高聚物粘弹性力学模型的几个问题
- 格式:ppt
- 大小:1.11 MB
- 文档页数:48
第五章 高聚物的高弹性和粘弹性第一部分 主要容§5 高弹态和粘弹性§5.1 高弹性的特点及热力学分析一、高弹性的特点(1 )E 小,ε大且可迅速恢复(2)E 随T 增大而增大3、拉伸或压缩过程:放热二、理想高弹性的热力学分析——理想高弹性是熵弹性1)橡胶拉伸过程热力学分析dU=-dW+dQdW=-fdl+PdU=-fdldQ=TdSdU=TdS+f fdl等温,等容过程V T l U .)(∂∂=T(V T l S .)(∂∂+ff=-T V T l S .)(∂∂+V T lU .)(∂∂ 熵 能所以,高弹性是一个熵变得过程2)理想高弹性是熵弹性 f=-T V T l S .)(∂∂+V T lU .)(∂∂=f s +f ua f ≈-T V T lS .)(∂∂ 弹性力是由熵变引起的 熵弹性 b f ∝T T ↑,f ↑,E=εσ↑ c 热弹较变现象ε〈10%时, f 对T 作图为负值§5.2 橡胶弹性的统计理论一、理想弹性中的熵变1)孤立链的S在(x,y,z)位置的几率W(x,y,z)=)(32222)(z y x e ++-βπββ2=223zb S=klnn=c-k β2(x 2+y 2+z 2)2)理想交联网的假设(1) 两交链点间的链符合高斯链的特征(2)仿射变形(3)(4)Si= c-k β2(x 2i +y 2i +z 2i )Si’=c -k β2(λ12x 2i +λ22y 2i +λ32z 2i )ΔS i= Si’- Si=-k β2((λ12-1)x 2i +(λ22-1)y 2i +(λ32-1)z 2i )如果试样的网链总数为NΔS=-KN/2(λ12+λ22+λ32)=-1/2KN(λ2+λ-2-3)σ=-V T lS .)(∂∆∂=NKT(λ-λ-2) 二、真实(橡胶)弹性网与理论值比较及修正(1)比较a :λ很小, σ理=σ真b :λ较小, σ理〉σ真因自由端基或网络缺陷c :λ较大,σ理〈σ真因局部伸展或拉伸结晶引起(2)修正σ= NKT(λ-λ-2)=Mc RT ρ (λ-λ-2) 当分子量为时σ=Mc RT ρ(1-)2MnMc (λ-λ-2) 其中N Mc N 1=ρ§5.3 粘弹性的三种表现ε.E (结构.T.t )弹性——材料恢复形变的能力,与时间无关。