数字音频传输系统的设计与实现
- 格式:doc
- 大小:117.50 KB
- 文档页数:6
I2S⾳频总线I2S⾳频总线学习(⼀)数字⾳频技术⼀、声⾳的基本概念声⾳是通过⼀定介质传播的连续的波。
图1 声波重要指标:1. 振幅:⾳量的⼤⼩2. 周期:重复出现的时间间隔3. 频率:指信号每秒钟变化的次数声⾳按频率分类:图2 声⾳的频率(语⾳信号频率范围:300Hz-3kHz)声⾳的传播携带了信息,它是⼈类传播信息的⼀种主要媒体。
声⾳的三种类型:1. 波形声⾳:包含了所有声⾳形式2. 语⾳:不仅是波形声⾳,⽽且还有丰富的语⾔内涵(抽象→提取特征→意义理解)3. ⾳乐:与语⾳相⽐,形式更规范。
⾳乐是符号化的声⾳。
⼆、声⾳的数字化1.声⾳信号的类型模拟信号(⾃然界、物理)数字信号(计算机)2.声⾳数字化过程图3 声⾳数字化过程3.声⾳数字化过程⽰意图图4 声⾳数字化过程⽰意图4.声⾳数字化三要素采样频率量化位数声道数每秒钟抽取声波幅度样本的次数每个采样点⽤多少⼆进制位表⽰数据范围使⽤声⾳通道的个数采样频率越⾼声⾳质量越好数据量也越⼤量化位数越多⾳质越好数据量也越⼤⽴体声⽐单声道的表现⼒丰富,但数据量翻倍11.025kHz22.05 kHz44.1 kHz 8位=25616位=65536单声道⽴体声5.声⾳数字化的数据量⾳频数据量=采样频率×量化位数×声道数/8(字节/秒)采样频率(kHz)量化位数(bit)数据量(KB/s)单声道⽴体声(kHz)(bit)11.025810.7721.35 1621.5343.0722.05821.5343.07 1643.0786.1344.1843.0786.13 1686.13172.27三、⾳频的⽂件格式1.WAV⽂件WAV是Microsoft/IBM共同开发的PC波形⽂件。
因未经压缩,⽂件数据量很⼤。
特点:声⾳层次丰富,还原⾳质好2.MP3⽂件MP3(MPEG Audio layer3)是⼀种按MPEG标准的⾳频压缩技术制作的⾳频⽂件。
Dante数字音频传输技术基于以太网的数字音频传输技术已是专业音频行业的一个技术焦点,并以其不依赖于控制系统而独立存在的特性,广泛的应用到很多项目中。
一方面它解决了多线路的布线困难问题,同时也解决了远距离传输、数据备份、自动冗余等一系列在模拟传输时代无法面对的问题。
目前比较成熟的以太网音频传输技术主要有CobraNet[1]和EtherSound[2]技术,但这两种技术都各有千秋。
在此基础上,为了更加迎合市场的需求,Audinate于2003年推出了Dante[3]这种融合了很多新技术的数字音频传输技术。
1.概述Dante数字音频传输技术是一种基于3层的IP网络技术,为点对点的音频连接提供了一种低延时、高精度和低成本的解决方案[4][5]。
Dante技术可以在以太网(100M或者1000M)上传送高精度时钟信号以及专业音频信号并可以进行复杂的路由。
与以往传统的音频传输技术相比,它继承了CobraNet与EtherSound所有的优点,如无压缩的数字音频信号,保证了良好的音质效果;解决了传统音频传输中繁杂的布线问题,降低了成本;适应现有网络,无需做特殊配置;网络中的音频信号,都以“标签”的形式进行标注等。
同时具备自身独特的优势:1)更小的延时。
在100M网络带宽,总传输音频通道为3个时,延时仅为34µs。
Dante系统可自动调节可用的网络带宽,以便将延时时间降低到最小[7]。
2)采用了IEEE1588精密时钟协议进行时钟同步。
3)采用了zeroconf(ZeroConfigurationNetworking)[6][7]协议,利用自动配置服务器自动检查接口设备、标识标签以及区分IP地址等工作,无需启动高层级别的DNS或者DHCP服务,同时节省了复杂的手工网络配置。
4)网络的高兼容特性。
Dante技术可以允许音频信号和控制数据以及其他不相干的数据流共享在同一个网络中而不受干扰,用户可以最大限度的利用现有网络而无需为音频系统建立专网。
智慧应急音响与数字会议系统设计方案XXX有限公司20XX年XX月XX日目录一概述 (3)1.1 设计原则 (3)1.2 设计依据 (4)1.3 设计思路 (5)1.4 工程范围 (5)二系统架构 (6)三系统组成 (6)四系统功能 (6)五详细建设方案 (7)5.1 应急指挥大厅 (7)5.1.1 会议扩声系统 (7)5.1.2 数字会议系统 (8)5.2 新闻发布厅 (8)5.2.1 会议扩声系统 (8)5.2.2 数字会议系统 (8)5.3 专家会商室 (8)5.3.1 会议扩声系统 (8)5.3.2 数字会议系统 (9)5.4 研判决策室 (9)5.4.1 会议扩声系统 (9)5.4.2 数字会议系统 (9)5.5 大会议室 (9)5.5.1 会议扩声系统 (9)5.5.2 数字会议系统 (10)5.6 三楼会议室 (10)5.6.1 会议扩声系统 (10)5.6.2 数字会议系统 (11)5.7 值班室 (11)5.7.1 扩声系统 (11)一概述应急指挥中心主要用于处理突发事件、进行远程会商、本地讨论,场所的音响与数字会议系统要达到良好的拾音和播放效果。
满足应急指挥中心会议拾音、扩声需求,满足召开视频会议与日常会议的要求。
音响与数字会议系统主要包括数字会议系统、音响扩声系统及音频处理系统等。
1.1设计原则音响会议系统设计以智能化为核心,根据“听的清,看得见”的设计要求,采用成熟的技术、先进的设备和稳定的基础构架(即所用技术在相当长的时期内不会被淘汰,具有技术提升空间,可进行系统扩展),满足各项需求。
本次设计方案,完全响应国家会议类相关一级标准要求的前提下,对一些必要的使用功能做了部分优化和扩展,确保整个会议系统达到国家标准要求的同时,还为会议室日后系统扩展创造坚实的基础。
本系统的设计原则是:(一)先进性指挥中心会议系统的技术性能和质量指标应达到国际领先水平,采用全数字会议系统;同时,系统的安装调试、软件编程和操作使用应简便易行,容易掌握。
Dante数字音频传输技术应用1.Dante数字音频传输技术及发展现状1.1Dante数字音频传输技术Dante数字音频传输技术是一种可以在以太互联网上使用的高性能数字媒体传输协议。
1.2Dante数字音频传输技术的发展及现状Dante数字音频传输技术是澳大利亚Audinate公司于2003年提出,2006年研发成功并发布。
首先与Audinate合作的是杜比实验室,其杜比Lake处理器成为第一个使用该技术的音频设备,并在2008年华盛顿芭芭拉史翠珊秀上首次使用,这也推动了Dante技术的迅速商业化。
经过十多年的发展,凭借其直观、简单配置和易用、超低网络延迟等特点,现已被雅马哈(Yamaha)、博世通讯系统(Bosch)、哈曼(Harman)、舒尔(Shure)、百威(Peavey)、思美(Symetrix)、爱思创(Extron)、瑞典立高(Lab.Gruppen)、Allen&Heath、森海塞尔(Sennheiser)和Powersoft等许多知名音响设备生产厂商作为音频设备支持的标准音频传输协议,2010年至2011年的温哥华冬奥会、悉尼世界青年节、伦敦银禧音乐会、悉尼歌剧院音响系统等音频应用解决方案中均采用Dante技术,现Audi-nate公司与世界140多个制造商合作,将Dante技术广泛应用在现场音响扩声、智能广播、专业录音、智能电视会议系统等多个领域。
2014年在北京PALM展览会上,Audinate公司使用支持Dante技术的不同品牌的设备轻易成功搭建起了一个以千兆以太互联网交换系统为基础的智能多媒体音频系统,引参展和业内各方厂商的高度关注,成为展览会上的亮点。
1.3Dante数字音频传输技术的特点如下表所示,Dante数字音频传输技术继承了CobraNet和EtherSound两种音频传输技术的优点,与工作在OSI第二层(数据链路层)的CobraNet和EtherSound等音频传输技术不同,Dante技术工作在以太互联网络的OSI第三层即网络层,在实现了数据交换的同时,可以进行路由、通信流量控制、分组传输、差错控制、QoS服务等更高级的任务,使得Dante传输技术在单一链路的千兆以太网线上可以同时处理发送和接收数1024个通道,最高采样192KHz的高质量音频数据;可以与其他设备共享网络资源;还采用了IEEE1588精密时钟协议进行同步和自动延时与带宽调整技术,使之网络音频信号最低延迟可达34μs。
基于DSP的音频信号处理算法研究与实现音频信号处理是一项关键技术,它在实际生活和各个领域中得到广泛应用。
基于数字信号处理器(DSP)的音频信号处理算法研究与实现,成为了当前研究和开发的热点方向。
本文将探讨利用DSP实现音频信号处理算法的研究方法和具体实现步骤。
1. DSP的概述DSP(Digital Signal Processing,数字信号处理)技术是指利用数字化方法对模拟信号进行处理、计算和编码的技术。
它通过数字滤波、数字变换等算法对数字信号进行处理,具有高效性、灵活性和精确性等优势。
DSP技术在音频处理领域有着重要的应用。
2. 音频信号处理算法研究方法2.1 问题分析:首先需要明确要处理的音频信号处理问题,例如降噪、滤波、均衡等。
针对不同的处理问题,选择合适的算法进行研究。
2.2 算法选择:根据具体问题的特点,选择适合的音频信号处理算法,例如自适应滤波算法、小波变换算法等。
2.3 算法实现:将选择的算法进行进一步实现,需要借助DSP的开发环境和相应的软件工具进行编程和调试。
算法的实现过程中需要注意算法的时效性和实时性。
3. DSP音频信号处理算法实现步骤3.1 信号采集:通过外设音频采集模块,将模拟音频信号转换为数字信号,输入DSP进行处理。
3.2 数据预处理:对采集到的音频信号进行预处理,包括滤波、去噪等操作。
这一步旨在减小输入信号的噪声干扰,提高音频信号处理的质量。
3.3 算法实现:选择适当的音频信号处理算法进行实现,例如自适应滤波、小波变换等。
根据算法的特点和要求,进行程序编写和调试。
3.4 数据后处理:将处理后的数字音频信号转换为模拟信号,经过后续的数模转换模块,输出音频信号。
4. 实例分析:音频降噪算法在DSP上的实现以音频降噪算法为例,介绍基于DSP的音频信号处理算法的具体实现步骤。
4.1 问题分析:降噪算法是音频信号处理中常见的问题,通过去除背景噪声提升原始信号的质量。
4.2 算法选择:选择适合的降噪算法,例如基于自适应滤波的降噪算法,通过实时估计噪声模型并进行滤波处理。
AES/EBU是一种通过基于单根绞合线对来传输数字音频数据的串行位传输协议,其全称是Audio Engineering Society/European Broadcast Union(音频工程师协会/欧洲广播联盟),其《双通道线性表示的数字音频数据串行传输格式》,EBU是指EBU 中AES是指AES3-1992标准:发表的数字音频接口标准EBU3250,两者内容在实质上是相同的,统称为AES/EBU数字音频接口。
AES/EBU标准传输数据时低阻抗,信号强度大,波形振幅在3-10V之间,传送速率为6Mbps,抗干扰能力很强,减小了通道间的极性偏移、不平衡、噪音、高频衰减和增益漂移等问题造成的影响,适合较远距离的传输。
整栋大楼内全部以AES/EBU格式电缆进行音频信号的长距离数字化传输,最远的单根信号线传输距离超过400米AES/EBU与网络系统相比的优势1、传输距离更远。
基于局域网的音频传输系统单根网线最长100米,接入路由器后,两点之间最长也就200米的传输距离,超过这个距离就必须使用光纤系统。
而AES/EBU格式在没有中继的情况下,根据AES协会在1995年出台并在2001年更新的AES-3id -1995补充文件规定,最长可以传输超过1000米的距离。
2、传输延时可以忽略。
而AES/EBU格式没有可计的延时,在实际应用中完全可以忽略。
3、系统构成简单可靠4、系统总体造价更低,更为经济选用的LS9/16是06年底新面市的一款专门针对现场扩声应用而设计的数字调音台,在其机背的扩展槽内插入一块MY8-AE的扩展卡,即具备8路AES/EBU信号输出。
而SP2060是一款自带2路AES/EBU信号输入接口,6路模拟输出的多功能音频处理器,可以完成全部的通道分配、均衡、分频和延时等处理功能,并完成数字信号到模拟信号的转换。
该系统中,LS9调音台每两路AES/EBU格式信号输出通过长距离电缆送至功放机柜内的SP2060,实现了数百米的完全无损的高可靠性的数字音频传输。
校园数字广播系统设计方案1、校园数字广播系统1.1系统概述某开发区产教融合实训基地项目作为一座现代化的综合性园区,工程规模较大,建成后将成为当地的标志性区域之一,因此,对数字化校园的智能化系统建设要高标准、严要求进行系统设计,先推出较为成熟的方案,再进行详细设计和论证,最后施工,是科学、严谨、节约成本和时间的的做法。
智能化系统规划不同于一般工程的系统规划,必须从需求出发,进行深入调研,对设计、产品、信息、环境等作出科学的分析,制定合理方案。
数字化校园应体现前瞻性、综合性、多功能、现代化的要求,在智能化系统的规划上充分考虑上述要求。
某开发区产教融合实训基地项目是新建园区,为了完善自动化的校园管理,并为整个园区内师生以及就行政工作人员增添几分温馨和舒适的工作及就学环境,同时也为信息的发布提供便捷的途径,所以在某开发区产教融合实训基地项目区内部规划建立一套完善的广播系统。
根据数字化校园建设的具体需求,方案设计该子系统,平时可播放音乐节目、发布业务信息等;当火灾及其他紧急事件发生时,可切换至火灾报警广播或紧急广播,其系统功能包括:*校园背景音乐广播*校园消防广播1.2系统需求根据本项目建设的具体需求及系统功能的实现,方案设计功能包括:*校园背景音乐广播*校园消防广播根据某开发区产教融合实训基地项目校园数字广播系统建设需求和实际情况,我们公司严格按照“统一规划、讲究实效、安全可靠”的原则,确立该广播系统的解决方案。
本次根据消防防火分区进行数字化校园广播分区的划分,室外部分单独设置广播分区,划分到各学校进行管理。
根据实际环境需要分别设置壁挂音箱、吸顶喇叭。
在自然分区和功能分区的前提下合理划分控制区,进行分区或集中控制。
其中声源包括:远程寻呼话筒、CD/MP3播放器等。
要求在宣传、管理上达到全方位高质量的广播效果,在此基础上,实现业务广播、音乐播放,节目定时定点播放等应用,为大楼管理的信息化、自动化奠定基础。
Dante数字音频传输技术应用1.Dante数字音频传输技术及发展现状1.1Dante数字音频传输技术Dante数字音频传输技术是一种可以在以太互联网上使用的高性能数字媒体传输协议。
1.2Dante数字音频传输技术的发展及现状Dante数字音频传输技术是澳大利亚Audinate公司于2003年提出,2006年研发成功并发布。
首先与Audinate合作的是杜比实验室,其杜比Lake处理器成为第一个使用该技术的音频设备,并在2008年华盛顿芭芭拉史翠珊秀上首次使用,这也推动了Dante技术的迅速商业化。
经过十多年的发展,凭借其直观、简单配置和易用、超低网络延迟等特点,现已被雅马哈(Yamaha)、博世通讯系统(Bosch)、哈曼(Harman)、舒尔(Shure)、百威(Peavey)、思美(Symetrix)、爱思创(Extron)、瑞典立高(Lab.Gruppen)、Allen&Heath、森海塞尔(Sennheiser)和Powersoft等许多知名音响设备生产厂商作为音频设备支持的标准音频传输协议,2010年至2011年的温哥华冬奥会、悉尼世界青年节、伦敦银禧音乐会、悉尼歌剧院音响系统等音频应用解决方案中均采用Dante技术,现Audi-nate公司与世界140多个制造商合作,将Dante技术广泛应用在现场音响扩声、智能广播、专业录音、智能电视会议系统等多个领域。
2014年在北京PALM展览会上,Audinate公司使用支持Dante技术的不同品牌的设备轻易成功搭建起了一个以千兆以太互联网交换系统为基础的智能多媒体音频系统,引参展和业内各方厂商的高度关注,成为展览会上的亮点。
1.3Dante数字音频传输技术的特点如下表所示,Dante数字音频传输技术继承了CobraNet和EtherSound两种音频传输技术的优点,与工作在OSI第二层(数据链路层)的CobraNet和EtherSound 等音频传输技术不同,Dante技术工作在以太互联网络的OSI第三层即网络层,在实现了数据交换的同时,可以进行路由、通信流量控制、分组传输、差错控制、QoS服务等更高级的任务,使得Dante传输技术在单一链路的千兆以太网线上可以同时处理发送和接收数1024个通道,最高采样192KHz的高质量音精密时钟协议进行同步IEEE1588还采用了;可以与其他设备共享网络资源;频数据和自动延时与带宽调整技术,使之网络音频信号最低延迟可达34μs。
数字音频传输系统的设计与实现 更新于2011-03-23 01:28:24 文章出处:21ic 电子技术 数字化技术 数字音频 广播电视 1 引言
随着电子技术和数字化技术的飞速发展,数字音频已经在广播电视的录制、播出、传输等各个应用领域得到了广泛的应用。在很多场合,模拟音频已经无法适应整个扩声系统最基本的要求。大型体育场扩声系统设计中极为关键的问题是如何解决微弱的音频信号的远距离优质传输。对于大型场馆,需要传送的距离通常达到几百米远。采用传统的模拟传输方式,难以解决信号损耗和电磁干扰及接地干扰等难题。数字音频的各种性能远远优于模拟模式,因此广播电视设备的数字化已经成了必然的趋势。采用数字信号进行传输和处理的优点是数字信号对干扰不敏感,整个系统的信噪比及失真与传输距离无关,对于长距离传输,其优良的性能指标是模拟传输所无法比拟的。
目前无论电台还是电视台的演播室都在朝着数字化方向发展,作为数字化电视制作的主要功能手段,数字音频的基本理论、接口方式、音频格式和系统设计同样成为广播电视节目制作领域的重大课题。然而,当前绝大多数高性能的数字播出、传输设备都是进口设备,且价格昂贵。本文研究设计的正是应用于这一领域的一款高性能数字音频传输系统。
2 数字音频接口标准 目前常用的数字音频接口标准主要有AES/EBU(AES3 - 1992)接口、S/PD IF接口、MAD I接口等。S/PD IF主要是作为民用数字音频格式标准,MAD I接口是以双通道AES/EBU 接口为基础而制定的,在专业数字音频领域中主要使用AES/EBU接口标准。
AES/EBU的全称是Audio Engineering Society/Eu2ropean B roadcast Union (录音师协会/欧洲广播系统联盟) ,现已成为专业数字音频较为流行的标准,大量民用产品和专业音频数字设备如CD机、DAT、MD机、数字调音台、数字音频工作站等都支持AES/EBU。
AES/EBU标准是AES和EBU一起开发的一个数字音频传输标准,它是传输和接收数字音频信号的数字设备接口协议,规定音频数据必须以2的补码进行编码。传输介质是电缆,允许高带宽容量和由A /D转换器产生的并行数据字节的串行传输。在串行传输16~20 bit的并行字节时先传输最低有效位,必须加入字节时钟标志以表明每个样值的开始,最后的数据流为双相标志码编码,另外时钟信息也内嵌进了AES/EBU信号流中。 AES/EBU通过基于单根绞合线对来传输数字音频数据,使用串行位传输协议,无须均衡即可在长达100 m的距离上传输数据。它提供两个信道的音频数据(最高24比特量化) ,信道是自动计时和自同步的。
它也提供了传输控制的方法和状态信息的表示( chan2nel status bit)和一些误码的检测能力,它的时钟信息是由传输端控制,来自AES/EBU的位流。
AES/EBU的普通物理连接媒质有: ( 1)平衡或差分连接,使用XLR (卡侬)连接器的三芯话筒屏蔽电缆,参数为阻抗110Ω,电平范围0. 2 ~5 Vpp,抖动为±20 ns。(2)单端非平衡连接,使用RCA插头的音频同轴电缆。(3)光学连接,使用光纤连接器。
AES/EBU自1992年修订以来,该标准已经在录音制作、数字影院和广播电视行业广泛应用,成为最常见的数字音频格式,相关设备、接口、线缆、配件等应有尽有,而且价格低廉。
3 系统电路设计 3. 1 系统的总体方案 整个数字音频传输系统分为发送端、接收端和传输介质(电缆) 3个部分,如图1所示。传输介质主要有双绞屏蔽线电缆、同轴电缆、光纤和无线传输(如PDH或SDH数字微波) ,根据具体场合及传输距离来选用。
图1 数字音频传输系统原理框图。
发送端主要是完成对信号的接入、A /D 转换、格式编码、时钟产生等工作。为了增加信号的动态范围,同时防止A /D转换中出现混叠失真,在模拟输入通道中应设置信号调理电路和抗混叠滤波器。 接收端主要是完成对AES/EBU 格式数据的接收、解码,恢复出主时钟信号、同步信号,再对音频数据进行D /A转换等工作。
3. 2 发送端电路设计 根据前节所述的系统方案,我们选用Cirrus Logic公司的CS5381和CS8406分别完成模拟信号的A /D转换和AES/EBU格式编码发送,电路原理如图2 所示。
图2 发送端原理图。 CS5381是120 dB、192 kHz高性能24 bit立体声模数转换芯片。CS5381可工作在主、从两种模式下。模式选择可通过管脚2 (M /S)来进行,本设计工作在主模式。CS5381采样率可以通过MD IV、M0和M1这3个管脚逻辑电平控制,主时钟选择可以根据所选的采样频率和MD IV引脚作选择。本设计中选择的是48 kHz单倍速采样率,采用12. 288MHz有源晶振做时钟源。CS5381转换结果是24位补码形式串行数据,且左右通道交替输出,可用LRCK高低电平来进行区分。输出数据有两种格式即左对齐和I2S格式,本设计采用I2S格式。
数字音频的格式编码与发送由Cirrus Logic公司的数字音频发射器CS8406完成。CS8406可支持192kHz采样率,并满足下一代音频格式,可接收和编码音频和数字数据,再经过多路复用和编码后,将其传送至电缆/光纤接口处。
器件的工作模式选为硬件模式(H /S = 1) ,输入数据格式为I2S ( SFMT1 = 0, SFMT0 = 1 ) ,主时钟频率OMCK选为256 ×FS (HWCK1 = 1, HWCK0 = 1) 。IL2RCK、ISCLK、SD IN是来自CS5381的左右时钟信号、串行时钟信号和音频数据; TXN、TXP是串行数据输出端,通过这两个引脚发送出编码好了的AES/EBU 格式数据。
3. 3 接收端电路设计 接收端电路我们选用与CS8406对应的数字音频接收电路CS8416完成AES/EBU 格式音频数据的接收和解码,采用CS4397完成数字音频信号至模拟信号的转换,电路原理如图3所示。
图3 接收端原理图。 CS8416是业界领先的192 kHz数字音频接收器,具有200 p s的极低抖动性能。CS8416接收和解码数字音频数据的采样频率高达192 kHz,并采用一个极低的抖动时钟恢复装置,从进入的音频流中产生一个清晰的恢复时钟。一个8∶2输入多路器允许多达8个数字音频输入源,多路器的第二输出提供一个SPD IF直通特性,增添了系统灵活性。CS8416集成了压缩音频输入流的自动检测和CD - Q子码解码功能,并允许信号可选择通往3个通用输出(GPO)引脚。
工作在软件模式下,在CS8416中可以同时接入8路数字音频信号,当SDOUT对地接47 kΩ 电阻时,器件工作在硬件模式下,此时RXP4、RXP5、RXP6、RXP7将工作在第二功能下,用它们来设置所选定RXP0、RXP1、RXP2、RXP3做为接收引脚。在本设计中接收端只有一路合成的左右声道数字音频信号,所以我们选择RXP0和RXN做为接收引脚(相应的设置RXP4= 0 RXP5 = 0) ,其他不用的接收引脚悬空; AD0是信号接收确认引脚,它连接一个发光二极管,当没有接收到信号时,发光二极管亮,接收到信号时,发光二极管灭。OLRCK、OSCLK、SDOUT是在AES/EBU数据中提取出来的左右时钟信号、串行时钟信号和音频数据。
AUD IO是非音频数据流指示引脚,也是输入数据格式选择位SFSEL1; C (19脚)是通道状态指示位,也是输入数据格式选择位SFSEL0。这两个引脚通过47kΩ电阻接地或接高电平可以决定输出数据的格式。图3中接法选择的是I2S 24 bit数据格式。U为用户数据位,通过47 kΩ 电阻接地,选择恢复主时钟频率MRCK为256 ×FS。
CS4397是Cirrus Logic公司推出一种完善的高品质24位48 /96 /192千赫立体声数字至模拟转换芯片。 图中CS4397的LRCK、SCLK、SDATA分别是左右时钟信号、串行时钟信号和音频数据引脚,直接与数字音频接收电路CS8416相应引脚相接,用于接收解码后的数字音频信号。C /H引脚接低电平是器件工作在硬件模式。M4~M0引脚用于设置采样频率及输入数据格式,图中接法选择48 kHz单速度采样频率和I2S24bit数据格式输入。A INL +、A INL - 、A INR +、A INR- 分别是D /A转换后的左右声道同相信号和反相信号的输出端,连接到由NE5532组成的低通滤波电路,滤除20 kHz以上的高频分量。
3. 4 传输介质 如前所述,传输数字音频信号主要有以下4种方式:双绞屏蔽线电缆传输、同轴电缆传输、光纤传输以及无线传输。前3种方式是AES/EBU建议的标准传输方式,无线传输可以使用调频或专用的数字微波信道,如使用PDH数字微波E1接口。但由于E1接口和AES/EBU标准的传送速率不一致,需要对AES/EBU数字音频信号进行码速调整,使之适合于E1接口。
目前数字音频传输还有一种新的方式,利用音频嵌入技术通过电视信道传送,也就是将数字音频信号插人到视频信号的行、场同步脉冲(行、场消隐)期间与数字分量视频信号同时传输。音频嵌入技术可以使以往必须分开传送的音频和视频信号合并到一个视频通道中传输,从而大大简化演播室中音视频互联所需放大、切换处理设备,并可实现音频和视频的同步传输与播放,这也是数字音频在数字电视领域的一种重要应用。
4 系统测试与结论 图4是数字音频发送器与接收器实物图。发送端与接收端采用同轴电缆相连,使用惠普HP8903B音频测试仪对整个传输系统进行测试,测得主要技术指标如下:
图4 数字音频发送器与接收器电路实物图。 (1) 频率响应: 20~20 kHz内不平坦度< ±0. 1 dB。 (2) 信噪比:全频域范围内>90 dB, 1 kHz时>94 dB。