福建师范大学量子力学期末试卷A答案
- 格式:pdf
- 大小:121.08 KB
- 文档页数:6
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。
(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。
三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。
五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。
性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。
3、全同费米子的波函数是反对称波函数。
两个费米子组成的全同粒子体系的波函数为:。
4、=,因为是厄密算符,所以是厄密算符。
5、设和的对易关系,是一个算符或普通的数。
以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。
坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。
量子力学期末试题及答案红色为我认为可能考的题目一、填空题:1、波函数的标准条件:单值、连续性、有限性。
2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。
3、一个量的本征值对应多个本征态,这样的态称为简并。
4、两个力学量对应的算符对易,它们具有共同的确定值。
二、简答题:1、简述力学量对应的算符必须是线性厄米的。
答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。
综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。
2、一个量子态分为本征态和非本征态,这种说法确切吗?答:不确切。
针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。
3、辐射谱线的位置和谱线的强度各决定于什么因素?答:某一单色光辐射的话可能吸收,也可能受激跃迁。
谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。
三、证明题。
2、证明概率流密度J不显含时间。
四、计算题。
1、第二题:如果类氢原子的核不是点电荷,而是半径为0r、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r rπε=-())(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r E d r e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,43441020********420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ,可视为一种微扰,由它引起一级修正为(基态03(0)1/210030()Zra Z e a ψπ-=) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∵0a r <<,故102≈-r a Z e 。
福师《量子力学》在线作业一
一、单选题(共20 道试题,共40 分。
)
1. 题面见图片
A. A
B. B
C. C
D. D
正确答案:B
2. 第一次引进物理量的不连续性,即量子性的概念的是()
A. 爱因斯坦
B. 普朗克
C. 德布罗意
D. 戴维逊
正确答案:B
3. 题面见图片
A. A
B. B
C. C
D. D
正确答案:C
4. 题面见图片
A. A
B. B
C. C
D. D
正确答案:D
5. 对于波函数的描述不正确的是()
A. 它是量子力学的一个公理
B. 波函数完全描写了微观粒子的运动状态
C. 粒子的坐标和动量可能同时具有确定值
D. 只要给出波函数的具体形式,就可由波函数的模平方完全确定粒子在空间各处出现的几率
正确答案:C
6. 题面见图片
A. A
B. B
C. C
D. D
正确答案:B
7. 题面见图片
A. A
B. B。
一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
量子力学期末复习题答案1. 什么是量子力学的基本原理?答案:量子力学的基本原理包括波函数的统计解释、不确定性原理、量子态的叠加原理以及量子力学的测量问题等。
2. 描述薛定谔方程的物理意义。
答案:薛定谔方程是量子力学中描述微观粒子状态随时间演化的基本方程,它揭示了粒子波函数的时间依赖性,从而可以预测粒子的行为和性质。
3. 什么是泡利不相容原理?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子具有完全相同的四个量子数,即主量子数、角量子数、磁量子数和自旋量子数。
4. 简述海森堡不确定性原理的内容。
答案:海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量,测量其中一个量时,另一个量的不确定性会增加。
5. 什么是量子纠缠?答案:量子纠缠是指两个或多个量子系统之间存在的一种特殊的关联,即使它们相隔很远,一个系统的状态无论何时被测量,另一个系统的状态也会立即确定。
6. 描述量子隧穿效应。
答案:量子隧穿效应是指粒子通过一个势垒的概率不为零的现象,即使粒子的能量低于势垒的高度,粒子也有可能出现在势垒的另一侧。
7. 什么是波函数坍缩?答案:波函数坍缩是指在量子测量过程中,系统的波函数从叠加态突然变化到一个特定的本征态的过程,这个过程是随机的,并且与测量者的观测有关。
8. 简述量子力学中的态叠加原理。
答案:态叠加原理是指一个量子系统可以处于多个可能状态的叠加,即系统的波函数可以表示为这些可能状态的波函数的线性组合。
9. 描述量子力学中的测量问题。
答案:量子力学中的测量问题涉及到波函数坍缩和观测者的角色,即在测量之前,系统处于多种可能状态的叠加,而测量后系统会坍缩到一个特定的状态。
10. 什么是量子力学的非定域性?答案:量子力学的非定域性指的是量子系统的状态不局限于空间的某一点,而是在整个空间中分布,即使系统被限制在某个区域内,其波函数仍然可以扩展到区域之外。
2019-2009学年第一学期《量子力学》(A )卷参考解答及评分标准1. 能级简并、简并度。
(5分)答:量子力学中,把处于不同状态、具有相同能量、对应同一能级的现象称为简并。
把对应于同一能级的不同状态数称为简并度。
2. 一质量为μ 的粒子在一维无限深方势阱⎩⎨⎧><∞<<=ax x a x x V 2,0,20,0)(中运动,写出其状态波函数和能级表达式。
(5分)解: ⎪⎩⎪⎨⎧≥≤<<=ax x a x axn a x n 2,0,0,20,2sin 1)(πψ,3,2,1,82222==n an E n μπ3. 二电子体系中,总自旋 21s s S += ,写出(z S S ,2)的归一化本征态(即自旋单态与三重态)。
(5分)解:(2,z S S )的归一化本征态记为S SM χ,则 自旋单态为]00(1)(2)(1)(2)χαββα=- 自旋三重态为]111011(1)(2)(1)(2)(1)(2)(1)(2)χααχαββαχββ-=⎧⎪⎪=+⎨⎪⎪=⎩4. 对于阶梯形方势场⎩⎨⎧><=ax V a x V x V ,,)(21,如果(12V V -)有限,则定态波函数)(x ψ连续否?其一阶导数 )(x ψ'连续否?(5分) 解:定态波函数)(x ψ连续;其一阶导数 )(x ψ'也连续。
5. 用球坐标表示,粒子波函数表为 ()ϕθψ,,r ,则粒子在立体角d Ω中被测到的几率为()220d ,,d P r r r ψθϕ∞=Ω⎰。
(5分)6. 给出如下对易关系:(5分)[],0,,,2,y z z y x zy z xx p z p iy L ixi L p i p σσσ⎡⎤⎡⎤===⎣⎦⎣⎦⎡⎤⎡⎤=-=⎣⎦⎣⎦7. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:()()n n nx a x ψψ=∑,则展开式系数()*(),()()()d n n n a x x x x x ψψψψ==⎰。
量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。
答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。
答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。
答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。
答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。
答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。
求该粒子在基态时的能量和波函数。
答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。
2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。
求该粒子的能级和相应的波函数。
答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。
量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数ψ(x,t)描述的是粒子的:A. 位置B. 动量C. 概率密度D. 能量答案:C2. 根据海森堡不确定性原理,以下哪个说法是正确的?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程是描述量子态随时间演化的方程,其形式为:A. iħ∂ψ/∂t = HψB. ħ∂ψ/∂t = iHψC. i∂ψ/∂t = ħHψD. ħ∂ψ/∂t = -iHψ答案:A4. 量子力学中的泡利不相容原理指出:A. 两个电子不能占据同一个量子态B. 两个电子可以占据同一个量子态C. 两个电子可以占据同一个量子态,但必须具有不同的自旋D. 两个电子可以占据同一个量子态,但必须具有相同的自旋答案:A5. 以下哪个实验验证了量子力学的波粒二象性?A. 光电效应B. 双缝干涉实验C. 康普顿散射D. 光电效应和康普顿散射答案:B二、填空题(每题3分,共15分)1. 量子力学的基本假设之一是波函数的________,即波函数的模的平方给出了粒子在空间某点出现的概率密度。
答案:模的平方2. 根据量子力学,一个粒子的波函数可以展开为一系列本征函数的线性组合,这些本征函数对应的是系统的________。
答案:本征值3. 在量子力学中,一个粒子的总能量可以表示为动能和________的和。
答案:势能4. 量子力学中的波函数ψ(x,t)是复数函数,其模的平方表示粒子在空间某点出现的概率密度,而其________则与粒子的相位有关。
答案:相位5. 量子力学中的隧道效应是指粒子通过一个经典物理中不可能通过的势垒的现象,这一现象说明了粒子的________。
答案:波动性三、简答题(每题10分,共20分)1. 简述量子力学中的测不准原理。
答案:量子力学中的测不准原理,也称为海森堡不确定性原理,指的是粒子的位置和动量不能同时被精确测量。
第2学期《量子力学》期末考试试卷(A 卷)年级 专业 姓名 学号 座位号(答案及评分标准)一、简答题(共10题,每小题5分,共50分)1. 用球坐标表示,粒子波函数表为 ()ϕθψ,,r ,写出粒子在球壳()dr r r +,中被测到的几率。
解:()ϕϕθψθθππd r d dr r P ⎰⎰=2022,,sin 。
2. 一质量为μ 的粒子在一维无限深方势阱⎩⎨⎧><∞<<=ax x ax x V 2,0,20,0)(中运动,写出其状态波函数和能级表达式。
解: ⎪⎩⎪⎨⎧≥≤<<=ax x a x axn a x n 2,0,0,20,2sin 1)(πψ,3,2,1,82222==n a n E n μπ3. 粒子在一维δ势阱 )0()()(>-=γδγx x V中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。
解: )0(2)0()0(2ψγψψ m -='-'-+4. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。
解:有两个条件:0],[,0==∂∂H Q tQ。
5. 写出电子自旋z s 的二本征态和本征值。
解:⎪⎪⎭⎫ ⎝⎛===01)(,221z z s s χα ;⎪⎪⎭⎫ ⎝⎛==-=-10)(,21z z s s χβ 。
6. 给出如下对易关系:[][][][][]?,?,?,?,?,2=====xyz zyz yL Lp L L y p x σσ解:[][][][][]zxyz xzyz yi L Lpi p L xi L y p x σσσ2,0,,,0,2-=====7. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?解:在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。
在弱磁场中,原子发出的每条光谱线都分裂为(21)j +条(偶数)的现象称为正常塞曼效应。
原子置于外电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。