】当3x <时,()233y x x x x =-=-+由二次函数图象可知,此时函数在3,32⎛⎫ ⎪⎝⎭上单调递减当3x ≥时,()233y x x x x =-=-由二次函数图象可知,此时函数单调递增综上所述,3y x x =-的单调减区间为3,32⎛⎫ ⎪⎝⎭本题正确结果:3,32⎛⎫ ⎪⎝⎭3.(2018·重庆南开中学高一期中)函数()2f x x x =-的单调减区间为______. ,【答案】[]1,2【解析】当x >2时,f (x )=x 2﹣2x , 当x ≤2时,f (x )=﹣x 2+2x ,故函数f (x )222222x x x x x x ⎧-=⎨-+≤⎩,>,.f (x )=x 2﹣2x 的对称轴为:x =1,开口向上,x >2时是增函数; f (x )=﹣x 2+2x ,开口向下,对称轴为x =1,则x <1时函数是增函数,1<x <2时函数是减函数. 即有函数的单调减区间是[1,2].故答案为:[1,2].;运用四 复合函数求单调区间【例4】(1)(2019·安徽高一期末)函数21()45f x x x =--的单调递增区间为__________.(2)(2018·辽宁高一期中)函数()f x =______.【答案】(1)(,1)-∞-,(1,2)-(2)[-1,1]【解析】(1)由题意,令2450x x --=,解得1x =-或5x =,所以函数()f x 的定义域为()()(),11,55,-∞-⋃-⋃+∞;因为245y x x =--在(),2-∞上单调递减,在()2,+∞上单调递增,&故函数()2145f x x x =--的单调递增区间为 (),1-∞-,()1,2-(2)由﹣x 2+2x +3≥0,得﹣1≤x ≤3,所以函数f (x )的定义域为[﹣1,3].函数()f x =y =t =﹣x 2+2x +3复合而成的,y =单调递增,要求函数()f x =t =﹣x 2+2x +3的增区间即可,t=﹣x 2+2x +3在[﹣1,3]的单调增区间为[﹣1,1],所以函数()f x =[﹣1,1],故答案为:[﹣1,1].【触类旁通】1.(2019·河南高一期中)函数f (f )=√f 2+3f −4的单调增加区间是__________. 【答案】[1,+∞)#【解析】函数f (f )=√2+−设t=x 2+3x ﹣4,由t≥0,可得(﹣∞,﹣4]∪[1,+∞),则函数y=√f , 由t=x 2+3x ﹣4在[1,+∞)递增, 故答案为:(1,+∞)(或写成[1,+∞))运用五 利用单调性求参数【例5】(1)设函数()()32f x a x b =++是R 上的减函数,则有 ( )A.32a <B.32a >C.32a <-D.32a >- (2)已知函数f (f )=f 2+4ff +2在区间(−∞,6)上单调递减,则f 的取值范围是( )<A.[3,+∞)B.(−∞,3]C.(−∞,−3)D.(−∞,−3](3)设a R ∈,函数()f x 在区间(0,)+∞上是增函数,则( )A .()2724f a a f ⎛⎫++>⎪⎝⎭B .()2724f a a f ⎛⎫++<⎪⎝⎭C .()2724f a a f ⎛⎫++≥ ⎪⎝⎭D .()2724f a a f ⎛⎫++≤ ⎪⎝⎭(4)(2017·商丘市第一高级中学高一月考)函数()23f x x a =+的单调增区间为[)1,+∞,则a 为 ( ) A .-1 B .1 C .23D .23-(5)若函数为R 上的减函数,则实数a 的取值范围是A. B. C. D.、【答案】(1)C (2)D (3)C (4)D (5)C【解析】(1)函数要为减函数需满足320a +<,即32a <-. (2)由于二次函数f (f )=f 2+4ff +2的二次项系数为正数,对称轴为直线f =−2f , 其对称轴左侧的图像是下降的,∴−2f ≥6,故f ≤−3,因此,实数f 的取值范围是(−∞,−3],故选:D .(3)因为221772244a a a ⎛⎫++=++≥ ⎪⎝⎭,函数()f x 在区间(0,)+∞上是增函数,所以()22f a a ++74f ⎛⎫≥ ⎪⎝⎭.故选C.(4)令23=0x a +,解得32a x =-,所以当32a x >-时,()2323f x x a x a =+=+在3(,)2a-+∞上单调递增,故312a -=,解得23a =-,故选D. )(5)因为函数f (f )={f 2−f2f +8,f ≤1ff,f >1 为f 上的减函数,所以f =f 2−f 2f +8,f ≤1,f =f f ,f >1,是减函数,且当f =1时,9−f2≥f ,故只需满足{1≤f4f >09−f2≥f,解得4≤f ≤6,故选C.【触类旁通】1.(2019·贵州凯里一中高一期中)已知函数的定义域为R ,且对任意的12,x x 且12x x ≠都有()()()11120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x R ∈恒成立,则实数m 的取值范围是( )A .()1,2-B .[]1,2-C .(,1)(2,)-∞-⋃+∞D .(][),12,-∞-⋃+∞ 【答案】A【解析】由()()()12120f x f x x x ⎡⎤-->⎣⎦,则函数()f x 在R 上为增函数,由()()2211f x f m m +>--对x R ∈恒成立,故22min 1(1)m m x --<+,即211m m --<解得-1<m<2,故选A.2.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( ):A. (-∞,1]B. (-∞,-1]C. [-1,+∞)D. [1,+∞) 【答案】A【解析】由题意知1a ≥-- ,解得1a ≤ ,故选A.3.若函数y =x 2+bx +c 在区间[0,+∞)上是单调函数,则b 的取值范围是( ) A. b≥0 B. b≤0 C. b>0 D. b<0 【答案】A【解析】函数y =x 2+bx +c 在,2b ⎛⎤-∞- ⎥⎝⎦上单调递减,在,2b ⎡⎫-+∞⎪⎢⎣⎭上单调递增,又在区间[0,+∞)上是单调函数,所以02b-≤,解得b≥0,故选A. @4.若函数f (x )=23,1,21,1x ax a x ax x ⎧-+-≥⎨+<⎩是R 上的减函数,则实数a 的取值范围是( )A .(12-,0) B .[12-,0) C .(-∞,2] D .(-∞,0) 【答案】B【解析】由x≥1时,f (x )=-x 2+ax -3a 是减函数,得a≤2, 由x <1时,函数f (x )=2ax +1是减函数,得a <0, 分段点1处的值应满足-12+a×1-3a≤1×2a+1, 解得a≥12-,∴12-≤a<0. [运用六 函数的最值【例6-1】已知二次函数245y x x =-+,分别求下列条件下函数的值域: (1)[1x ∈-,0]; (2)(1,3)x ∈; (3)(4x ∈,5]. 【答案】见解析【解析】由题意得,y =x 2﹣4x +5=(x ﹣2)2+1,关于x =2对称,如: (1)函数在[﹣1,0]上递减,@则当x =0时,y =5.当x =﹣1时,y =10. 即当x ∈[﹣1,0]时,y ∈[5,10].(2)函数在(1,2]上递减,(2,3)上递增, 则x ∈(1,3)时,x =2时,y 最小值为1. 当x =1或x =3时,y =2.又∵x ∈(1,3),∴点(1,2),(3,2)为虚点. ∴当x ∈(1,3)时,y ∈[1,2). (3)函数在(4,5]上递增,-当x ∈(4,5]时,x =4时,对应值y =5,(4,5)为虚点. 当x =5时,y =10,(5,10)为实点.∴当x ∈(4,5]时,y ∈(5,10].【例6-2】求2y x =【答案】15[8,)+∞,【解析】令t =)0(≥t ,则22115152222()488y x t t t ==+-=-+≥,当14t =时取等号, 故其值域为15[8,)+∞,【例6-3】求下列函数的值域:)1(132≥++=x x x y .(2)求函数321xy x -=-的值域. 【答案】(1)(2,52](2)(﹣∞,−12)∪(−12,+∞). 【解析】y =2f +3f +1=2+1f +1,∵x ≥1,2<2+1f +1≤2+12=52,∴y =2f +3f +1(x ≥1)的值域为(2,52]. (2)y =−12•f −3f −12=−12(1−52f −12),∵52f −12≠0,∴y ≠−12,即函数的值域为(﹣∞,−12)∪(−12,+∞). 【例6-4】利用判别式求函数231xy x x =-+的值域.》【答案】{y |y ≤﹣1,或y ≥﹣51}【解析】函数231xy x x =-+,∴当0x =时,0y =;当0y ≠时,原函数化为2(31)0yx y x y -++=, ∴判别式△=(3y +1)2﹣4y 2≥0,即5y 2+6y +1≥0;解得y ≤﹣1,或y ≥﹣51,综上,函数y 的值域是{y |y ≤﹣1,或y ≥﹣51}.【触类旁通】 求下列函数的值域(1)y =﹣x 2﹣x +1(1≤x ≤2)(2)22y x =-3)y x =+.(4)2331x y x -=-+ (5)1()2x f x x +=+(6)22173)3x y x x -=>-((7)22221x x y x x -+=++ 【答案】(1)[﹣5,﹣1](2)[92,+∞)(3)(﹣∞,5](4)2{|}3y y ≠-(5){|1}y y ≠(6)[12+2√2,+∞)(7)[1,5]【思路总结】)【解析】(1)22131()24y x x x =--+=-++,对称轴为12x =-,~故当1≤x ≤2时,函数y 单调递减,y max =﹣1﹣1+1=﹣1,y min =﹣4﹣2+1=﹣5,故函数y =﹣x 2﹣x +1值域为[﹣5,﹣1].(2)函数y =2x ﹣2+√4f −13可得函数的定义域为[134,+∞). 令√4f −13=f ≥0,解得f =f 2+134. ∴y =f (t )=f 2+132−2+t =12(f +1)2+4≥f (0)=92,∴函数y =2x ﹣2+√4f −13的值域为[92,+∞). (3)设f =√1−f ≥0,则x =1﹣t 2,)∴原函数可化为y =1﹣t 2+4t =﹣(t ﹣2)2+5(t ≥0),∴y ≤5, ∴原函数值域为(﹣∞,5].(4)由题函数的定义域为1{|}3x x ≠2777(31)23222333331313313313x x y x x x x --+---===-+=-+≠--+-+-+- 故函数的值域为2{|}3y y ≠-(5)11()122x f x x x +==-++, 又102x ≠+,1112x ∴-≠+,即()1f x ≠.则()f x 的值域为{|1}y y ≠.—(6)由原函数得:2x 2﹣yx ﹣17+3y =0; 则该关于x 的一元二次方程有解; 则有{△=f 2+8(17−3f )≥03<f4; 解得f ≥12+2√2;∴原函数的值域为[12+2√2,+∞).(7)判别式法:∵x 2+x +1>0恒成立,∴函数的定义域为R .由f =2f 2−f +2f 2+f +1得:(y ﹣2)x 2+(y +1)x +y ﹣2=0① ①当y ﹣2=0即y =2时,①即3x +0=0,∴x =0∈R;②当y ﹣2≠0即y ≠2时,∵x ∈R 时方程(y ﹣2)x 2+(y +1)x +y ﹣2=0恒有实根, ∴△=(y +1)2﹣4×(y ﹣2)2≥0,∴1≤y ≤5且y ≠2, ∴原函数的值域为[1,5].1.已知函数f =1f −1,那么( )/A .函数的单调递减区间为(−∞,1),(1,+∞)B .函数的单调递减区间为(−∞,1)∪(1,+∞)C .函数的单调递增区间为(−∞,1),(1,+∞)D .函数的单调递增区间为(−∞,1)∪(1,+∞) 【答案】A【解析】函数f =1f −1可看作是由f =1f 向右平移1个单位长度得到的, ∵f =1f 在(−∞,0)和(0,+∞)上单调递减, ∴f =1f −1在(−∞,1)和(1,+∞)上单调递减,(∴函数f =1f −1的单调递减区间为(−∞,1)和(1,+∞),故选:A.2.已知函数y =−mx 和y =nx在(0,+∞)上都是增函数,则函数f (x )=mx +n 在R 上是( ) A .减函数且f (0)<0 B .增函数且f (0)<0 C .减函数且f (0)>0 D .增函数且f (0)>0 【答案】A【解析】∵y =−mx 和y =nx在(0,+∞)都是增函数,∴m <0,n <0,f (x )=mx +n 为减函数且f (0)=n <0,故选A.3.下列函数()x f 中,满足“对任意()+∞∈,0,21x x ,当21x x <时,都有()()12f x f x <”的是 ( )A.()()21-=x x f B.()xx f 1=C.()1+=x x fD.()1-=x x f ?【解析】因为对任意()+∞∈,0,21x x ,当21x x <时,都有()()12f x f x <,所以()x f 在()+∞,0上为增函数,只有C 选项符合题意.4.若函数f(x)是R 上的增函数,对实数a ,b ,若a +b>0,则有( ) A. f(a)+f(b)>f(-a)+f(-b) B. f(a)+f(b)<f(-a)+f(-b) C. f(a)-f(b)>f(-a)-f(-b) D. f(a)-f(b)<f(-a)-f(-b) 【答案】A【解析】∵a +b>0,∴a>-b ,b>-a.∴f(a)>f(-b),f(b)>f(-a). ∴f(a)+f(b)>f(-a)+f(-b),故选A.'5.已知函数f (x )=2x 2-ax +5在区间[1,+∞)上是单调递增函数,则实数a 的取值范围是( ) A. (-∞,4] B. (-∞,4) C. [4,+∞) D. (4,+∞) 【答案】A【解析】若使函数f (x )=2x 2-ax +5在区间[1,+∞)上是单调递增函数, 则对称轴4a x =满足4a≤1,所以a ≤4,选A. 6.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A. (-∞,-3) B. (0,+∞)》C. (3,+∞)D. (-∞,-3)∪(3,+∞)【解析】因为函数y=f(x)在R上为增函数,且f(2m)>f(-m+9),所以2m>-m+9,即m>3.故选C.7若函数f(x)是R上的减函数,则下列各式成立的是()A.f(a)>f(2a)B.f(a2)<f(a)[C.f(a2+2)<f(2a)D.f(a2+1)>f(a)【答案】C【解析】因为a和2a,a2和a无法确定大小关系,所以不能确定相应函数值的大小关系,故A、B错误;因为a2+2﹣2a=(a﹣1)2+1>0,所以a2+2>2a,又因函数f(x)是R上的减函数,所以f(a2+2)<f(2a),故C正确;因为a2+1﹣a=(f−12)2+34>0,所以a2+1>a,又因函数f(x)是R上的减函数,所以f(a2+1)<f(a),故D错误.故选:C.,8若f(x)=x2+2(a﹣1)x+2在区间(4,+∞)上是增函数,那么实数a的取值范围是()A.a≥3B.a≥﹣3 C.a≤﹣3 D.a≤5【答案】B【解析】二次函数f(x)=x2+2(a﹣1)x+2是开口向上的二次函数,对称轴为x=1﹣a,∴二次函数f(x)=x2+2(a﹣1)x+2在[1﹣a,+∞)上是增函数,∵在区间(4,+∞)上是增函数,∴1﹣a≤4,解得:a≥﹣3.故选:B.)9.下列函数中,在区间(0,+∞)上不是增函数的是_______.(1)f=2f+1(2)f=f2+1(3)f=3f(4)f=2f2+2f+1【答案】(3)【解析】(1)f=2f+1是一次函数,因为2>0,所以一次函数是f上的增函数,故在区间(0,+∞)上也是增函数,故不符合题意;(2)f=f2+1是二次函数,开口向上,对称轴是f=0,显然区间(0,+∞)上单调递增,不符合题意;(3)f=3f是反比例函数,因为3>0,所以在f>0,f<0时,函数都是递减的,故符合题意;(4)f=2f2+2f+1是二次函数,开口向上,对称轴是f=−12,显然区间(0,+∞)上单调递增,不符合题意,综上所述;(3)符合题意.…10.函数y=x-|1-x|的单调递增区间为________.【答案】(-∞,1]【解析】y=x-|1-x|={1,f≥12f−1,f<1作出该函数的图象如图所示.由图象可知,该函数的单调递增区间是(-∞,1].答案:(-∞,1]11.作出函数()23,1{ (2)3,1x x f x x x --≤=-+>的图象,并指出函数的单调区间. 、【答案】见解析【解析】f (x )=的图象如图所示.由图象可知:函数的单调减区间为(-∞,1]和(1,2];单调递增区间为(2,+∞).12.画出函数y =-x 2+2|x |+1的图象并写出函数的单调区间.【答案】见解析【解析】》y =即y =函数的大致图象如图所示,单调增区间为(-∞,-1),[0,1],单调减区间为(-1,0),(1,+∞).13.(2017·甘肃高一月考)已知函数1()f x x x =-(1)求()f x 的定义域;(2)用单调性定义证明函数1()f x x x =-在(0,)+∞上单调递增. 《【答案】(1){|0}x x ≠;(2)证明见解析.【解析】(1)要使函数有意义,只需0x ≠,定义域为{|0}x x ≠(2)在()0,+∞内任取1x ,2x ,令12x x <()()()12121212121111f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=---=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∵12x x <,∴120x x -<∵1x ,2x ()0,∈+∞,∴120x x >∴12110x x +> ∴()()120f x f x -<,即()()12f x f x <,所以()f x 在()0,+∞上单调递增。
第三章检测试题时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.设集合A={x|-4<x<3},B={x|x≤2},则A∩B=(B)A.(-4,3) B.(-4,2]C.(-∞,2] D.(-∞,3)解析:∵集合A={x|-4<x<3},B={x|x≤2},∴A∩B={x|-4<x≤2},用区间表示为(-4,2],故选B.2.函数f(x)=|x-1|的图象是(B)解析:代入特殊点,∵f(1)=0,∴排除A,C;又f(-1)=2,∴排除D.3.函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2),则实数a 的取值X围是(D)A.a≤2 B.a≥-2C.-2≤a≤2 D.a≤-2或a≥2解析:∵y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,∴y=f(x)在[0,+∞)上是减函数,由f(a)≤f(2),得f(|a|)≤f(2).∴|a|≥2,得a≤-2,或a≥2.4.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是(B)A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D .f (x )=3x +2或f (x )=-3x -4解析:令3x +2=t ,则3x =t -2,故f (t )=3(t -2)+8=3t +2. 5.已知函数y =f (2x )+2x 是偶函数,且f (2)=1,则f (-2)=( A ) A .5 B .4 C .3D .2解析:设g (x )=y =f (2x )+2x ,∵函数y =f (2x )+2x 是偶函数,∴g (-x )=f (-2x )-2x =g (x )=f (2x )+2x ,即f (-2x )=f (2x )+4x ,当x =1时,f (-2)=f (2)+4=1+4=5,故选A.6.已知函数f (x )的定义域为(0,+∞),且在(0,+∞)上单调递增,则不等式f (x )>f (2x -3)的解集是( D )A .(-∞,3)B .(3,+∞)C .(0,3) D.⎝⎛⎭⎫32 ,3 解析:本题考查函数的单调性.因为函数f (x )在(0,+∞)上单调递增,所以f (x )>f (2x -3)⇔x >2x -3>0,解得32<x <3,故选D.7.甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( C )A .40万元B .60万元C .120万元D .140万元解析:要想获取最大利润,则甲的价格为6元时,全部买入,可以买120÷6=20万份,价格为8元时,全部卖出,此过程获利20×2=40万元;乙的价格为4元时,全部买入,可以买(120+40)÷4=40万份,价格为6元时,全部卖出,此过程获利40×2=80万元,∴共获利40+80=120万元,故选C.8.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( C )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-7解析:结合偶函数图象关于y 轴对称可知,这个函数在[-7,7]上有三个单调递增区间,三个单调递减区间,且定义域内有最大值7,无法判断最小值是多少.9.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( C ) A .0 B .1或2 C .1D .2解析:二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( A )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析:∵f (x )是偶函数,∴f (-2)=f (2).又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,∴f (x )在[0,+∞)上是减函数.又∵1<2<3,∴f (1)>f (2)=f (-2)>f (3),故选A. 11.函数f (x )是定义在R 上的奇函数,下列命题:①f (0)=0;②若f (x )在[0,+∞)上有最小值-1,则f (x )在(-∞,0]上有最大值1;③若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数;④若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x .其中正确命题的个数是( C ) A .1 B .2 C .3D .4解析:f (x )为R 上的奇函数,则f (0)=0,①正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以②正确,③不正确;对于④,x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x ,又f (-x )=-f (x ),所以f (x )=-x 2-2x ,故④正确.12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值X 围是( B )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2)∪[23,+∞)D .(0,2]∪[3,+∞)解析:根据题意,知y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝⎛⎭⎫1m ,+∞上为增函数,函数y =x +m 为增函数.分两种情况讨论:①当0<m ≤1时,有1m ≥1,在区间[0,1]上,y =(mx -1)2为减函数,且其值域为[(m -1)2,1],函数y =x +m 为增函数,其值域为[m,1+m ],此时两个函数的图象有1个交点,符合题意;②当m >1时,有1m <1,y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝ ⎛⎭⎪⎪⎫1m 1上为增函数.函数y =x +m 为增函数,在x ∈[0,1]上,其值域为[m,1+m ],若两个函数的图象有1个交点,则有(m -1)2≥1+m ,解得m ≤0或m ≥3.又m 为正数,故m ≥3.综上所述,m 的取值X 围是(0,1]∪[3,+∞),故选B.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≥2,2x ,x <2,已知f (x 0)=8,则x 0= 6.解析:∵当x ≥2时,f (x )≥f (2)=6, 当x <2时,f (x )<f (2)=4, ∴x 20+2=8(x 0≥2),解得x 0= 6.14.若函数f (x )=x(x +1)(2x -a )为奇函数,则a =2.解析:由题意知x ≠-1且x ≠a2.因为函数f (x )为奇函数,所以其定义域应关于原点对称,故x ≠1,即a2=1,a =2.15.设奇函数f (x )在(0,+∞)上为增函数且f (1)=0,则不等式f (x )-f (-x )x <0的解集为(-1,0)∪(0,1).解析:因为f (x )为奇函数,所以不等式f (x )-f (-x )x <0化为f (x )x<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,(3-2a )x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X 围为⎣⎡⎭⎫1,32.解析:f (x )=⎩⎪⎨⎪⎧(x -1)2+a -1,x >1,(3-2a )x -1,x ≤1,显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥(3-2a )×1-1,解得1≤a <32.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0为奇函数.(1)求f (-1)以及实数m 的值;(2)在给出的直角坐标系中画出函数y =f (x )的图象并写出f (x )的单调区间.解:(1)由已知得f (1)=1, 又f (x )为奇函数, 所以f (-1)=-f (1)=-1.又由函数表达式可知f (-1)=1-m ,所以1-m =-1,所以m =2. (2)y =f (x )的图象如图所示.y =f (x )的单调递增区间为[-1,1].y =f (x )的单调递减区间为(-∞,-1)和(1,+∞). 18.(12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,某某数a 的取值X 围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值X 围.解:(1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1, 故可设f (x )=a (x -1)2+1, 由f (0)=3,得a =2. 故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1, 则0<a <12.(3)由已知,即2x 2-4x +3>2x +2m +1, 化简得x 2-3x +1-m >0,设g (x )=x 2-3x +1-m ,则只要g (x )min >0,∵x ∈[-1,1],∴g (x )min =g (1)=-1-m >0,得m <-1.19.(12分)已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2xx -1.求:(1)f (x )的解析式;(2)f (x )在[2,6]上的最大值和最小值.解:(1)因为函数f (x )是定义在R 上的奇函数, 则当x >0时,-x <0,f (x )=-f (-x )=--2x -x -1=-2xx +1,所以f (x )的解析式为f (x )=⎩⎪⎨⎪⎧2xx -1,x ≤0,-2xx +1,x >0.(2)任取2≤x 1≤x 2≤6,则f (x 1)-f (x 2)=-2x 1x 1+1-⎝ ⎛⎭⎪⎫-2x 2x 2+1=2x 2x 2+1-2x 1x 1+1=2(x 2-x 1)(x 2+1)(x 1+1), 由2≤x 1<x 2≤6可得2(x 2-x 1)(x 2+1)(x 1+1)>0,即f (x 1)>f (x 2),所以f (x )在[2,6]上单调递减. 故当x =2时,f (x )取得最大值-43;当x =6时,f (x )取得最小值-127.20.(12分)已知函数f (x )=x 2-|x 2-ax -2|,a 为实数. (1)当a =1时,求函数f (x )在[0,3]上的最小值和最大值;(2)若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,某某数a 的取值X 围. 解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧x +2,x <-1或x >2,2x 2-x -2,-1≤x ≤2,结合图象可知f (x )在⎣⎡⎦⎤0,14上单调递减,在⎣⎡⎦⎤14 ,3上单调递增, f (x )在[0,3]上的最小值为f ⎝⎛⎭⎫14=-178, f (x )在[0,3]上的最大值为f (3)=5. (2)令x 2-ax -2=0,∵Δ=a 2+8>0, 必有两根x 1=a -a 2+82,x 2=a +a 2+82, ∴f (x )=⎩⎪⎨⎪⎧ax +2,x <x 1或x >x 2,2x 2-ax -2,x 1≤x ≤x 2,若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,则⎩⎪⎨⎪⎧a >0,a -a 2+82≥-1a 4≤2,即可,解得1≤a ≤8.21.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m 立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m 立方米时,除了付基本费和定额损耗费时,超过部分每立方米付n 元的超额费;③每户每月的定额损耗费a 不超过5元.(1)求每户每月水费y (元)与月用水量x (立方米)的函数关系式; (2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:的值. 解:(1)依题意,得y =⎩⎪⎨⎪⎧9+a0<x ≤m , ①9+n (x -m )+a ,x >m . ②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧ x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②, 得⎩⎪⎨⎪⎧17=9+n (4-m )+a , ③23=9+n (5-m )+a . ④ ③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16.又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13, 这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量. 将⎩⎪⎨⎪⎧ x =2.5,y =11代入①,得11=9+a , 由⎩⎪⎨⎪⎧ a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧ a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +m x 2+nx +1. (1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a 3对x ∈⎣⎡⎦⎤-13,13恒成立,求a 的取值X 围. 解:(1)因为奇函数f (x )的定义域为R ,所以f (0)=0.故有f (0)=0+m 02+n ×0+1=0, 解得m =0.所以f (x )=x x 2+nx +1. 由f (-1)=-f (1).即-1(-1)2+n ×(-1)+1=-112+n ×1+1, 解得n =0.所以m =n =0.(2)证明:由(1)知f (x )=x x 2+1,任取-1<x 1<x 2<1. 则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1 =x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1). 因为-1<x 1<1,-1<x 2<1, 所以-1<x 1x 2<1.故1-x 1x 2>0,又因为x 1<x 2, 所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在(-1,1)上为增函数.(3)由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎡⎦⎤-13,13上为增函数, 故最大值为f ⎝⎛⎭⎫13=310.由题意可得a 3≥310,解得a ≥910. 故a 的取值X 围为⎣⎡⎭⎫910,+∞.。
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
学习资料新教材高中数学第三章函数的概念与性质 3.2.2奇偶性学案含解析新人教A版必修第一册班级:科目:3.2。
2 奇偶性内容标准学科素养1。
结合具体函数,了解奇偶性的含义.数学抽象直观想象逻辑推理2。
学会运用函数的图象理解函数性质.3。
会利用函数奇偶性解决一些问题。
授课提示:对应学生用书第42页[教材提炼]知识点函数奇偶性的定义错误!(1)函数f(x)=x2的图象有什么对称性?(2)函数f(x)=错误!的图象有什么对称性?知识梳理(1)一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数(even function).偶函数的图象关于y轴对称,反之成立.(2)一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f (x),那么函数f(x)就叫做奇函数(odd function).奇函数的图象关于原点对称,反之成立.[自主检测]1.下列函数为奇函数的是()A.y=|x|B.y=3-xC.y=错误!D.y=-x2+14答案:C2.若函数y=f(x),x∈[-2,a]是偶函数,则a的值为()A.-2 B.2C.0 D.不能确定答案:B3.若点(-1,3)在奇函数y=f(x)的图象上,则f(1)等于()A.0 B.-1C.3 D.-3答案:D4.已知f(x)是偶函数,且f(2)=2,则f(2)+f(-2)=________.答案:4授课提示:对应学生用书第42页探究一函数奇偶性的判断[例1]判断下列函数的奇偶性:(1)f(x)=x4+2x2;(2)f(x)=x3+错误!;(3)f(x)=错误!+错误!;(4)f(x)=错误!(5)f(x)=错误!.[解析](1)∵f(x)的定义域为R,关于原点对称,又f(-x)=(-x)4+2(-x)2=x4+2x2=f(x),∴f(x)为偶函数.(2)∵f(x)的定义域为(-∞,0)∪(0,+∞),它关于原点对称,又f(-x)=(-x)3+错误!=-错误!=-f(x),∴f(x)为奇函数.(3)∵f(x)的定义域为{-1,1},是两个具体数,但它关于原点对称,又f(-1)=f(1)=0,f(-1)=-f(1)=0,∴f(x)=错误!+错误!既是奇函数,又是偶函数.(4)函数f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.①当x>0时,-x<0,则f(-x)=(-x)3+3(-x)2-1=-x3+3x2-1=-(x3-3x2+1)=-f(x).②当x<0时,-x>0,则f(-x)=(-x)3-3(-x)2+1=-x3-3x2+1=-(x3+3x2-1)=-f(x).由①②知,当x∈(-∞,0)∪(0,+∞)时,都有f(-x)=-f(x),∴f(x)为奇函数.(5)由题设得:错误!∴函数f(x)定义域为[-1,0)∪(0,1],关于原点对称,且x+2〉0,∴|x+2|=x+2,∴f(x)=错误!=错误!=错误!,∴f(-x)=错误!=-错误!=-f(x),∴f(x)是奇函数.函数奇偶性的判定方法(1)定义法:若函数的定义域不是关于原点对称的对称区域,则该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的对称区域,再判断f(-x)是否等于±f(x),或判断f(x)±f(-x)是否等于零,或判断错误!是否等于±1等.用定义判断函数奇偶性的一般步骤:①求函数的定义域,并判断定义域是否关于原点对称.②用-x代x,验证是否有f(-x)=-f(x)或f(-x)=f(x),若f(-x)=-f(x),则f(x)为奇函数;若f(-x)=f(x),则f(x)为偶函数;若f(-x)=-f(x),且f(-x)=f(x),则f(x)既是奇函数又是偶函数;若f(-x)≠f(x),且f(-x)≠-f(x),则f(x)为非奇非偶函数.(2)图象法:奇(偶)函数的等价条件是它的图象关于原点(y轴)对称.判断下列函数的奇偶性:(1)f(x)=x3+x5;(2)f(x)=|x+1|+|x-1|;(3)f(x)=错误!。