(完整版)超宽带(UWB)技术
- 格式:ppt
- 大小:601.02 KB
- 文档页数:16
新版UWB技术介绍UWB技术使用两种方式传输数据:一种是无线收发,利用卫星信号进行传输,另一种是通过无线通信的方式传输数据。
无线收发采用的模式主要是同步、异步和自适应多址。
UWB系统是近几年来非常热门的一个技术了,在民用市场已经有很大优势了,但由于技术发展太快,现在很多都没有进行商用了,所以我们先从最新版的UWB技术开始介绍吧!一、超宽带超宽带(Ultra-wideband, UWB)是一种利用无线电信号进行数据传输的技术,是一种非授权频段的超宽带(UWB)系统。
超宽带通信系统的工作频率为1~10 GHz,波长为5~100μm,工作在C波段。
UWB具有高数据速率、低时延、穿透能力强、抗多径干扰等优点。
UWB是利用脉冲重复频率(PRS)和脉冲间隔时间(PLD)实现高速数据传输的技术。
脉冲重复频率指单位时间内脉冲发射次数,可分为连续或离散形式。
PRS可以根据频率来划分,常用的是20 MHz~100 MHz; PLD可以划分为2~4路数字信号处理模块组成;脉冲间隔时间(PL, pulse latency,即PL/PLD)主要用于实现时钟恢复等功能;脉冲重复频率与PRS有关,但更多地取决于天线形式、接收灵敏度、载波频率等因素,可通过测量PRS和PLD 的PL/DL值来计算。
二、时隙UWB技术的时隙分为两类:同步和异步。
同步时隙:同步信号使用固定时隙,每个载波接收信号,并在发送时同步它的相位和幅度;异步时隙:每个载波接收一个相位和幅度变化的正弦信号,将其解调成一个时间片,然后通过时频转换成一个时间片。
UWB系统中使用同步和异步的时隙。
由于UWB的波束窄且功率低,在对目标进行定位时通常使用UWB信号来传输数据,而不是传统的无线电系统使用多个射频天线来发射信号,而射频天线只能用于接收数据。
因此在使用UWB通信时,必须考虑发射功率问题,通常需要考虑的功率包括几个方面:首先是发射时间点选择;其次是在接收端需要设置接收器来识别是否来自目标位置;最后才是根据接收到的信号类型进行选择正确的波束。
一、什么是UWB超宽带UWB由Ultra Wideband缩写而成,它是一种无载波通信技术。
超宽带和其它的“窄带”或者是“宽带”主要有两方面的区别:超宽带的带宽,按照美国联邦通信委员会(FCC)的定义信号带宽大于1.5GHz,或信号带宽与中心频率之比大于25%为超宽带;信号带宽与中心频率之比在1%~25%之间为宽带,小于1%为窄带,可见UWB的带宽明显大于目前所有通信技术的带宽。
超宽带的无载波传输方式。
传统的“窄带”和“宽带”都是采用无线电频率(RF)载波来传送信号,载波的频率和功率在一定范围内变化,从而利用载波的状态变化来传输信息。
相反的,超宽带以基带传输。
按照FCC 的规定,从3. 1GHz 到10. 6GHz 之间的7. 5GHz 的带宽频率为UWB 所使用的频率范围。
二、UWB技术原理发射端将比特符号通过数字滤波器进行脉冲整形,然后转换成模拟信号发射出去,接收信号依次通过低噪声放大器(LAN)、可变增益放大器(VGA)和ADC后成为离散信号,接下来就可用DSP技术实现信号检测、估计、分集接收、判决译码等处理。
目前产生脉冲信号源的方法有两类:(1)光电方法(2)电子方法UWB的调制技术:(1)脉冲幅度调制(PAM)(2)脉冲位置调制(PPM)UWB技术的研究主要围绕以下几个方面:(1)可控窄脉冲产生技术(2)信道传播特性与信道模型(3)调制技术(4)多址技术(5)信号检测技术等。
三、UWB的主要特点1.简单系统结构UWB发射器直接用脉冲小型微带天线。
由于UWB 不需要对载波信号进行调制和解调,故不需要混频器、滤波器、RF/ IF 转换器及本地振荡器等复杂器件,同时更容易集成到CMOS 电路中。
2.高速数据传输理论上,一个宽度为0的脉冲具有无限的带宽,因此,脉冲信号要想发射出去并有足够带宽,必须有足够陡峭的上升/下降沿和足够窄的宽度。
3.功耗低由于不使用载波,仅在发射窄脉冲时消耗少量能量,从而节约了发射连续载波时的大量能耗。
UWB(定位技术)超宽带无线通信技术一、UWB调制技术超宽带无线通信技术(UWB)是一种无载波通信技术,UWB不使用载波,而是使用短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内。
它源于20世纪60年代兴起的脉冲通信技术。
传统通信方式使用的是连续波信号,即本地振荡器产生连续的高频载波,需要传送信息通过例如调幅,调频等方式加载于载波之上,通过天线进行发送。
现在的无线广播,4G通信,WIFI等都是采用该方式进行无线通信。
下图是一个使用调幅方式传递语音信号的的连续波信号产生示意图。
图1 连续波调幅信号而脉冲超宽带IR-UWB(Impluse Radio Ultra Wideband)信号,不需要产生连续的高频载波,仅仅需要产生一个时间短至nS级以下的脉冲,便可通过天线进行发送。
需要传送信息可以通过改变脉冲的幅度,时间,相位进行加载,进而实现信息传输。
下图是使用相位调制方式传输二进制归零码的IR-UWB信号产生示意图。
图2 IR-UWB调相信号从频域上看,连续波信号将能量集中于一个窄频率内,而UWB信号带宽很大,同时在每个频点上功率很低,如图3所示。
图3 IR-UWB信号频谱在无线定位中,使用IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分立无线传输中的首达信号和多径反射信号,而窄带信号不具备该能力。
主要有三种应用:成像、通信与测量和车载雷达系统,再宏观一点,可以分为定位、通信和成像三种场景。
·通信:因为大带宽,所以UWB一度被认为是USB数据传输的无线替代方案,蓝牙的问题是传输速度太慢。
UWB还常用于军用保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它无线电系统监听到。
UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s至2Gbit/s 的数据传输速率。
而且具有穿透力强、功耗低、抗干扰效果好、安全性高、空间容量大、能精确定位等诸多优点,可以说是个超级“潜力股”,很有可能在将来成为家庭主用的无线传输技术。