人教版七年级下册数学期中试题
- 格式:doc
- 大小:183.00 KB
- 文档页数:6
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( )A. ﹣2B. 2C. ±2D. ±1 2.已知31x y =⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A. B. 13- C. 1 D. 5 3.下列各等式的变形中,一定正确的是( )A. 若2a =0,则a =2 B. 若a =b ,则2(a ﹣1)=2(b ﹣1) C. 若﹣2a =﹣3,则a =23 D. 若a =b ,则ac =b c4.若m>n ,则不论a 取何实数,下列不等式都成立的是( )A. m+a>nB. ma>naC. a-m<a-nD. 22ma na > 5.若单项式13a m b 3与-2a 2b n 的和仍是单项式,则方程m 3x -n =1的解为( ) A. ﹣2 B. 2 C. ﹣6 D. 66.不等式组1020x x +≥⎧⎨-⎩的解集在数轴上表示为( ) A.B. C. D. 7.若方程组34526x y k x y k -=-⎧⎨+=⎩的解中2019x y +=,则等于( ) A. 2018 B. 2019 C. 2020 D. 20218.已知关于不等式组2x x a ⎧⎨>⎩有解,则的取值不可能是( ) A 0 B. 1 C. 2 D. -29.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( )A. 0.8×(1+40%)x =15B. 0.8×(1+40%)x ﹣x =15C. 0.8×40%x =15D. 0.8×40%x ﹣x =1510.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A. 8374y x y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=-⎩C. 8374y x y x -=-⎧⎨-=-⎩D. 8374y x y x -=⎧⎨-=⎩二.填空题11.满足 2.1x <-的最大整数是______. 12.小军在解关于的方程513m x +=时,误将x +看成x -,得到方程的解为3x =-,则的值为______. 13.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,礼盒的单价是__________元.14.小红网购了一本数学拓展教材《好玩的数学》.两位小伙伴想知道书的价格,小红告诉他们这本书的价格是整数并让他们猜,小曹说:“至少29元”,小强说:“至多元,小红说:“你们两个人都猜错了。
一.选择题(共12小题,满分36分,每小题3分)1a=bA.B.C.a b+D.2.下列四个图形中,不能通过基本图形平移得到的是A.B.C.D.3.如图,若12∠=∠,则下列选项中可以判定//AB CD的是A.B.C.D.4.下列各数比1大的是A.0B.1C D.25.下面四个命题中,它们的逆命题是真命题的是①对顶角相等;②同旁内角互补,两直线平行;③直角三角形两锐角互余;④如果,都是正数,那么0ab>.A.①②③B.②③④C.②③D.③④6.点在第二象限,距离轴5个单位长度,距离轴3个单位长度,则点的坐标为A.(5,3)--D.(3,5) -B.(5,3)-C.(3,5)7.如图,数轴上点表示的数可能是AB C D 8.4的算术平方根是A .B .2C .D .16± 9.若点(,)P x y 在第四象限,且||2x =,||3y =,则(x y +=A .B .1C .5D .10.一辆汽车在笔直的公路上行驶,第一次左拐50︒,再在笔直的公路上行驶一段距离后,第二次右拐50︒,两次拐弯后的行驶方向与原来的行驶方向A .恰好相同B .恰好相反C .互相垂直D .夹角为100︒11.如图,四边形OABC 是矩形,(2,1)A ,(0,5)B ,点在第二象限,则点的坐标是A .(1,3)-B .(1,2)-C .(2,3)-D .(2,4)-12.小明做了四道练习题:①有公共顶点的两个角是对顶角;②两个直角互为补角;③一个三角板中两个锐角互为余角;④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角;⑤平面内,有且只有一条直线与已知直线垂直;⑥两条直线相交,一定垂直;⑦若两条直线相交所形成的四个角都相等,则这两条直线互相垂直.其中正确的有A .4个B .3个C .2个D .1个二.填空题(共8小题,满分40分,每小题5分)13.(5分)a = .14.(5分)写出“全等三角形的面积相等”的逆命题 .15.(5分)若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为 .16.(5分)已知|2|0x + .17.(5分)将一条两边互相平行的纸带折叠(如图),若1126∠=︒,则2∠= 度.18.(5分)在平面直角坐标系中,点的坐标为(0,2)、点的坐标为(0,3)-,将线段AB 向右平移1个单位长度,点、的对应点分别是、,点在轴上,若三角形MNK 的面积为10,则点的坐标为 .19.(5分)一块长为()a cm ,宽为()b cm 的长方形地板中间有一条裂缝(如图甲).若把裂缝右边的一块向右平移xcm (如图乙),则产生的裂缝的面积可列式为 2()cm20.(5分)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)⋯根据这个规律探究可得,第110个点的坐标为 .三.解答题(共7小题,满分74分)21.(10分)计算和解方程:(1)计算:|1|)ππ-+.(2)2x=,求的值.330(3)3(2)270x-+=,求的值.22.(10分)如图,直线AB与CD相交于,OE是COBAOD∠=︒,∠的平分线,OE OF⊥,74求COF∠的度数.23.(10分)“联片办学”在近几年的教育教学中取得了丰硕的成绩,右图是我们第四片区六所兄弟学校的大致位置,其中点表示西站十字,点表示牵头学校五十五中,点表示八十三中,点表示三十四中,点表示三十六中,点表示九中,点表示三十一中.以西站十字为坐标原点,向右向上分别为、轴的正方向,结合图解答下列问题:(1)分别写出表示六所学校的点的坐标;(2)试确定OEF∆的形状;(3)求ADE∆的面积.24.(10分)学习第七章平行线的证明时,数学老师布置了这样一道作业题:如图1,在ABC∆中,80BAC∠=︒,在CB的延长线上取一点,使12ADB ABC∠=∠,作ACB∠的平分线交AD于点,求CED∠的度数.善于归纳总结的小聪发现:借助平行线的性质可以“转化角的位置,不改变角的大小”.于是小聪得到的解题思路如下:过点作//BF AD(如图,交CE于点,将求CED∠的度数转化为求BFC∠的度数问题,再结合已知条件和相关的定理,证出BF是ABC∠的平分线,进而求出BFC∠的度数.(1)请按照上述小聪的解题思路,写出完整的解答过程;(2)参考小聪思考问题的方法,解决下面问题:如图3,在ABC∆中,是AB延长线上的一点,过点作//DE BC,ACB∠和ADE∠平分线交于点,求证:12G A ∠=∠.25.(10分)感知与填空:如图①,直线//AB CD.求证:B D BED∠+∠=∠.阅读下面的解答过程,井填上适当的理由.解:过点作直线//EF CD2(D∴∠=∠//AB CD(已知),//EF CD,//(AB EF∴1(B∴∠=∠12BED ∠+∠=∠,(B D BED ∴∠+∠=∠应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度.方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠= 度.26.(12分)如图,给出格点三角形ABC .(1)写出点,,的坐标;(2)求出ABC ∆的面积.27.(12分)如图,已知,//BC OA ,100C OAB ∠=∠=︒,试回答下列问题:(1)如图1,求证://OC AB ;(2)如图2,点、在线段BC 上,且满足EOB AOB ∠=∠,并且OF 平分:BOC ∠ ①若平行移动AB ,当6BOC EOF ∠=∠时,求ABO ∠;②若平行移动AB,AOC COEABO∠+∠∠那么的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.答案与解析一.选择题(共12小题,满分36分,每小题3分)1a=bA.B.C.a b+D.[解析a=,=bab.故选:.2.下列四个图形中,不能通过基本图形平移得到的是A.B.C.D.[解析]、能通过其中一个菱形平移得到,不符合题意;、能通过其中一个正方形平移得到,不符合题意;、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意;、能通过其中一个平行四边形平移得到,不符合题意.故选:.3.如图,若12AB CD的是∠=∠,则下列选项中可以判定//A.B.C.D.[解析]若12AB CD的是,∠=∠,则下列四个选项中,能够判定//故选:.4.下列各数比1大的是A.0B .12CD .[解析11032>>>>-,比1.故选:.5.下面四个命题中,它们的逆命题是真命题的是①对顶角相等;②同旁内角互补,两直线平行;③直角三角形两锐角互余;④如果,都是正数,那么0ab >.A .①②③B .②③④C .②③D .③④[解析]①对顶角相等.它的逆命题是假命题.②同旁内角互补,两直线平行,它的逆命题是真命题.③直角三角形两锐角互余.它的逆命题是真命题.④如果,都是正数,那么0ab >.它的逆命题是假命题.故选:.6.点在第二象限,距离轴5个单位长度,距离轴3个单位长度,则点的坐标为 A .(5,3)-B .(5,3)-C .(3,5)-D .(3,5)-[解析]点位于第二象限,点的横坐标为负数,纵坐标为正数,点距离轴5个单位长度,距离轴3个单位长度,点的坐标为(3,5)-.故选:.7.如图,数轴上点表示的数可能是A B C D [解析].12A <,不符合题意;.12B <<,不符合题意;.23C ,符合题意;.34D <<,不符合题意.故选:.8.4的算术平方根是A .B .2C .D .16±[解析]224=, 4∴的算术平方根是2.故选:.9.若点(,)P x y 在第四象限,且||2x =,||3y =,则(x y +=A .B .1C .5D .[解析]由题意,得2x =,3y =-, 2(3)1x y +=+-=-,故选:.10.一辆汽车在笔直的公路上行驶,第一次左拐50︒,再在笔直的公路上行驶一段距离后,第二次右拐50︒,两次拐弯后的行驶方向与原来的行驶方向A .恰好相同B .恰好相反C .互相垂直D .夹角为100︒[解析]如图所示(实线为行驶路线)符合“同位角相等,两直线平行”的判定,两次拐弯后的行驶方向与原来的行驶方向恰好相同;故选:.11.如图,四边形OABC 是矩形,(2,1)A ,(0,5)B ,点在第二象限,则点的坐标是A .(1,3)-B .(1,2)-C .(2,3)-D .(2,4)-[解析]过作CE y ⊥轴于,过作AF y ⊥轴于,90CEO AFB ∴∠=∠=︒,四边形ABCO 是矩形,AB OC ∴=,//AB OC ,ABF COE ∴∠=∠,()OCE ABF AAS ∴∆≅∆,同理BCE OAF ∆≅∆,CE AF ∴=,OE BF =,BE OF =,(2,1)A ,(0,5)B ,2AF CE ∴==,1BE OF ==,5OB =,4OE ∴=,点的坐标是(2,4)-;故选:.12.小明做了四道练习题:①有公共顶点的两个角是对顶角;②两个直角互为补角;③一个三角板中两个锐角互为余角;④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角;⑤平面内,有且只有一条直线与已知直线垂直;⑥两条直线相交,一定垂直;⑦若两条直线相交所形成的四个角都相等,则这两条直线互相垂直.其中正确的有A .4个B .3个C .2个D .1个[解析]①有公共顶点,两边互为反向延长线的两个角是对顶角;故不符合题意; ②两个直角互为补角,故符合题意;③一个三角板中两个锐角互为余角,故符合题意;④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角或等角,故不符合题意;⑤平面内,过一点有且只有一条直线与已知直线垂直,故不符合题意;⑥两条直线相交所成的角是直角,则两直线一定垂直,故不符合题意;⑦若两条直线相交所形成的四个角都相等,则这两条直线互相垂直,故符合题意. 故选:.二.填空题(共8小题,满分40分,每小题5分)13.(5分)a = 81 .[解析9=,解得:81a =,故答案为:8114.(5分)写出“全等三角形的面积相等”的逆命题 面积相等的三角形全等 .[解析]“全等三角形的面积相等”的题设是:两个三角形全等,结论是:面积相等,因而逆命题是:面积相等的三角形全等.故答案是:面积相等的三角形全等.15.(5分)若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为 (2,5) .[解析]若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为(2,5), 故答案为:(2,5).16.(5分)已知|2|0x + .[解析]根据题意得,20x +=,60y -=,解得2x =-,6y =,所以268x y -=--=-2-.故答案为:.17.(5分)将一条两边互相平行的纸带折叠(如图),若1126∠=︒,则2∠= 72 度.[解析]如图:将一条两边互相平行的纸带折叠(如图),DAB CAB ABC ∴∠=∠=∠,1126∠=︒,18012654DAB CAB ABC ∴∠=∠=∠=︒-︒=︒,180545472ACB ∴∠=︒-︒-︒=︒,272ACB ∴∠=∠=︒,故答案为:72.18.(5分)在平面直角坐标系中,点的坐标为(0,2)、点的坐标为(0,3)-,将线段AB 向右平移1个单位长度,点、的对应点分别是、,点在轴上,若三角形MNK 的面积为10,则点的坐标为 (5,0)或(3,0)- .[解析]由题意知点坐标为(01,2)+,即(1,2),点的坐标为(01,3)+-,即(1,3)-,则2(3)5MN =--=,设点(,0)K a ,则点到MN 的距离为|1|a -,三角形MNK 的面积为10,15|1|102a ⨯⨯-=, 解得5a =或3a =-,点的坐标为(5,0)或(3,0)-,故答案为:(5,0)或(3,0)-.19.(5分)一块长为()a cm ,宽为()b cm 的长方形地板中间有一条裂缝(如图甲).若把裂缝右边的一块向右平移xcm (如图乙),则产生的裂缝的面积可列式为 2()cm[解析]如图乙,产生的裂缝的面积()()2ABCD S ab a x b ab bx cm =-=+-=矩形. 故答案为.20.(5分)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)⋯根据这个规律探究可得,第110个点的坐标为 (15,10) .[解析]横坐标为1的点有1个,纵坐标为0;横坐标为2的点有2个,纵坐标为0,1;横坐标为3的点有3个,纵坐标为0,1,2;横坐标为4的点有4个,纵坐标为0,1,2,3;发现规律:因为123414105++++⋯+=,因为在第14行点的走向为向上,所以第105个点的坐标为(14,13),因为第15行点的走向为向下,故第110个点在此行上,横坐标为15,纵坐标为从106个点(15,14)向下数5个点,即为10;故第110个点的坐标为(15,10)故答案为(15,10).三.解答题(共7小题,满分74分)21.(10分)计算和解方程:(1)计算:|1|)ππ-+.(2)2330x =,求的值.(3)3(2)270x -+=,求的值.[解析](1)原式11ππ=-=;(2)方程整理得:210x =,开方得:x =;(3)方程整理得:3(2)27x -=-,开立方得:23x -=-,解得:1x =-.22.(10分)如图,直线AB 与CD 相交于,OE 是COB ∠的平分线,OE OF ⊥,74AOD ∠=︒,求COF ∠的度数.[解析]70AOD ∠=︒,70BOC ∴∠=︒, OE 是COB ∠的平分线,1372COE COB ∴∠=∠=︒, OE OF ⊥,90EOF ∴∠=︒,903753COF ∴∠=︒-︒=︒.23.(10分)“联片办学”在近几年的教育教学中取得了丰硕的成绩,右图是我们第四片区六所兄弟学校的大致位置,其中点表示西站十字,点表示牵头学校五十五中,点表示八十三中,点表示三十四中,点表示三十六中,点表示九中,点表示三十一中.以西站十字为坐标原点,向右向上分别为、轴的正方向,结合图解答下列问题:(1)分别写出表示六所学校的点的坐标;(2)试确定OEF ∆的形状;(3)求ADE ∆的面积.[解析](1)以西站十字为坐标原点,向右向上分别为、轴的正方向建立平面直角坐标系, (0,1)A ∴-,(2,3)B -,(5,0)C -,(8,6)D -,(4,4)E --,(4,4)F -;(2)2224432OF =+=;2224432OE =+=;22864EF ==;222323264OF OE EF ∴+=+==OEF ∴∆为直角三角形,又4OF OE ==OEF ∴∆为等腰直角三角形;(3)ADE ∆的面积1112585432222=⨯-⨯⨯-⨯⨯=.24.(10分)学习第七章平行线的证明时,数学老师布置了这样一道作业题:如图1,在ABC ∆中,80BAC ∠=︒,在CB 的延长线上取一点,使12ADB ABC ∠=∠,作ACB ∠的平分线交AD 于点,求CED ∠的度数.善于归纳总结的小聪发现:借助平行线的性质可以“转化角的位置,不改变角的大小”. 于是小聪得到的解题思路如下:过点作//BF AD (如图,交CE 于点,将求CED ∠的度数转化为求BFC ∠的度数问题,再结合已知条件和相关的定理,证出BF 是ABC ∠的平分线,进而求出BFC ∠的度数.(1)请按照上述小聪的解题思路,写出完整的解答过程;(2)参考小聪思考问题的方法,解决下面问题:如图3,在ABC ∆中,是AB 延长线上的一点,过点作//DE BC ,ACB ∠和ADE ∠平分线交于点,求证:12G A ∠=∠.[解答](1)证明:如图2,过点作//BF AD ,交CE 于点,CED CFB ∴∠=∠,CBF D ∠=∠, 12D ABC ∠=∠,ABC ABF CBF ∠=∠+∠, 12ABF CBF ABC ∴∠=∠=∠, CE 是ACB ∠的平分线,12FCB ACB ∴∠=∠, 180()CED CFB FCB FBC ∴∠=∠=︒-∠+∠1180()2ACB ABC =︒-∠+∠ 1180(180)2CAB =︒-︒-∠ 130=︒.(2)证明:如图3,CG 平分ACB ∠,DG 平分ADB ∠,12GCA GCB ACB ∴∠=∠=∠,12GDE GDA ADE ∠=∠=∠, G GDA A GCA ∠+∠=∠+∠,1122G ADE A ACB ∴∠+∠=∠+∠, //DE CB ,ADE CBD ∴∠=∠,CBD A ACB ∠=∠+∠,11111()22222G A ACB ADE A ACB A ACB A ∴∠=∠+∠-∠=∠+-∠+∠=∠. 25.(10分)感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠. 阅读下面的解答过程,井填上适当的理由.解:过点作直线//EF CD2(D ∴∠=∠ 两直线平行,内错角相等//AB CD (已知),//EF CD ,//(AB EF ∴1(B ∴∠=∠12BED ∠+∠=∠,(B D BED ∴∠+∠=∠应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度.方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠= 度.[解析]感知与填空:过点作直线//EF CD ,2D ∴∠=∠(两直线平行,内错角相等),//AB CD (已知),//EF CD ,//AB EF ∴(两直线都和第三条直线平行,那么这两条直线也互相平行),1B ∴∠=∠(两直线平行,内错角相等),12BED ∠+∠=∠,B D BED ∴∠+∠=∠(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点作//GN AB ,则//GN CD ,如图②所示:由感知与填空得:E B EGN ∠=∠+∠,F D FGN ∠=∠+∠,22253582E F B EGN D FGN B D EGF ∴∠+∠=∠+∠+∠+∠=∠+∠+∠=︒+︒+︒=︒, 故答案为:82.方法与实践:设AB 交EF 于,如图③所示:180180806040AME FMB F B ∠=∠=︒-∠-∠=︒-︒-︒=︒,由感知与填空得:E D AME ∠=∠+∠,604020D E AME ∴∠=∠-∠=︒-︒=︒,故答案为:20.26.(12分)如图,给出格点三角形ABC .(1)写出点,,的坐标;(2)求出ABC ∆的面积.[解析](1)点的坐标为(1,5)-,点的坐标为(1,0)-,点的坐标为(4,3)-,(2)依题意,得//AB y 轴,且5AB =,1155(41)22ABC S ∆∴=⨯⨯-=. 27.(12分)如图,已知,//BC OA ,100C OAB ∠=∠=︒,试回答下列问题:(1)如图1,求证://OC AB ;(2)如图2,点、在线段BC 上,且满足EOB AOB ∠=∠,并且OF 平分:BOC ∠ ①若平行移动AB ,当6BOC EOF ∠=∠时,求ABO ∠;②若平行移动AB ,AOC COE ABO∠+∠∠那么的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.[解答](1)证明://BC OA ,180C COA ∴∠+∠=︒,180BAO ABC ∠+∠=︒,100C BAO ∠=∠=︒,80COA ABC ∴∠=∠=︒,180COA OAB ∴∠+∠=︒,//OC AB ∴;(2)①如图②中,设EOF x ∠=,则6BOC x ∠=,3BOF x ∠=,4BOE AOB x ∠=∠=, 180AOB BOC OCB ∠+∠+∠=︒,46100180x x ∴++︒=︒,8x ∴=︒,648ABO BOC x ∴∠=∠==︒.如图③中,设EOF x ∠=,则6BOC x ∠=,3BOF x ∠=,2BOE AOB x ∠=∠=, 180AOB BOC OCB ∠+∠+∠=︒,26100180x x ∴++︒=︒,10x ∴=︒,660ABO BOC x ∴∠=∠==︒.综上所述,满足条件的ABO ∠为48︒或60︒;②//BC OA ,100C ∠=︒,80AOC ∴∠=︒,EOB AOB ∠=∠,802COE AOB ∴∠=︒-∠,//OC AB ,BOC ABO ∴∠=∠,80AOB ABO ∴∠=︒-∠,802802(80)280COE AOB ABO ABO ∴∠=︒-∠=︒-︒-∠=∠-︒, 802802AOC COE ABO ABO ABO∠+∠︒+∠-︒==∠∠, 平行移动AB ,AOC COE ABO ∠+∠∠的值不发生变化.。
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定3.如图,已知:∠1=∠2,那么下列结论正确的是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠44.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C 20° D. 15°5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( )A. 1B. 2C. 3D. 46.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7.下列从左到右的变形中,正确的是( ) A. 81=9± B. 3.60.6-=- C. 21010-=-() D. 3355-=- 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)9.既是方程1x y -=,又是方程25x y +=解是( )A. 12x y =-⎧⎨=⎩B. 21x y =⎧⎨=-⎩C. 12x y =⎧⎨=⎩D. 21x y =⎧⎨=⎩ 10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为( )A. 4.512x y y x +=⎧⎪⎨+=⎪⎩B. 4.512x y y x =+⎧⎪⎨+=⎪⎩C. 4.512x y x y =+⎧⎪⎨=+⎪⎩D. 4.512x y y x +=⎧⎪⎨=-⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.12.如图所示,OA ⊥OC 于点O ,∠1=∠2,则∠BOD 的度数是_____.32-的相反数是__________.14.16的算术平方根是____,﹣8的立方根是____.15.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +=_____.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm ,则每一个小长方形的面积为_____.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-22.解方程组(1)5293411x y x y +=⎧⎨+=⎩; (2)2431y x x y =-⎧⎨+=⎩. 23.如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1,2).(1)写出点A 、B 的坐标:A ( , )、B ( , );(2)求△ABC 的面积;(3)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′,画出△A ′B ′C ′,写出A′、B′、C′三个点坐标.24.完成下面证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.26.已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.答案与解析一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.[答案]D[解析][详解]解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定[答案]B[解析]点到直线的距离,所以他的跳远成绩是BN,故选B.3.如图,已知:∠1=∠2,那么下列结论正确是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠4[答案]B[解析][分析]∠1和∠2是直线AB、CD被直线DB所截的内错角,若∠1=∠2,则AB∥CD.[详解]解:∵∠1=∠2,∴AB ∥CD .(内错角相等,两直线平行)故选B .[点睛]正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°[答案]B[解析] 根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( ) A. 1B. 2C. 3D. 4 [答案]D[解析][分析]根据无理数的定义,可得到无理数的个数.[详解]﹣23是分数,8=2238=2是有理数,﹣0.518是有理数;3π是无理数;37-|2是无理数 83π,37-|,2是无理数 故选:D[点睛]本题考查了无理数的定义,无限不循环小数叫做无理数.无理数是实数中不能精确地表示为两个整数之比的数,2等开不尽方的数都是无理数.6.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间 [答案]C[解析][分析]<<5<<6,即可解出.[详解]<<∴5<<6,故选C.[点睛]此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.7.下列从左到右的变形中,正确的是( )A. 9±B. 0.6=-C. 10=-D. =[答案]D[解析]选项A ,原式=9;选项B ,原式 ;选项C ,原式=10;选项D ,原式=故选D. 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)[答案]C[解析]因点P 在第三象限,可得P 点的横坐标为负,纵坐标为负,又因到x 轴的距离是4,所以纵坐标为-4,再由到y 轴的距离是3,可得横坐标为-3,即可得P(-3,-4),故选C.9.既是方程1x y -=,又是方程25x y +=的解是( ) A. 12x y =-⎧⎨=⎩ B. 21x y =⎧⎨=-⎩ C. 12x y =⎧⎨=⎩ D. 21x y =⎧⎨=⎩ [答案]D[解析]两方程的解相同,可联立两个方程,形成一个二元一次方程组,解方程组即可求得.解:根据题意,得:()()11252x y x y ⎧-=⎪⎨+=⎪⎩,①+②,得:3x=6,解得:x=2,x=2代入②,得:4+y=5,解得:y=1,∴21x y =⎧⎨=⎩,故选D.10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为()A.4.512x yyx+=⎧⎪⎨+=⎪⎩B.4.512x yyx=+⎧⎪⎨+=⎪⎩C.4.512x yxy=+⎧⎪⎨=+⎪⎩D.4.512x yyx+=⎧⎪⎨=-⎪⎩[答案]A [解析][详解]4.512x yyx+=⎧⎪⎨+=⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.[答案]对顶角相等[解析]试题分析:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故答案为对顶角相等.考点:对顶角、邻补角.12.如图所示,OA⊥OC于点O,∠1=∠2,则∠BOD的度数是_____.[答案]90°.[解析][分析]根据垂直求出∠AOC =90°,根据∠1=∠2求出∠BOD =∠AOC ,即可得出答案.[详解]∵OA ⊥OC ,∴∠AOC =90°,∵∠1=∠2,∴∠BOD =∠2+∠BOC =∠1+∠BOC =∠AOC =90°,故答案为:90°.[点睛]此题考查垂直定义和角的计算,能求出∠BOD=∠AOC 是解题的关键.-的相反数是__________.[答案[解析][分析]根据只有符号不同的两个数叫做互为相反数进行解答.[详解[点睛]此题考查相反数,解题关键在于掌握其定义.14.16的算术平方根是____,﹣8的立方根是____.[答案]4,-2[解析]试题分析:164=,-82=-.考点:1.算术平方根;2. 立方根.15.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.[答案]0.[解析][分析]根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.[详解]∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴31ab c d -+++=﹣1+0+1=0.故答案为:0.[点睛]此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.[答案]2.[解析][分析]根据x 轴上的点的纵坐标等于0列式计算即可得解.[详解]∵点P (m +3,m ﹣2)x 轴上,∴m ﹣2=0,解得m =2.故答案为:2.[点睛]此题考查点的坐标,熟记x 轴上的点的纵坐标等于0是解题的关键.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.[答案](3,3)[解析][分析]根据已知两点的坐标建立坐标系,然后确定其它点的坐标.[详解]由图示知;“将”为(0,0)而“马”位于“将”上第三个格,右第三个格中,所以,“马”为(3,3)故答案:(3,3).18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.[答案]11.[解析][分析]利用相反数的性质及非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出所求.[详解]∵|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,∴|x +y ﹣3|+(2x +3y ﹣8)2=0,∴=323=8x yx y+⎧⎨+⎩①②,①×3﹣②得:x=1,把x=1代入①得:y=2,则3x+4y=3+8=11.故答案为:11.[点睛]此题考查解二元一次方程组,非负数的性质,熟练掌握方程组的解法是解题的关键.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为_____.[答案]27cm2.[解析][分析]设小长方形的长为xcm,宽为ycm,观察大长方形,由大长方形的对边相等及大长方形的宽为12cm,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入xy中即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:2312x x yx y=+⎧⎨+=⎩,解得:93 xy=⎧⎨=⎩,∴27xy=.故答案为:27cm2.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.[答案](2019,2)[解析][分析]分析点P 的运动规律,找到循环次数即可.[详解]分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).[点睛]本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-[答案](1)3(2)6.[解析][分析](1)直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用二次根式的性质以及立方根分别化简再合并得出答案.[详解]解:(1)原式=2+5﹣(23=2+5﹣3=3(2)原式=9﹣3=6.[点睛]本题考查了实数的运算,涉及到的知识有,立方根、二次根式的性质、绝对值的性质等知识,熟练掌握运算法则是解题的关键.22.解方程组(1)529 3411 x yx y+=⎧⎨+=⎩;(2)24 31y xx y=-⎧⎨+=⎩.[答案](1)12xy=⎧⎨=⎩;(2)12xy=⎧⎨=-⎩.[解析]分析](1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.[详解]解:(1)529 3411x yx y+=⎧⎨+=⎩①②,①×2﹣②得:7x=7,解得:x=1,把x=1代入①得:y=2,则方程组的解为12 xy=⎧⎨=⎩;(2)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1, 解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , )、B( , );(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.[答案](1)A(2,﹣1)、B(4,3);(2)5;(3)图详见解析,A′(0,0)、B′(2,4)、C′(﹣1,3).[解析][分析](1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC所在矩形面积减去三个小三角形的面积即可求解;(3)分别将点A、B、C先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.[详解]解:(1)A(2,﹣1),B(4,3);(2)S△ABC=3×4﹣12×2×4﹣12×1×3﹣12×3×1=5,故△ABC的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).[点睛]本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)[答案]两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等[解析][分析]首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.[详解]证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE,(内错角相等,两直线平行)∴∠2=∠E,(两直线平行,内错角相等)∴∠C=∠E(等量代换).故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等.[点睛]此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.[答案](1)一间大餐厅可供960名学生就餐,一间小餐厅可供360名学生就餐;(2)能,理由见解析.[解析][分析](1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.[详解](1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280x y x y ==+⎧⎨+⎩ 解得:960360x y ⎧⎨⎩==, 答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.[点睛]考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.26.已知射线AB ∥射线CD ,P 为一动点,AE 平分∠PAB ,CE 平分∠PCD ,且AE 与CE 相交于点 E.(1)在图1中,当点P 运动到线段AC 上时,∠APC=180°.①直接写出∠AEC 的度数;②求证:∠AEC=∠EAB+∠ECD ;(2)当点P 运动到图2的位置时,猜想∠AEC 与∠APC 之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC 与∠APC 之间的关系,并加以证明.[答案](1))①∠AEC=90°②见解析;(2)∠AEC=12∠APC , 理由见解析;(3)不成立,∠AEC=180∘−12∠APC ,理由见解析[解析][分析](1)①由平行线的性质可得出∠PAB+∠PCD=180°,进而可得出∠AEC 的度数;②在图1中,过E 作EF ∥AB ,根据平行线的性质可得出∠AEF=∠EAB 、∠CEF=∠ECD ,进而即可证出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD ;(2)猜想:∠AEC=12∠APC,由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,进而即可得出∠AEC=12(∠PAB+∠PCD)=12∠APC;(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°-12∠APC,过P作PQ∥AB,由平行线的性质可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,进而可得出∠PAB+∠PCD=360°-∠APC,再由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,结合(1)的结论即可证出∠AEC=180°-12∠APC.[详解](1)①∵AB∥CD,∴∠PAB+∠PCD=180°,∴∠AEC=90°;②证明:在图1中,过E作EF∥AB,则∠AEF=∠EAB. ∵AB∥CD,∴EF∥CD,∴∠CEF=∠ECD.∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.(2)猜想:∠AEC=12∠APC,理由如下:∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)=12∠APC.(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180∘−12∠APC,其证明过程是:过P作PQ∥AB,则∠PAB+∠APQ=180°. ∵AB∥CD,∴PQ∥CD,∴∠CPQ+∠PCD=180∘.∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°−∠APC. ∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)= 180°-12∠APC.[点睛]此题考查平行线的判定与性质,解题关键在于作辅助线。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列各图中,∠1和∠2是对顶角的是( ) A. B. C. D.2.4的算术平方根是( )A. -2B. 2C. 2±D. 23.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是() A. B.C. D.4.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段( )的长.A. BCB. BQC. APD. CP5.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A. 30B. 40︒C. 60︒D. 120︒6.在722,3.33,2π,122-,0.04445555⋯,0.9-1273127,无理数个数有( )A. 2个B. 3个C. 4个D. 5个7.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是( )A. ∠3=∠4B. ∠A +∠ADC =180°C. ∠1=∠2D. ∠A =∠58.平面直角坐标系内有一点P(-2020,-2020),则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,三角板的直角顶点放在直线上,已知a b ∥,128∠=︒,则2∠的度数为( )A. 28︒B. 56︒C. 62︒D. 152︒10.如图,E,F 分别是AB,CD 上的点,G 是BC 的延长线上一点,且∠B=∠DCG=∠D ,则下列结论不一定成立的是( )A. ∠AEF=∠EFCB. ∠A=∠BCFC. ∠AEF=∠EBCD. ∠BEF+∠E FC =180°二、填空题11.如图直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD=38°,则∠COB=_______.12.一个小区大门的栏杆如图所示,BA 垂直地面AE 于,CD 平行于地面AE ,那么ABC BCD ∠+∠=_________.13.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.14.某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯____米.15.49的平方根是_______;-125的立方根是_______;81的值是_______. 16.已知 a , b 为两个连续整数,且a<15 <b ,则 a+b 的值为______.17.平面直角坐标系内,点P(3,﹣4)到y 轴的距离是_____.18.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.三、解答题19.计算:(1)(6+3)-3(2)37+2720.利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.21.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由22.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、值;(2)求+a b 的算术平方根.23.如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,EF ⊥BC ,∠CAD =∠DEF ,(1)求证:EF∥AD;(2)判断ED与AC的位置关系,并证明你的猜想.24.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.25.把一张长方形纸片ABCD沿EF折叠后ED与BC交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数.26.如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(即∠=∠() ∴∠3=∠∴AD∥BE()答案与解析一、选择题1.下列各图中,∠1和∠2是对顶角的是()A. B. C. D.[答案]D[解析][分析]根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.[详解]解:根据对顶角的定义可得,D是对顶角,故选D.[点睛]本题主要考查了对顶角的定义,熟记对顶角的定义是解决本题的关键.2.4的算术平方根是( )± D. 2A. -2B. 2C. 2[答案]B[解析]试题分析:因224=,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是( )A. B.C. D.[答案]D[解析][分析]根据图形平移与翻折变换的性质解答即可.[详解]解:由图可知,A 、B 、C 利用图形的翻折变换得到,D 利用图形的平移得到.故选:D .[点睛]此题考查的是翻折和平移的判断,掌握图形平移与翻折变换的性质是解决此题的关键.4.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段( )的长.A. BCB. BQC. APD. CP[答案]C[解析]分析]根据垂线段最短解答. [详解]解:依据垂线段最短,他的跳远成绩是线段起跳线AP 的长,故选:C .[点睛]本题考查了垂线段最短性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义. 5.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A. 30B. 40︒C. 60︒D. 120︒ [答案]A[解析][分析]根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.[详解]∵∠1与∠2互为邻补角,∠1=120°,∴∠2=180°-∠1=180°-120°=60°,∴∠2的余角的度数为90°-60°=30°.故选:A .[点睛]此题考查邻补角和余角的定义,是基础题,熟记概念是解题的关键.6.在722,3.33,2π,122-,0.04445555⋯,0.9-1273127,无理数的个数有( ) A. 2个B. 3个C. 4个D. 5个[答案]B[解析][分析]根据无理数的定义求解即可.[详解]解:2π,0.04445555⋯,0.9-共3个无理数 故选B.[点睛]此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.7.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是( )A. ∠3=∠4B. ∠A +∠ADC =180°C. ∠1=∠2D. ∠A =∠5[答案]C[解析]A. ∵∠3=∠4 ,∴ AB ∥CD (内错角相等,两直线平行),故不正确;B. ∵∠A+∠ADC=180°,∴ AB ∥CD (同旁内角互补,两直线平行),故不正确;C. ∵∠1=∠2,∴ AB ∥CD (内错角相等,两直线平行),故正确;D. ∵∠A=∠5,∴ AB ∥CD (同位角相等,两直线平行),故不正确;故选C.8.平面直角坐标系内有一点P(-2020,-2020),则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]C[解析][分析]根据平面直角坐标系内各象限内点的坐标符号特征判定即可.[详解]点P(-2020,-2020)在第三象限内,故选:C .[点睛]本题考查平面直角坐标系内象限及点的坐标符号,熟练掌握各象限内点的坐标符号特征是解答的关键.9.如图,三角板的直角顶点放在直线上,已知a b ∥,128∠=︒,则2∠的度数为( )A. 28︒B. 56︒C. 62︒D. 152︒[答案]C[解析][分析] 根据平行线的性质,可得:∠3=∠1=28°,结合∠4=90°,即可求解.[详解]∵三角板的直角顶点放在直线上,a b ∥,∴∠3=∠1=28°,∵∠4=90°,∴∠5=180°-90°-28°=62°,∴∠2=∠5=62°.故选C .[点睛]本题主要考查平行线的性质定理,掌握两直线平行,同位角相等,是解题的关键.10.如图,E,F 分别是AB,CD 上的点,G 是BC 的延长线上一点,且∠B=∠DCG=∠D ,则下列结论不一定成立的是( )A. ∠AEF=∠EFCB. ∠A=∠BCFC. ∠AEF=∠EBCD. ∠BEF+∠EFC=180° [答案]C[解析][分析]先根据平行线的判定得到AD∥BG,AB∥DC,再利用平行线的性质对各个选项进行判断即可. [详解]解:∵∠B=∠DCG=∠D,∴AB∥DC(同位角相等,两直线平行),AD∥BG(内错角相等,两直线平行),∴∠AEF=∠EFC(两直线平行,内错角相等),∠BEF+∠EFC=180°(两直线平行,同旁内角互补),∠A+∠B=180°,∠B+∠BCF=180°(两直线平行,同旁内角互补),∴∠A=∠BCF(等量代换),∵EF与BC不一定平行,∴无法证明∠AEF=∠EBC.故选C.[点睛]本题主要考查平行线的判定与性质,解此题的关键在于熟练掌握其知识点.二、填空题11.如图直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=_______.[答案]128°[解析][分析]根据垂直的定义得出∠AOE=90°,最后根据∠COB=∠AOD=∠AOE +∠EOD进行求解.[详解]∵OE⊥AB,∠EOD=38°,∴∠AOE=90°,∴∠COB=∠AOD=∠AOE +∠EOD=90°+38°=128°,故答案为:128°.[点睛]本题考查垂直的定义,对顶角的性质,熟练掌握对顶角相等是解题的关键.12.一个小区大门的栏杆如图所示,BA垂直地面AE于,CD平行于地面AE,那么∠+∠=_________.ABC BCD[答案]270[解析][分析]作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.[详解]解:作CH⊥AE于H,如图,∵AB⊥AE,CH⊥AE,∴AB∥CH,∴∠ABC+∠BCH=180°,∵CD∥AE,∴∠DCH+∠CHE=180°,而∠CHE=90°,∴∠DCH=90°,∴∠ABC+∠BCD=180°+90°=270°.故答案为270°.点睛]本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.13.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.14.某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯____米.[答案]8.4[解析][分析]根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个长方形,据此计算即可.[详解]解:如图,利用平移把楼梯的横竖向上向右平移,构成一个长、宽分别为5.8米、2.6米的长方形,∴地毯的长度为2.6+5.8=8.4(米).故答案为:8.4.[点睛]本题主要考查了平移的性质,掌握基本性质是解题的关键.15.49的平方根是_______;-125的立方根是_______81_______.[答案](1). 23(2). -5 (3). 9[解析][分析]根据平方根、立方根、算术平方根的定义,即可解答.[详解]49的平方根是23,-125的立方根是-5819,故答案为:23;-5;9.[点睛]本题考查了平方根、立方根、算术平方根,熟练掌握它们的定义及运算方法是解答的关键.16.已知 a , b 为两个连续整数,且<b ,则 a+b 的值为______.[答案]7[解析]<<,由此可确定a 和b 的值,进而可得出a+b 的值.本题解析: 根据a b, a 、b 为两个连续整数,又因为34,得a=3,b=4将a=3,b=4代入a+b,得a+b=7.故答案为7.点睛:此题考查的是如何根据无理数的范围确定两个有理数的值,,可以很容易得到其相邻两个整数,再结合已知条件即可确定a 、b 的值.17.平面直角坐标系内,点P(3,﹣4)到y 轴的距离是_____.[答案]3[解析]根据平面直角坐标系的特点,可知到y 轴的距离为横坐标的绝对值,因此可知P 点到y 轴的距离为3. 故答案为3.18.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.[答案]±4[解析]试题分析:根据坐标与图形得到三角形OAB 的两边分别为|a|与5,然后根据三角形面积公式有:15102a ⋅⋅=, 解得a=4或a=-4,即a 的值为±4. 考点:1.三角形的面积;2.坐标与图形性质. 三、解答题19.计算:(1(2)[答案](1;(2)[解析][分析](1)先去括号,再根据二次根式的加减运算法则即可解答;(2)直接利用二次根式的加法法则合并即可解答.[详解](1)(6+3)-3=6+3-3=6;(2)37+27=(3+2)7=57.[点睛]本题考查了二次根式的加减法运算,熟练掌握二次根式的加减法运算法则是解答的关键.20.利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.[答案](1)x=173或x=13;(2)x=-12. [解析][分析](1)先化简,再根据平方根的概念进行计算(2)根据立方根的概念直接开立方,再计算求值. [详解]解:(1)(x-3)2=649,则x-3=±83. ∴x=±83+3,即x=173,或x=13. (2)2x-1=-2,∴x=-12. [点睛]此题重点考察学生对平方根,立方根的理解,掌握平方根,立方根的计算方法是解题的关键.21.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由[答案](1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析[解析]详解]解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60° 22.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、的值;(2)求+a b 算术平方根.[答案](1)a=1,b=8;(2)a+b 的算数平方根为3[解析][分析](1)根据平方根的性质一个正数有两个平方根,它们互为相反数列出算式,求出a 的值,再根据立方根的定义求出b 的值即可;(2)求出a+b 的值,根据算数平方根的概念求出答案即可.[详解]解:(1)∵7a -和24a +是某正数的两个平方根,∴7a -+24a + =0,∴a=1,∵7b -的立方根是1,∴71b -=∴b=8;(2)∵a=1,b=8;∴a+b=9,∴a+b 的算数平方根为3[点睛]本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.23.如图,AD⊥BC,垂足为D,点E、F分别在线段AB、BC上,EF⊥BC,∠CAD=∠DEF,(1)求证:EF∥AD;(2)判断ED与AC的位置关系,并证明你的猜想.[答案](1)见解析;(2)ED与AC平行,见解析[解析]分析](1)先由AD⊥BC,EF⊥BC证得∠ADB=∠EFB=90°,再根据平行线的判定即可证得结论;(2)由EF∥AD得∠DEF=∠EDA,进而证得∠EDA=∠CAD,即可得出结论.[详解](1)∵ AD⊥BC,EF⊥BC,∴∠ADB=∠EFB=90°,∴ EF∥AD(2)ED与AC平行,理由为:∵EF∥AD,∴∠DEF=∠EDA,∵∠CAD=∠DEF,∴∠EDA=∠CAD,∴ED∥AC.即ED与AC平行.[点睛]本题考查了平行线的判定与性质、垂直定义,掌握平行线的判定与性质并能熟练运用是解答的关键.24.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.[答案](1)见解析;(2)实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)见解析[解析][分析](1)根据图书馆、行政楼的坐标信息,建立合适的平面直角坐标系;(2)根据上题中建立的平面直角坐标系可以写出其他四个地点的坐标;(3)根据P点坐标可以直接在平面直角坐标系中表示出来.[详解](1)由图书馆、行政楼的坐标分别为(-3,2),(2,3)可找到O(0,0)点,从而建立平面直角坐标系,如下图;(2)根据(1)中的平面直角坐标系,可得其他四个地点的坐标.故实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)根据平面直角坐标系,P(-1,-3)的位置如下图,[点睛]本题主要考查平面直角坐标系,根据题中所给的坐标信息确认O(0,0)的位置,从而建立平面直角坐标系是解答本题的关键.25.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数.[答案]∠1=70°,∠2=110°[解析][分析]由平行线的性质知∠DEF=∠EFG=55°,由折叠的性质知∠DEF=∠GEF=55°,则可求得∠2=∠GED=110°,进而可求得∠1的值.[详解]∵AD∥BC,∴∠DEF=∠EFG=55°.由对称性知∠GEF=∠DEF∠GEF=55°,∴∠GED=110°.∵AD∥BC,∴∠2=∠GED=110°.∴∠1=180°-110°=70°,[点睛]本题考查了翻折的性质及平行线的性质,平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.26.如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(即∠=∠()∴∠3=∠∴AD∥BE()[答案]BAF;两直线平行,同位角相等;BAF;等量代换;等式的性质;角的和差;CAD;内错角相等,两直线平行.[解析][详解]解:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠BAE(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAE=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).。
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题2分,共20分)1. 据悉,世界上最小开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×1092. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+43. 下列各式中,不能用平方差公式是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A B.C. D.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B. 32C. 1D. 27. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 8. 给定下列条件,不能判定三角形是直角三角形的是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A B.C. D.二、填空题(每题3分,共24分)11. 若a+3b ﹣3=0,则3a •27b =_____.12. (a ﹣2018)2+(2020﹣a )2=20,则a ﹣2019=_____.13. 若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.14. 已知a ,b ,c 是一个三角形的三边长,化简|a+c ﹣b|﹣|b ﹣c+a|﹣|a ﹣b ﹣c|=_____.15. 已知BD 、CE 是△ABC 的高,BD 、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC =_____. 16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.17. 如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.答案与解析一、选择题(每题2分,共20分)1. 据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×109[答案]A[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000009=9.0×10﹣8.故选:A.[点睛]本题考查了绝对值小于1的数的科学计数法表示,熟练掌握表示法则是解题的关键.2. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+4[答案]C[解析][分析]分别根据完全平方公式,积的乘方,同底数幂的乘法等知识进行计算即可求解.[详解]解:A.原式=x2+2xy+y2,计算错误,不合题意;B.原式=﹣8x9,计算错误,不合题意;C.原式=x1+2=x3,计算正确,符合题意;D.原式=x2+4+4x,计算错误,不合题意.故选:C.[解答]本题考查了完全平方公式、积的乘方、同底数幂的乘法等知识,熟知相关法则是解题关键.3. 下列各式中,不能用平方差公式的是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)[答案]D[解析][分析]根据平方差公式的结构特点,两个数的和乘以两个数的差,对各选分析判断即可得解.[详解]解:A、(3x﹣2y)(3x+2y)是3x与2y的和与差的积,符合公式结构,故本选项不符合题意;B、(a+b+c)(a﹣b+c),是(a+c)与b的和与差的积,符合公式结构,故本选项不符合题意;C、(a﹣b)(﹣b﹣a),是﹣b与a的和与差的积,符合公式结构,故本选项不符合题意;D、(﹣x+y)(x﹣y)=﹣(x﹣y)2,不符合公式结构,故本选项符合题意.故选:D.[点睛]此题主要考查平方差公式的结构特点,正确掌握结构是解题关键.4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交的两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A 2个 B. 3个 C. 4个 D. 5个[答案]D[解析][分析]根据三角形的高、点到直线的距离定义、平行公理、平行线定义进行分析即可.[详解]解:①平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;②平面内,不相交的两条直线必平行,故原题说法错误;③三角形的三条高线交于一点,应该是三条高线所在直线交于一点,故原题说法错误:④直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误;⑤过直线外一点有且只有一条直线与已知直线平行,故原题说法错误.错误的说法有5个,故选:D.[点睛]此题主要考查真假命题的判断,正确理解各相关概念是解题关键.5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B.C D.[答案]B[解析][分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A、∠1=∠2不能判定任何直线平行,故本选项错误;B、∵∠1=∠2,∴AB∥CD,符合平行线判定定理,故本选项正确;C、∵∠1=∠2,∴AC∥BD,故本选项错误;D、∠1=∠2不能判定任何直线平行,故本选项错误.故选:B.[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B.32C. 1D. 2[答案]B[解析][分析]S△ADF-S△CEF=S△ABE-S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=9,就可以求出三角形ABE的面积和三角形BCD的面积.[详解]∵BE=CE,∴BE=12 BC,∵S△ABC=9,∴S△ABE=12S△ABC=12×9=4.5.∵AD=2BD ,S △ABC =9,∴S △BCD =13S △ABC =13×9=3, ∵S △ABE -S △BCD =(S △ADF +S 四边形BEFD )-(S △CEF +SS 四边形BEFD )=S △ADF -S △CEF ,即S △ADF -S △CEF =S △ABE -S △BCD =4.5-3=1.5.故选B .[点睛]考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.7. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 [答案]B[解析][分析]直接利用多项式乘多项式运算法则计算,进而得出a ,b 的值.[详解]解:∵(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,∴原式=x 4﹣3x 3+ax 3﹣3ax 2+bx 2﹣3bx=x 4+(﹣3+a )x 3+(﹣3a+b )x 2﹣3bx ,∴﹣3+a =0,﹣3a+b =0,解得:a =3,b =9.故选:B .[点睛]本题考查整式的乘法、多项式乘多项式的法则,灵活运用这些法则是解题的关键,属于中考常考题型. 8. 给定下列条件,不能判定三角形是直角三角形是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ [答案]C[解析][分析]根据三角形的内角和等于180°求出最大角,然后选择即可.[详解]解:A 、最大角∠C=180°÷(2+3+5)×5=90°,是直角三角形,故此选项不符合题意;B 、最大角∠A=∠B+∠C=180°÷2=90°,是直角三角形,故此选项不符合题意;C 、最大角∠A=180°÷(2+2+1)×2=72°,故此选项符合题意;D 、最大角∠C=(1+2+3)×3==90°,故此选项不符合题意;故答案为:C.[点睛]本题考查了由角度大小计算判断直角三角形,掌握三角形的内角和等于180°是解题的关键. 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°[答案]C[解析][分析] 先求出∠AEF ,再根据翻折变换的性质得到∠A ′EA ,根据平角的定义和翻折变换的性质可求∠A ′EG ,∠DEG ,再根据平行线的性质和角的和差关系即可求解.[详解]解:∵∠AFE =70°,∴∠AEF =20°,由翻折变换的性质得∠A ′EA =40°,∴∠A ′ED =140°,由翻折变换的性质得∠A ′EG =∠DEG =70°,∵A ′E ∥C ′G ,∴∠EGC ′=110°,∵AD ∥BC ,∴∠EGB =70°,∴∠BGC ′=110°﹣70°=40°.故选:C .[点睛]本题考查了翻折的性质,平行线的性质,理解翻折的性质得到相等的角解题关键.10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A. B.C. D.[答案]D[解析][分析]该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.[详解]解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.[点睛]本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.二、填空题(每题3分,共24分)11. 若a+3b﹣3=0,则3a•27b=_____.[答案]27[解析][分析]先将原式化为同底,然后利用条件即可求出答案.[详解]解:原式=3a•(33)b=3a+3b,∵a+3b﹣3=0∴a+3b=3,∴原式=33=27,故答案为:27.[点睛]本题考查幂的乘方、同底数幂的乘法,解题的关键是熟练掌握运算法则.12. (a﹣2018)2+(2020﹣a)2=20,则a﹣2019=_____.[答案]±3[解析][分析]将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.[详解]解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.[点睛]此题主要考查求代数式的值,解题关键是根据题意整理式子.13. 若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.[答案]55或20[解析][分析]根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.[详解]解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.[点睛]本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14. 已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=_____.[答案]a﹣3b+c[解析][分析]根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.[详解]解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.[解答]本题考查了三角形三边关系,绝对值的意义,根据三角形三边关系得到三个绝对值内整式的符号是解题关键.15. 已知BD、CE是△ABC的高,BD、CE所在的直线相交所成的角中有一个角为60°,则∠BAC=_____.[答案]60°或120°.[解析][分析]分两种情况:(1)当∠A为锐角时,如图1;(2)当∠A为钝角时,如图2;根据四边形的内角和为360°即可得出结果.[详解]解:分两种情况:(1)当∠A为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC的度数为60°或120°,故答案为:60°或120°.[点睛]本题考查了三角形高线的定义,四边形的内角和等知识,掌握相关定理,能分类讨论是解题关键.16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.[答案]9[解析][分析]分底小于腰和底大于腰两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.[详解]解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=21,解得:x=3,当x=3时,x+6=9,此时等腰三角形的三边为:3,9,9;(2)设底为x,则腰为(x﹣6),由题意得:x+2(x﹣6)=21,解得:x=11,当x=11时,x﹣6=5,11,5,5不能构成三角形,不符合题意;因此,腰为9,故答案为:9.[点睛]本题考查了等腰三角形的定义,三角形的三边关系,根据题意分类讨论,并对答案根据三边关系进行分析取舍是解题关键.17. 如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.[答案]68°[解析][分析]如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.[详解]解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E, ∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.[答案]2.5或14.5[解析][分析]根据题意得:动点P 在BC 上运动的时间是4秒,又由动点的速度,可得BC 、AF 的长;再根据三角形的面积公式解答即可.[详解]解:动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC =2cm/秒×4秒=8(cm ); 动点P 在CD 上运动时,对应的时间为4到6秒,易得:CD =2cm/秒×(6﹣4)秒=4(cm );动点P 在DF 上运动时,对应的时间为6到9秒,易得:DE =2cm/秒×(9﹣6)秒=6(cm ),故图甲中的BC 长是8cm ,DE =6cm ,EF =6﹣4=2(cm )∴AF =BC+DE =8+6=14(cm ),∴b =9+(EF+AF )÷2=17, ∴12152AB t ⋅=或()12152AB BC CD DE EF AF t ++++-=, 解得t =2.5或14.5.故答案为:2.5或14.5.[点睛]本题考查了一元一次方程的应用及动点问题,根据题意需要分情况讨论是解题的关键.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.[答案](1)3a5;(2)10.[解析][分析](1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.[详解]解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.[点睛]本题考查了整式的乘法运算,平方差公式,0指数幂,负整数指数幂等知识,熟知相关运算法则是解题关键.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.[答案]﹣y+2x,﹣2[解析][分析]先根据整式的运算法则进行化简,然后将x与y的值代入原式即可求出答案.[详解]解:原式=(4x2﹣4xy+y2﹣9x2+y2+5x2)÷(﹣2y)=(2y2﹣4xy)÷(﹣2y)=﹣y+2x,当x=12-,y=1时,原式=﹣1+2×(12 -)=﹣1﹣1=﹣2.[点睛]本题考查乘法公式的混合运算,熟记完全平方公式和平方差公式是解题的关键,需要注意把乘法公式的结果用括号括起来.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )[答案]已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[解析]分析]利用平行线的性质定理和判定定理进行解答即可.[详解]证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC中,∠1+∠B+∠3=180°,在△ADF中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB//CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD//BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[点睛]本题考查平行线的性质以及判定定理,熟练掌握相关定理是解决此题的关键.22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.[答案](1)DE∥BF,理由见解析;(2)∠A =50°.[解析][分析](1)依据FG∥CB,即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF.(2)依据三角形外角性质以及三角形内角和定理,即可得到∠A的度数.[详解]解:(1)BF与DE的位置关系为互相平行,理由:∵∠AGF=∠ABC=70°,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°∴DE∥BF.(2)∵DE⊥AC,∠2=150°,∴∠C=∠2﹣∠CED=150°﹣90°=60°,又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣60°=50°.[点睛]此题主要考查平行线的判定和性质、三角形的内角和定理、三角形的外角性质,熟练进行逻辑推理是解题关键.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.[答案](1)24ab-6b2;(2)31500元.[解析][分析](1)根据已知条件,用大正方形的面积减去4个长方形的面积再减去中间小正方形的面积即可求解.(2)把a=10,b=5及草坪的造价为每平米30元代入代数式即可求解.[详解]解:(1)∵阴影部分的面积为:大正方形的面积减去4个长方形的面积再减去中间小正方形的面积,∴草坪(阴影)面积为:6a×6a﹣4×b×12×b﹣(6a﹣2b)2=24ab-6b2.(2)当a=10,b=5时,草坪的造价为:(24×10×5-6×52)×30=31500(元).[点睛]本题考查了整式的应用和求整式的值,根据题意正确列出整式是解题的关键.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.[答案](1)甲在600秒时,第一次超出乙600米;(2)1600,1000,1360;(3)150或900或1150或1500.[解析][分析](1)由图象可得:点A表示甲在600秒时,第一次超出乙600米;(2)先求出甲,乙速度,即可求解;(3)分四种情况讨论,由时间=路程÷速度,即可求解.[详解]解:(1)点A表示甲在600秒时,第一次超出乙600米,故答案为:甲在600秒时,第一次超出乙600米;(2)由图形可得乙出发1600s时到达终点,∴乙的速度=24001600=1.5米/秒,∴甲的速度=600600+1.5=2.5秒,∴a=600 2.51.5⨯=1000,∴b=24002.5﹣600+1000=1360,故答案为:1600,1000,1360;(2)刚出发时,1502.5 1.5-=150s,甲在A地时,2.56001501.5⨯-=900s,从A地出发后,1000+150=1150s,甲到终点后,24001501.5-=1500s,综上所述:甲乙出发150s或900s或1150s或1500s时,相距150米.故答案为:150或900或1150或1500.[点睛]此题主要考查根据函数图象的信息解决实际问题,解题关键是读懂函数图象.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.[答案](1)∠DAE=20°;(2)α﹣20°;(3)∠1+∠2=2∠B[解析][分析](1)三角形根据三角形内角和定理求出∠BAC,再由角平分线性质求得∠BAE,再根据三角形的高和直角三角形的性质求得∠BAD,进而由角的和差关系求得结果;(2)根据直角三角形的性质求得∠BAD,再由角的和差关系求得∠BAE,由角平分线的定义求得∠BAC,最后根据三角形内角和定理求得结果;(3)根据邻补角性质和角平分线定义用∠1、∠2分别表示∠BGH和∠BHG,再由三角形内角和定理得结果.[详解]解:(1)∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(2)∵∠B=α,∠ADB=90°,∴∠BAD=90°﹣α,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=100°﹣α,∵AE平分∠BAC,∴∠BAC=200°﹣2α,∴∠C=180°﹣∠B﹣∠BAC=180°﹣α﹣200°+2α=α﹣20°, 故答案为:α﹣20°;(3)∠1+∠2=2∠B.理由:由折叠知,11,,22BGH BGF BHG BHF ∠=∠∠=∠∵∠BGF=180°﹣∠1,∠BHF=180°﹣∠2,∴∠BGH=90°﹣12∠1,∠BHG=90°﹣122∠,∴∠B=180°﹣∠BGH﹣∠BHG=1112 22∠+∠,即∠1+∠2=2∠B.[点睛]本题考查三角形内角和、邻角补角性质、角平分线、高线、直角三角形相关性质以及折叠图形的特点,熟练掌握相关知识点并运用是解决此题的关键.。
人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。
人教版七年级数学下册期中考试卷(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒8.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若∠ABE =25°,则∠EFC '的度数为( )A .122.5°B .130°C .135°D .140°9.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.如图,////OP QR ST 下列各式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠=二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.3.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为______cm.5.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=________.6.一个角是70°39′,则它的余角的度数是________.三、解答题(本大题共6小题,共72分)1.解下列方程(组):(1)321126x x-+-=(2)2.已知关于x的不等式21122m mxx->-.(1)当m=1时,求该不等式的非负整数解;(2)m取何值时,该不等式有解,并求出其解集.3.如图,在平面直角坐标系中,已知点A(0,4),B(8,0),C(8,6)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.4.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.5.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?6.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;②当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、D6、C7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、253、15°4、225、70°6、19°21′.三、解答题(本大题共6小题,共72分)1、(1)x=16;(2)13383 xy⎧=⎪⎪⎨⎪=⎪⎩2、(1)0,1;(2)当m≠-1时,不等式有解;当m> -1时,原不等式的解集为x<2;当m< -1时,原不等式的解集为x>2.3、(1)24;(2)P(﹣16,1)4、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.5、(1)50;(2)0.32;72(3)3606、(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1.1x =是下列哪个方程的解( )A. 241x -=B. 122x =C. 325x +=D. 4263x x -=- 2.在数轴上表示不等式x -1<0解集,正确的是()A. B. C. D. 3.已知关于x 的方程2x a 50--=的解是x 2=-,则a 的值为A. 1B.C. 9D. 9-4.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围( ) A. a >2 B. a ≥2 C. a <2 D. a ≤25.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为( )A. 200sB. 205sC. 210sD. 215s 6.已知x >y ,m ≠0,则下列说法中,正确的是( )A. m +x >m +yB. m ﹣x >m ﹣yC. mx >myD. m 2x ≥m 2y 7.若关于方程0a x -=有两个解,0b x -=只有一个解,0c x -=无解,则、、的关系是( ).A. a b c <<B. a c b <<C. b c a <<D. c b a << 8.若A =3x 2+5x +2,B =4x 2+5x +2,则A 与B 的大小关系是( )A. A >BB. A <BC. A ≥BD. A ≤B 9.我们知道方程组23193426x y x y +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩.现给出另一个方程组2(25)3(3)193(25)4(3)26x y x y +++=⎧⎨+++=⎩它的解是( ) A 1.52x y =-⎧⎨=⎩B. 1.52x y =⎧⎨=-⎩C. 1.52x y =-⎧⎨=-⎩D. 1.52x y =⎧⎨=⎩ 10.若不等式组7331x x x m+>-⎧⎨-<⎩的解集为x <5,则m 的取值范围为( )A. m <4B. m≤4C. m≥4D. m >4 11.若方程组34526x y k x y k -=-⎧⎨+=⎩的解中2019x y +=,则等于( ) A. 2018 B. 2019 C. 2020 D. 202112.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a +b 的最大值是( )A. 37B. 27C. 23D. 20二.填空题13.将方程2x ﹣3y =5变形为用x 的代数式表示y 的形式是_____.14.不等式1123x x --<的非负整数解是_____. 15.三元一次方程组598x y y z z x +=⎧⎪+=⎨⎪+=⎩的解是______ .16.解关于x ,y 方程组()()()1328511m x n y n x my ⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x ;也可以用①+②×5消去未知数y .则m =_____,n =_____.17.不等式组﹣1≤345x +<2的所有整数解的和是_____. 18.按下面程序计算,若开始输入的值为正数,最后输出的结果为656,则满足条件所有的值是___.19.已知235345x y x y z x +++==,则x :y :z =_____. 20.若关于x 的不等式组01321x m x ->⎧⎨-≥⎩的所有整数解的和是15,则m 的取值范围是_____. 21.已知a ,b 为定值,关于x 的方程2136kx a x bk ++=-,无论k 为何值,它的解总是1,则a +b =__. 22.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C ,最小正方形的周长是2C ,则12C C =_____.三.解答题23.解方程:123134x x-+=-.24.解不等式组,并把解集在数轴上表示出来,()() 533121132x xx x⎧+>+⎪⎨++->⎪⎩.25.已知方程组5457ax yx y+=⎧⎨+=⎩与方程组3151x yx by-=⎧⎨+=⎩的解相同,求a、b的值.26.某幼儿园把一筐桔子分给若干个小朋友,若每人3只,那么还剩59只,若每人5只,那么最后一个小朋友分到桔子,但不足4只,试求这筐桔子共有多少只?27.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?28.学校篮球比赛,初一(1)班和初一(2)班到自选超市去买某种品牌的纯净水,自选超市对某种品牌的纯净水按以下方式销售:购买不超过30瓶,按零售价每瓶3元计算;购买超过30瓶但不超过50瓶,享受零售价的八折优惠;购买超过50瓶,享受零售价的六折优惠,一班一次性购买了纯净水70瓶,二班分两天共购买了纯净水70瓶(第一天购买数量多于第二天)两班共付出了309元.(1)一班比二班少付多少元?(2)二班第一天、第二天分别购买了纯净水多少瓶?29.已知关于x,y的方程满足方程组321 21x y mx y m+=+⎧⎨+=-⎩.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.30.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B 种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)答案与解析一.选择题1.1x =是下列哪个方程的解( )A. 241x -=B. 122x =C. 325x +=D. 4263x x -=- [答案]C[解析][分析]将1x =代入各选项,能令方程两边相等的即为正确答案.[详解]解:当1x =,A. 24121-⨯=-≠,故错误;B. 111222⨯=≠,故错误;C. 3125⨯+=,故正确;D. 41226133⨯-=≠⨯-=,故错误.故选:C.[点睛]本题考查方程的解,理解掌握方程的解的定义是关键.2.在数轴上表示不等式x -1<0的解集,正确的是()A. B. C.D.[答案]B[解析][详解]解:x -1<0的解集为x <1,它在数轴上表示正确的是B .故选B .3.已知关于x 的方程2x a 50--=的解是x 2=-,则a 的值为A. 1B.C. 9D. 9- [答案]D[解析]试题分析:将x 2=-代入方程得4a 50---=,解得:a 9=-.故选D .4.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围( )A. a >2B. a ≥2C. a <2D. a ≤2 [答案]C[解析]分析]根据题意所求出的不等式·的解集,分式要有意义,分母不能为0[详解]∵不等式(a﹣2)x>1的解集为x<12a,∴a﹣2<0,∴a的取值范围为:a<2.故选C.[点睛]此题考查分式有无意义的条件,难度不大5.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A. 200sB. 205sC. 210sD. 215s[答案]A[解析][分析]利用当甲从排尾到排头和通讯员再从排头返回排尾这两类,分别建立一元一次方程计算得结论.[详解]解:设甲从排尾到排头用了x(s),再从排头到排尾用了y(s).∵队伍长300米,以2m/s的速度前进,而通讯员以4m/s的速度前进,∴当甲从排尾到排头时,4x=300+2x,解得x=150(s).当甲再从排头返回排尾时,4y=300−2y,解得y=50(s).因此甲往返共用的时间为200s.故选A.[点睛]本题考查了一元一次方程的应用和分类讨论思想.6.已知x>y,m≠0,则下列说法中,正确的是( )A. m+x>m+yB. m﹣x>m﹣yC. mx>myD. m2x≥m2y[答案]A[解析][分析]根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变进行解答即可.[详解]解:A、∵x>y,∴m+x>m+y,故A正确;B、∵x>y,∴m﹣x<m﹣y,故B错误;C、∵x>y,当m>0,则mx>my,故C错误;D、∵x>y,m≠0,∴m2x>m2y,故D错误;[点睛]本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变,(2)不等式两边乘(或除以)同一个正数,不等号的方向不变,(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.若关于的方程0a x -=有两个解,0b x -=只有一个解,0c x -=无解,则、、的关系是( ).A. a b c <<B. a c b <<C. b c a <<D. c b a <<[答案]D[解析][分析]比较a 、b 、c 的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.[详解]∵0a x -=有两个解,∴a >0; ∵0b x -=只有一个解,∴b=0; ∵0c x -=无解,∴c <0;从而可知,c b a <<.故选D.[点睛]本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中. 8.若A =3x 2+5x +2,B =4x 2+5x +2,则A 与B 的大小关系是( )A. A >BB. A <BC. A ≥BD. A ≤B [答案]D[解析][分析]将A 与B 代入A-B 中,根据差的正负即可对于A 与B 大小做出判断.[详解]解:∵A =3x 2+5x +2,B =4x 2+5x +2,∴A-B=3x 2+5x +2-(4x 2+5x +2)=-3x 2+5x +2-4x 2-5x -2=- x 2≤0,故选:D .[点睛]本题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.我们知道方程组23193426x y x y +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩.现给出另一个方程组2(25)3(3)193(25)4(3)26x y x y +++=⎧⎨+++=⎩它的解是( )A 1.52x y =-⎧⎨=⎩ B. 1.52x y =⎧⎨=-⎩ C. 1.52x y =-⎧⎨=-⎩ D. 1.52x y =⎧⎨=⎩ [答案]A[解析][分析]仿照已知方程组的解确定出所求方程组的解即可.[详解]∵方程组23193426x y x y +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩∴2(25)3(3)193(25)4(3)26x y x y +++=⎧⎨+++=⎩的解为25235x y +=⎧⎨+=⎩∴ 1.52x y =-⎧⎨=⎩故选:A[点睛]本题是仿照已知方程组的解,求复杂方程组的解,不需要解方程,只需将25x +和3y 看成整体,即可简便求解.10.若不等式组7331x x x m +>-⎧⎨-<⎩的解集为x <5,则m 的取值范围为( ) A. m <4B. m≤4C. m≥4D. m >4 [答案]C[解析][分析]先求出每个不等式的解集,根据已知得出关于m 的不等式,求出不等式的解集即可.[详解]解:7331x x x m +>-⎧⎨-<⎩①②∵解不等式①得:x<5,解不等式②得:x<m+1,又∵不等式组7331x xx m+>-⎧⎨-<⎩的解集为x<5,∴m+1≥5,解得:m≥4,故选:C.[点睛]本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m的不等式是解此题的关键.11.若方程组34526x y kx y k-=-⎧⎨+=⎩的解中2019x y+=,则等于( )A. 2018B. 2019C. 2020D. 2021[答案]C[解析][分析]将方程组的两个方程相加,可得x+y=k−1,再根据x+y=2019,即可得到k−1=2019,进而求出k的值.[详解]解:34526x y kx y k-=-⎧⎨+=⎩①②,①+②得,5x+5y=5k−5,即:x+y=k−1,∵x+y=2019,∴k−1=2019,∴k=2020,故选:C.[点睛]本题考查二元一次方程组的解法,整体代入是求值的常用方法.12.小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是( )A. 37B. 27C. 23D. 20[答案]A[解析][分析]根据题意得出关于a和b的二元一次方程,然后用b表示出a,继而用b表示出a+b,然后可以利用函数的思想得出a+b取得最值的条件,即能得出答案.[详解]解:由题意得,5a+19b=213,∴213195ba-=,∴213192131455b ba b b--+=+=,∵a+b是关于b的一次函数且a+b随b的增大而减小,∴当b最小时,a+b取最大值,又∵a,b是正整数,∴当b=2时,a+b的最大值=37.故选:A.[点睛]本题考查二元一次不定方程的应用,技巧性较强,解答本题的关键是函数思想的应用,同学们要注意掌握这种解题思想,它会在以后的解题中经常用到.二.填空题13.将方程2x﹣3y=5变形为用x的代数式表示y的形式是_____.[答案]y=25 3 x-[解析][分析]要把方程2x-3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=25 3x-.[详解]解:移项得:-3y=5-2x系数化1得y=253x-.:y=253x-.故答案为y=25 3x-.[点睛]本题考查方程的基本运算技能:移项、合并同类项、系数化为1等.14.不等式1123x x--<的非负整数解是_____.[答案]0、1、2、3[解析][分析]先去分母,再去括号,移项,合并同类项,求出x的取值范围,然后即可得出答案. [详解]解:原不等式可化为, 3x-2(x-1)<6,去括号得,3x-2x+2<6,移项得, x<6-2,合并同类项得:x<4,所以该不等式组的非负整数解为:x=0、1、2、3.[点睛]本题考查了一元一次不等式的整数解,属于基础题,掌握解不等式的方法,求出不等式的解集是解答本题的关键.15.三元一次方程组598x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是______.[答案]x2 y3 z6=⎧⎪=⎨⎪=⎩[解析]分析:将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.详解:598x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:2(x+y+z)=22,即x+y+z=11④, 将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,则方程组的解为236xyz=⎧⎪=⎨⎪=⎩.故答案为236 xyz=⎧⎪=⎨⎪=⎩.点睛:本题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.解关于x,y方程组()()()1328511m x n yn x my⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x;也可以用①+②×5消去未知数y.则m=_____,n=_____.[答案](1). ﹣23 (2). ﹣39 [解析][分析]根据已知得出关于m、n的方程组,求出方程组的解即可.[详解]解:∵解关于x,y方程组()()()1328511m x n yn x my⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x;也可以用①+②×5消去未知数y,∴()()()21503250m nn m⎧++-⎪⎨-++⎪⎩==,即27 532m nm n--⎧⎨-⎩==,解得:m=-23,n=-39,故答案为:-23,-39.[点睛]本题考查了解二元一次方程组,能得出关于m、n的方程组是解此题的关键.17.不等式组﹣1≤345x+<2的所有整数解的和是_____.[答案]﹣5.[解析][分析]先解不等式组得到它的解集是-3≤x<2,再找出此范围内的整数,然后求这些整数的和即可.[详解]解:-5≤3x+4<10,-9≤3x<6,所以-3≤x<2,所以不等式组的整数解为-3,-2,-1,0,1,它们的和为-5.故答案为-5.[点睛]本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.18.按下面程序计算,若开始输入值为正数,最后输出的结果为656,则满足条件所有的值是___.[答案]131或26或5或45.[解析][分析]利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.[详解]用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.[点睛]此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.19.已知235345x y x y z x+++==,则x:y:z=_____.[答案]1:1:0.[解析][分析]设x+2y=3a,则x+3y=4a,z+5x=5a,求出y=a, x=a,z=0,即可得到x:y:z=a:a:0=1:1:0. [详解]设x+2y=3a,则x+3y=4a,z+5x=5a,∵x+2y=3a,x+3y=4a,∴组成方程组2334x y a x y a+=⎧⎨+=⎩,解得x ay a=⎧⎨=⎩,将x=a代入z+5x=5a中得z=0, ∴x:y:z=a:a:0=1:1:0,故答案为:1:1:0.[点睛]此题考查二元一次方程组的解法,设未知数分别表示方程中的字母的值是解题的关键,由此在进行比值时即可将所设未知数消去求出答案.20.若关于x 的不等式组01321x m x ->⎧⎨-≥⎩的所有整数解的和是15,则m 的取值范围是_____. [答案]3≤m <4或﹣4≤m <﹣3[解析][分析]解不等式组得出解集,根据整数解的和为15,可以确定整数解必含6,5,4这三个数,再根据解集确定m 的取值范围.[详解]解:解不等式组01321x m x ->⎧⎨-≥⎩,得:m <x≤6, ∵所有整数解的和是15,15=6+5+4∴不等式组的整数解为①6,5,4,或②6,5,4,3,2,1,0,-1,-2,-3∴3≤m <4或-4≤m <-3;故答案为: 3≤m <4或﹣4≤m <﹣3[点睛]考查一元一次不等式组的解集、整数解,根据整数解和解集确定待定字母的取值范围,在确定的过程中,不等号的选择应认真细心,切实选择正确.21.已知a ,b 为定值,关于x 方程2136kx a x bk ++=-,无论k 为何值,它的解总是1,则a +b =__. [答案]0.[解析][分析]先把方程化简,然后把x=1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.[详解]解:2136kx a x bk ++=- ()()262kx a x bk +=-+其中x=1,()242b k a +=-无论k 为何值对方程无影响,所以20,2b b +==-所以420,2a a -==所以0a b +=[点睛]本题考查了一元一次方程的解,化解方程得出关系式是解题的关键.22.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C ,最小正方形的周长是2C ,则12C C =_____.[答案]432[解析][分析]如图(见解析),设,AB x BC y ==,根据正方形的定义可得最小正方形的边长为1411x y -,而且x 和y 满足等式:8101411y x x y -=-,再根据正方形的周长公式12,C C 即可得.[详解]如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下:0号:1号+2号得x y +5号:1号-2号得y x -3号:2号-5号得()2x y x x y --=-4号:0号-2号-3号得(2)22x y x x y y x +---=-7号:3号-4号得2(22)43x y y x x y ---=-6号:4号-7号得22(43)56y x x y y x ---=-10号:0号-1号得9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=-8号:10号-9号得(86)67x x y y x --=-11号:6号-7号得56(43)810y x x y y x ---=-或9号-6号得86(56)1411x y y x x y ---=-因此x 和y 满足等式:8101411y x x y -=-整理得:1924x y =所以最大正方形(0号)的周长143 4()6C x y y=+=最小正方形(11号)的周长21 4(1411)3C x y y=-=则1243 2CC=.[点睛]本题考查了用代数式表示几何图形的周长,设定未知数,利用正方形的性质将最大正方形的周长和最小正方形的周长求出是解题关键.三.解答题23.解方程:123134x x-+=-.[答案]x=1 5[解析][分析]方程去分母,去括号,移项合并,将x系数化为1,即可求出解.[详解]去分母,得4(1﹣2x)=12﹣3(x+3).去括号,得4﹣8x=12﹣3x﹣9.移项、合并同类项,得﹣5x=﹣1.系数化为1,得x=15.[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.24.解不等式组,并把解集在数轴上表示出来,()() 533121132x xx x⎧+>+⎪⎨++->⎪⎩.[答案]﹣6<x<﹣5,数轴表示见解析根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.[详解]()() 5331211?32x xx x⎧+>+⎪⎨++->⎪⎩①②,由①得:x>﹣6;由②得:x<﹣5,∴不等式组的解集为﹣6<x<﹣5,表示在数轴上,如图所示:[点睛]本题主要考查对解一元一次不等式,解一元一次不等式组,不等式的性质,在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集并把不等式组的解集在数轴上表示出来是解此题的关键.25.已知方程组5457ax yx y+=⎧⎨+=⎩与方程组3151x yx by-=⎧⎨+=⎩的解相同,求a、b的值.[答案]a=﹣6,b=﹣2[解析][分析]联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,代入剩下的方程求出a与b的值即可.[详解]联立得:5731x yx y+=⎧⎨-=⎩①②,①+②得:8x=8,即x=1, 把x=1代入②得:y=2,把x=1,y=2代入得:104 521ab+=⎧⎨+=⎩,解得:a=﹣6,b=﹣2.[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.26.某幼儿园把一筐桔子分给若干个小朋友,若每人3只,那么还剩59只,若每人5只,那么最后一个小朋友分到桔子,但不足4只,试求这筐桔子共有多少只?[答案]这筐桔子共有152个“不足4只”意思是最后一个小朋友分得的桔子数在0和4之间,把相关数值代入计算即可.[详解]设幼儿园共有x名小朋友,则桔子的个数为(3x+59)个,由“最后一个小朋友分到桔子,但不足4个”可得不等式组0<(3x+59)﹣5(x﹣1)<4,解得30<x<32,∴x=31,∴有桔子3x+59=3×31+59=152(个).答:这筐桔子共有152个.[点睛]考查一元一次不等式组的应用,得到最后一个小朋友分得的桔子数的关系式是解决本题的关键.27.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?[答案]25人加工大齿轮,60人加工小齿轮[解析][分析]设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据加工大齿轮人数+加工小齿轮人数=85和加工的大齿轮总数:加工的小齿轮总数=2:3列出方程组求解即可.[详解]解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据题意得:8516:102:3 x yx y+=⎧⎨=⎩,解得:2560 xy=⎧⎨=⎩.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.[点睛]本题考查了二元一次方程组的实际应用—产品配套问题,关键是能根据2个大齿轮和3个小齿轮配成一套找出相等关系,据此正确列出方程.28.学校篮球比赛,初一(1)班和初一(2)班到自选超市去买某种品牌的纯净水,自选超市对某种品牌的纯净水按以下方式销售:购买不超过30瓶,按零售价每瓶3元计算;购买超过30瓶但不超过50瓶,享受零售价的八折优惠;购买超过50瓶,享受零售价的六折优惠,一班一次性购买了纯净水70瓶,二班分两天共购买了纯净水70瓶(第一天购买数量多于第二天)两班共付出了309元.(1)一班比二班少付多少元?(2)二班第一天、第二天分别购买了纯净水多少瓶?[答案](1)57元;(2)第一天买了45瓶,第二天买了25瓶[解析][分析](1)由题意知道一班享受六折优惠,根据总价=单价×数量,可以求出一班的花费,由两个班的总花费,则可以求出二班的花费,两者相减即可得出结论.(2)先设第一天购买了x瓶,则得出第二天购买(70-x)瓶,由第一天多于第二天,有三种可能:①两天均是超过30瓶但不超过50瓶,享受八折优惠;②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠;③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠.根据三种情况,总价=单价×数量,列出方程求解即可.[详解]解:(1)∵一班一次性购买了纯净水70瓶,∴享受六折优惠,即一班付出:70×3×60%=126元,∵两班共付出了309元,∴二班付出了:309-126=183元,∴一班比二班少付多:183-126=57元.答:一班比二班少付57元.(2)设第一天购买了x瓶,则得出第二天购买(70-x)瓶,①两天均是超过30瓶但不超过50瓶,享受八折优惠,列出方程得:[x+(70-x)]×3×80%=183元,此方程无解.②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×60%+(70-x)×3=183,求解得出x=22.5,不是整数,不符合题意,故舍去.③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×80%+(70-x)×3=183,解得:x=45,即70-45=25.答:第一天购买45瓶,第二天购买25瓶.[点睛]本题考查了一元一次方程的运用.要注意此题中的情况不止一种,分情况讨论.29.已知关于x,y的方程满足方程组321 21x y mx y m+=+⎧⎨+=-⎩.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.[答案](1)m=5;(2)2m﹣7;(3)s的最小值为﹣3,最大值为9[解析][分析](1)把m看做已知数表示出方程组的解,得到x与y,代入x-y=2求出m的值即可;(2)根据x,y为非负数求出m的范围,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(3)把表示出的x与y代入s,利用一次函数性质求出最大值与最小值即可.[详解](1)321 21?x y mx y m+=+⎧⎨+=-⎩①②,①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:3050 mm-≥⎧⎨-+⎩,解得:3≤m≤5,当3≤m≤4时,m﹣3≥0,m﹣4≤0,则原式=m﹣3+4﹣m=1;当4<m≤5m﹣3≥0,m﹣4≥0,则原式=m﹣3+m﹣4=2m﹣7;(3)根据题意得:s=2m﹣6+3m﹣15+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=﹣3;m=5时,s=9,则s的最小值为﹣3,最大值为9.[点睛]此题考查了二元一次方程组的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.30.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B 种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)[答案](1)A种纪念品每件需10元、B种纪念品每件需5元;(2)有三种方案;(3)当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最多[解析][分析](1)设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得关于x和y的二元一次方程组,解得x 和y的值即可;(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,由题意得关于t的不等式,解得t的范围,再由t为正整数,可得t的值,从而方案数可得;(3)分别写出三种方案关于a的利润函数,根据一次函数的性质可得答案.[详解]解:(1)设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得:7280 5680 x yx y+=⎧⎨+=⎩解得:105 xy=⎧⎨=⎩答:购进A种纪念品每件需10元、B种纪念品每件需5元;(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件, 由题意得:750≤5t+500≤764解得264 505t∵t为正整数∴t=50,51,52∴有三种方案.第一种方案:购进A种纪念品50件,B种纪念品50件;第二种方案:购进A种纪念品51件,B种纪念品50件;第三种方案:购进A种纪念品52件,B种纪念品48件;(3)第一种方案商家可获利:w=50a+50(5﹣a)=250(元);第二种方案商家可获利:w=51a+49(5﹣a)=245+2a(元);第三种方案商家可获利:w=52a+48(5﹣a)=240+4a(元).当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最多.[点睛]本题考查了二元一次方程组、一元一次不等式及一次函数在实际问题中应用,理清题中的数量关系是解题的关键.。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共12个小题1.在实数2π, 无理数有( )个 A. 1 B. 2 C. 3 D. 42. 在平面直角坐标系中,将点()2,6P 向下平移3个单位长度,得到点的坐标为( )A ()2,3 B. ()2,9 C. ()1,6- D. ()5,6 3. 下列等式:① 2x + y = 4;② 3xy = 7;③220x y +=;④12y x -=;⑤ 2x + y + z = 1二元一次方程的个数是( )A. 1B. 2C. 3D. 44. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A. (﹣3,4)B. ( 3,﹣4)C. (﹣4,3)D. ( 4,﹣3) 5. 不等式组31027x x +>⎧⎨<⎩的整数解的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个6. 在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶5∶6,③∠A=90°-∠B ,④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有 ( )A. 1个B. 2个C. 3个D. 4个 7. 我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( ) A. 999114100097x y x y +=⎧⎪⎨+=⎪⎩ B. 100097999114x y x y +=⎧⎪⎨+=⎪⎩ C. 10009928999,x y x y +=⎧⎨+=⎩ D. 100011499997x y x y +=⎧⎪⎨+=⎪⎩8. 下列说法不一定成立的是( )A. 若a b >,则a c b c +>+B. 若a c b c +>+,则a b >C. 若a b >,则22ac bc >D. 若22ac bc >,则a b >9. 为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a 的值分别是( )A. 全面调查;26B. 全面调查;24C. 抽样调查;26D. 抽样调查;2410. 若一个多边形的内角和与外角和之和是1800°,则此多边形是( )边形.A. 八B. 十C. 十二D. 十四11. 根据下列已知条件,不能唯一画出ABC 的是( )A. AB = 5, BC = 3, AC = 6B. AB = 4, BC = 3, ∠A = 50︒C. ∠A = 50︒, ∠B = 60︒, AB = 4D. AB = 10, BC = 20, ∠B = 80︒12. 如图,ABC 中, ∠A = 20︒,沿 BE 将此三角形对折,又沿BA '再一次对折,点C 落在BE 上的处,此时74C DB '∠=︒,则原三角形的∠C 的度数为( )A. 74︒B. 76︒ X. 79︒ ∆. 83︒二、填空题(本大题共6个小题) 13. 16 ⎽⎽⎽⎽⎽.14. 已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________. 15. 若一个三角形的两边长分别为5和8,则下列长度:①14;②10;③3;④2.其中,可以作为第三边长的是_____(填序号)16. 某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打_______折.17. 已知点(1,0)A 、(0,2)B ,点P 在轴上,且PAB △的面积为5,则点P 的坐标为__________. 18. 如图,已知 CB ⊥AD ,AE ⊥CD ,垂足分别为 B 、E ,AE 、BC 相交于点 F ,AB=BC ,若 AB=8,CF=2,则 BD=______.三、解答题:本大题共8个小题.19. 计算:23(2)9813---. 20. (1)解方程组:217126x y x y x y -=⎧⎪+-⎨+=⎪⎩; (2)解不等式组:2(2)3321123x x x x +≥+⎧⎪+-⎨->⎪⎩; 21. 由于新型冠状病毒的袭击,2020 春季各个学校不得不推迟开学,但停课不停学.各地都展开了网络学习,我校为了解七年级学生上网课的情况,开学后从该年级学生中随机抽取了部分学生进行数学科目的测试(把测试结果分为四个等级: A 级:优秀; B 级:良好; C 级:合格; D 级:不合格),并将测试记录绘成如下两幅完全不同的统计图,请根据统计图中的信息解答下列问题:(1)参加本次抽样测试的学生数是多少?(2)求图1 中A级扇形的圆心角∠a的度数,并把图2 中的条形统计图补充完整;(3)我校七年级共有1700 名学生,如果全部参加这次数学科目测试,请估计不合格的人数.22. 如图,△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上点,且AM=DN.(1)求证:△ABE≌△DBC.(2)探索BM和BN的关系,并证明你的结论.23. 某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?24. 如图,AD为ABC的高,AE,BF为ABC的角平分线,若∠CBF = 32︒,∠AFB = 72︒.(1)∠BAD =︒;(2)求∠DAE的度数;(3)若点G为线段BC上任意一点,当GFC为直角三角形时,则求∠BFG的度数.25. (1)在关于x,y的二元一次方程组中2x yx y a-=⎧⎨+=⎩中,x >1,y < 0,求a的取值范围.(2)已知x - 2 y = 4,且x > 8,y < 4,求3x + 2 y的取值范围.(3)已知a -b =m,在关于x,y二元一次方程组21258x yx y a-=-⎧⎨+=-⎩中,x < 0,y > 0,化简含有绝对值的式子2334a b m m a b+-++-++(结果用含的式子表示)26. 同学们应该都见过光线照射在平面镜上出现反射光线的现象。
人教版七年级下册数学期中考试试卷一、单选题1.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.2.下列说法中正确的是()A.36的平方根是6B.8的立方根是2CD.9的算术平方根是-3的平方根是23.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩A.小于2.3米B.等于2.3米C.大于2.3米D.不能确定4.若点P在x轴上方,y轴的左侧,到每条坐标轴的距离都是6,则点P的坐标为() A.(6,6)B.(﹣6,6)C.(﹣6,﹣6)D.(6,﹣6) 5.如图,下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠1+∠ACE=180°其中,能判定AD∥BE的条件有()A.4个B.3个C.2个D.1个6.下列各组数中,两个数互为相反数的是()A .-2B .-2与12-C .-2D .|-2|与27.如图,已知AD ⊥BC 于D ,DE ∥AB ,若∠B=48°,则∠ADE 的度数为()A .32°B .42°C .48°D .52°8.在平面直角坐标系中,点A(1,2)平移后的坐标是A′(-3,3),按照同样的规律平移其他点,则符合这种要求的变换是()A .(3,2)→(4,-2)B .(-1,0)→(-5,-4)C .(2,5)→(-1,5)D .(1,5)→(-3,6)9.如图,在数轴上表示2C ,B ,点C 是AB 的中点,则点A 表示的数是()A .B .C .D二、填空题10.如图,将正整数按下图所示规律排列下去,若用有序数对(n ,m)表示n 排从左到右第m 个数.如(4,3)表示9,则(11,3)表示()A .56B .57C .58D .5911.9的算术平方根是.12.在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度再向上平移1个单位长度得到的点的坐标是_____.13.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=30°,则∠2=______.14.如图,//AB CD ,CF 交AB 于点E ,AEC ∠与C ∠互余,则CEB ∠是__________度.15.===,…,根据你发现=、b 为正整数)=_______.16.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠AEB=70°,那么∠BFC′的度数为______度.三、解答题1718.求未知数:(1)9(x-3)2=64.(2)(2x-1)3=-8. 19.已知一个数的平方根是±(a+4),算术平方根为2a﹣1,求这个数.20.中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图(1),按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4).(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→____→(六,4);(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数限定4步以内),①画图:把“马”行走的路线端点,从出发点到目标点先后依次用线段连接;②仿照题(1)表述,写出你所画图①的走法是:_____________.21.已知:如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:,理由如下:∵AB∥CD,∴∠B=∠BCD,()∵∠B=70°,∴∠BCD=70°,()∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴+=180°,∴EF∥,()∴AB∥EF.()22.如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.23.如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.24.阅读下面的文字,解答问题.的小数部分我们不可能完全地写出来,﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:(1)的整数部分和小数部分;(2)已知:,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.25.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案1.D【解析】【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,依次判断即可.【详解】可看作图案的某一部分经过平移所形成的是D选项所示图形,故选D.【点睛】此题主要考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而导致错选.2.B【解析】【分析】根据立方根、平方根和算术平方根的定义判断即可.【详解】A、36的平方根是6±,错误;B、8的立方根是2,正确;C的平方根是D、9的算术平方根是3,错误,故选B.【点睛】本题考查了平方根与立方根,熟练掌握它们的定义以及求解方法是解题的关键. 3.A【解析】【分析】直接利用垂线段最短即可得出小明的跳远成绩.【详解】如图,过点P作PE⊥AC,垂足为E,∴PE<PA,∵PA=2.3米,∴这次小明跳远成绩小于2.3米,故选A.【点睛】本题考查了垂线段最短的性质,熟悉测量跳远成绩的方法是解题的关键.4.B【解析】【分析】根据点到直线的距离和各象限内点的坐标特征进行解答即可.【详解】解:∵点P在x轴上方,y轴的左侧,∴点P是第二象限内的点,∵点P到每条坐标轴的距离都是6,∴点P的坐标为(﹣6,6).故选B.【点睛】本题考查了各象限内的点的坐标特征及点的坐标的几何意义,熟练掌握平面直角坐标系中各个象限的点的坐标的符号特点是解此类题的关键.5.C【解析】【分析】根据平行线的判定方法逐一进行分析判断即可.【详解】①∠1=∠2,内错角相等,两直线平行,则能判定AD∥BE;②∠3=∠4,内错角相等,两直线平行,能判定AB∥CD,但不能判定AD//BE,故不符合题意;③∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD,但不能判定AD//BE,故不符合题意;④∠1+∠ACE=180°,同旁内角互补,两直线平行,则能判定AD∥BE,所以满足条件的有2个,故选C.【点睛】本题考查了两直线平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行,并要分清给出的角所截的是哪两条直线.6.C【解析】【分析】根据立方根的定义、算术平方根的定义以及绝对值的性质结合相反数的定义逐一进行分析即可得答案.【详解】A,两数相等,不能互为相反数,故选项错误;B、-2与12-互为倒数,故选项错误;C=2与-2互为相反数,故选项正确;D、|-2|=2,两数相等,不能互为相反数,故选项错误,故选C.【点睛】本题考查了立方根、算术平方根、绝对值的化简、相反数等知识,熟练掌握相反数的定义是解本题的关键.7.B【解析】【分析】根据平行线的性质和两角互余解答即可.【详解】解:∵DE∥AB,∴∠EDC=∠B=48°,∵AD⊥BC,∴∠ADE=90°﹣48°=42°,故选B.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解决问题的关键.8.D【解析】由点A(1,2)平移后的坐标是A′(-3,3),得出平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,再将各选项逐一检验即可.【详解】解:∵点A(1,2)平移后的坐标是A′(-3,3),∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1,∴选项D符合要求.故选D.【点睛】本题考查了坐标与图形变化-平移,根据点P与P′的坐标,得出平移前后点的坐标变化规律是解题的关键.9.A【解析】【分析】先求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2的对应点分别为C,B,∴-2,∵点C是AB的中点,∴AC=BC=-2,∵OA=OC-AC,∴-2)=4-∴点A表示的数是故选A.本题考查了实数与数轴,线段的和差,准确识图,熟练掌握相关知识是解题的关键. 10.58【解析】【分析】从图中可以发观,第n排的最后的数为:12n(n+1),据此规律进行求解即可.【详解】从图中可以发观,第n排的最后的数为:12n(n+1),∵第10排最后的数为:12×10×(10+1)=55,∴(11,3)表示第11排第3个数,则第11排第3个数为55+3=58,故选C.【点睛】本题考查了规律型——数字的变化类,找到第n排的最后的数的表达式是解题的关键.11.3.【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239 ,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12.(2,3).【解析】将点P的横坐标加3,纵坐标加1即可求解.【详解】点P(﹣1,2)向右平移3个单位长度再向上平移1个单位得到的点的坐标是(﹣1+3,2+1),即(2,3).故答案为(2,3).【点睛】本题考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.15°【解析】【分析】先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【详解】如图,过点B作BD∥l.∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=30°.∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣30°=15°,∴∠2=∠3=15°.故答案为15°.【点睛】本题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.14.135【解析】【分析】根据//AB CD 知AEC ∠=C AEC ∠∠,又与C ∠互余,故AEC ∠=C ∠=45°,再跟邻补角的性质即可求出CEB ∠的度数.【详解】∵//AB CD∴AEC ∠=C ,∠又AEC ∠与C ∠互余,∴AEC ∠=C ∠=45°,∴CEB ∠=180°-AEC ∠=135°.【点睛】此题主要考查平行线的性质,解题的关键是熟知余角与补角的定义.15.4【解析】【分析】从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,据此求出a 、b 的值即可求得答案.【详解】===,…,∴用含n (1n =+,=∴a=8-1=7,b=a+2=9,=4,故答案为4.【点睛】本题考查了本题考查了规律型——数字的变化类,找到变化的规律是解题的关键.16.70°.【解析】【分析】由AD//BC可以求得∠EBF的度数,由折叠的性质知:∠EBC′、∠BC′F都是直角,继而可求得∠FBC′的度数,在Rt△BC′F中利用直角三角形两锐角互余即可求得答案.【详解】∵AD//BC,∴∠EBF=∠AEB=70°,由折叠的性质知,∠EBC′=∠D=90°,∠BC′F=∠C=90°,∴∠FBC′=∠EBC′-∠EBF=90°-70°=20°,在Rt△B C′F中,∠BC′F=90°,∴∠BFC′=90°-∠FBC′=70°,故答案为70.【点睛】本题考查了折叠的性质,涉及了平行线的性质,直角三角形两锐角互余的性质等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.17.【解析】=-++=试题解析:原式331 1.故答案为1.18.(1)x=173,或x=13;(2)x=-12.【解析】【分析】(1)利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可.【详解】(1)(x-3)2=649,则x-3=±83,即x=173或x=13;(2)(2x-1)3=-8,2x-1=-2,∴x=-12.【点睛】本题考查了利用平方根定义以及立方根定义解方程,熟练掌握相关定义是解题的关键.19.这个数是81.【解析】【分析】根据平方根与算术平方根的定义即可列出式子进行求解.【详解】∵一个数的平方根是±(a+4),算术平方根为2a ﹣1,∴a+4=2a ﹣1或-(a+4)=2a-1,解得:a=5或a=-1,由于2a ﹣1≥0,∴a=-1舍去.∴a=5∴这个数的平方根为±9,这个数是81.【点睛】此题主要考查平方根与算术平方根的定义,解题的关键是熟知平方根与算术平方根的联系. 20.(1)(五,6)或(八,5);(2)①画图见解析;(答案不唯一)②(四,6)(二,5)→(三,3)→(四,5)→(六,4)(答案不唯一).【解析】【分析】(1)根据点的坐标移动按照从“日”字形长方形的对角线的一个端点到另一个端点,观察图形即可得知从(七,7)到(六,4)中间所缺的一步;(2)①此题只需根据点的坐标移动按照从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少”来确定行走路线即可(答案不唯一);②根据①的线路写出走法即可.【详解】(1)观察图形,结合“马”的行棋规则可得缺失的一步是(五,6)或(八,5),故答案为(五,6)或(八,5);(2)①如图所示(答案不唯一);(2)图示的走法为:(四,6)(二,5)→(三,3)→(四,5)→(六,4),故答案为(四,6)(二,5)→(三,3)→(四,5)→(六,4).【点睛】本题考查了坐标确定位置,体现了规律性,需要灵活求解.21.AB∥EF,两直线平行,内错角相等;等量代换,∠E,∠DCE,CD,同旁内角互补,两直线平行;平行于同一直线的两条直线互相平行.【解析】【分析】依据平行线的性质,即可得到∠BCD=70°,进而得出∠E+∠DCE=180°,进而得到EF∥CD,进而得到AB∥EF.【详解】AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)【点睛】本题考查平行线的性质和判定,解题的关键是熟练掌握平行线的判定和性质.22.(1)AC∥DF,理由见解析;(2)40°.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;【详解】解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.【点睛】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.23.见解析【解析】【分析】先根据题意画出图形,再根据平行线的性质进行解答即可.【详解】∠ABC与∠DEF的数量关系是相等或互补,理由如下:①如图,∵DE∥AB,∴∠ABC=∠DPC,又∵EF∥BC,∴∠DEF=∠DPC,∴∠ABC=∠DEF;②如图,因为DE∥AB,∴∠ABC+∠DPB=180°,又∵EF∥BC,∴∠DEF=∠DPB.∴∠ABC+∠DEF=180°.【点睛】本题考查了平行线的性质,根据题意画出图形是解答此题的关键,解答此题时要注意分两种情况讨论,否则会造成漏解.24.(1)3,【解析】【分析】(1)根据阅读材料知,1+2的整数部分,然后再去求其小数部分即可;(2)x-y的相反数即可.【详解】(1)∵1<2,∴3<4,+2的整数部分是1+2=3,+2﹣1;(2)∵2<3,∴12<<13,∴12,﹣2,即x=12,2,∴x﹣y=12﹣(2)=12=14则x﹣y14.【点睛】本题主要考查了无理数的大小.解题关键是确定无理数的整数部分即可解决问题.25.(1)证明见解析;(2)证明见解析;(3)45°【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=12∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【详解】(1)解:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=12(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=12∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.。
2013-12-19 54D3
E21
CB
A七年级下册数学期中试卷 一、选择题 1.已知点A(3,4),B(3,1),C(4,1),则AB与AC的大小关系是( )
A.AB>AC B.AB=AC; C.AB2、20.7的平方根是( ) A.0.7 B.0.7 C.0.7 D.0.49 4 如右图,下列能判定AB∥CD的条件有( )个. (1) 180BCDB(2)21;(3) 43;(4) 5B. A.1 B.2 C.3 D.4 5、 已知,如图∠1=∠2,∠3=800,则∠4=( ) A、800 B、700 C、600 D、500
6. 在-1.414,2,π, 3.41,2+3,3.212212221„,3.14 这些数中,无理数的个数为( ). A.5 B.2 C.3 D.4
7. 已知下列结论:①在数轴上只能表示无理数2;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ). A.①② B.②③ C.③④ D.②③④ 8、已知点(a, b),若a<0, b>0, 则A点一定在( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 9、如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是( ). A.相等 B.互余或互补 C.互补 D.相等或互补 10、若x轴上的点P到y轴的距离为3,则点P的坐标为( ) A (3,0) B (0,3) C (3,0)或(-3,0) D (0,3)或(0,-3)
11,若a、b为实数,且满足│a-2│+2b=0,则b-a的值为 A.2 B.0 C.-2 D.以上都不对 二、填空题(每小题3分,共12分) 12 1-2的相反数是_________,绝对值是__________ 13.方程2x-y=9 在正整数范围内的解有___个。 14. 一个正数x的平方根是2a3与5a,则x= . 15.“垂直于同一条直线的两条直线互相平行”改写成“如果„那么„”形 . 16.如图所示,如果OBC的面积为12,那么点C的纵坐标为__________ 17.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是 18.若点A在第二象限,且到x轴的距离为3,到y轴的距离为2,则点A的坐标为 19、如果点A的坐标为(a2+1,-1-b2),那么点A在第 象限 20、若x:y:z=2:3:4,且x+y+z=18,则x,y,z的值为
y x 6,0B O
C
【第16题图】 2013-12-19 22.在草稿纸上计算:①;②;③;④,观察你计算的结
果,用你发现的规律直接写出下面式子的值=________ . 三、解答题(72分) 1 计算:(16分) ( x -1)2=4 3x3=-81
2.求满足方程组:020314042yxmyx 中的y 的值是x值的3倍的m的值,并求x , y 的值。
3.a为何值时,方程组1872253ayxayx的解x ,y 的值互为相反数,并求它的值。 4.求满足方程组kyxkyx32253而 x , y 的值之和等于2的k的值。使满足方程组myxmyx32253 的x , y 的值的和等于2,求m2-2m+1的值。
5.己知:)0,,(030334zyxzyxzyx ,求:(1)x : z 的值。(2)y : z 的值。
6.如果点A(t-3s,2t+2s),B(14-2t+s,3t+2s-2)关于x轴对称,求s,t的值. 2013-12-19 y O A
B C
x
-2xy2341-1-3-40-3-2-121
43
DCBA
F7、 如图所示,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1. (1)如果x轴上有两点M(x1,0),N(x2,0)(x1(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1
8、(,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1 ,2), (1)、写出点A、B的坐标:A( , )、B( , ) (2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A'B'C',则A'B'C'的三个顶点坐标分别是A'( 、 )、B'( 、 )、C'( 、 ) (3)计算△ABC的面积
9、已知:2)3(a=8,则点A(1, a) 关于Y轴的对称点为点B,将点B向下平移2个单位后,再向左平移3个单位得到点C,则C点与原点及X轴所围成的三角形的面积为多少?
10、如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O—C—B—A—O的路线移动(即:沿着长方形移动一周)。 (1)写出点B的坐标( )。
(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标。 (3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间。
11.(5分)如图,一个机器人从O点出发,向正东方向走3m,到达A1点,再向正北走6m到达A2点,再向正西走9m到达A3点,再向正南走12m,到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是 _________ .
12.以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个. (1)求湖南省签订的境外,省外境内的投资合作项目分别有多少个? 2013-12-19 (2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元?
13、已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题: (1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案; (3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
14、某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元. (1)该商场购进甲、乙两种商品各多少件? (2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?
15、食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶? 2013-12-19 在直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去,设Pn(xn,yn),n=1,2,3,…. (1)依次写出x1、x2、x3、x4、x5、x6的值; (2)计算x1+x2+…+x8的值; (3)计算x1+x2+…+x2003+x2004的值 解:由题意得,X规律为1,-1,-1,3,3,-3,-3,5,5,-5,-5,7…… 皆为奇数,正数负数各重复两次 (1)由规律得 X1=1,X2=-1,X3=-1,X4=3,X5=3,X6=-3 (2)X1+X2+……+X8 =1-1-1+3+3-3-3+5=4 (3)X1+X2+……X2008+X2009 =1-1-1+3+3-3-3+5+5-5-5+…… 可知,从第四项起,每四项的和为零 那么 X4+X5+……+X2007=0 从第四项起,每四项设为一组,X4~X7为第一组,绝对值为3 则 第N组的绝对值为2N+1 那么 X2008~X2011为第502组,绝对值为1005 x2012为第503组,绝对值为1007 所以 X1+X2+……X2008+X2009+=1-1-1+0+1007=1007 3.在平面直角坐标系中,设坐标轴的单位长度为l厘米,整数点P从原点O出发,速度为l厘米/秒,且点P只能向上或向右运动,每秒都可以变换运动方向,请回答下列问题: (1)填表:
P从O点出发时间 P点可能到的位置(整数点的坐标) 1秒 (0,1)或(1,0) 2秒
3秒
(2)当P点从点O出发 秒时,可得到整数点(10,5). 如图,一粒子在区域{(x,y)|x≥0,y≥0}内运动,在第1秒内它从原点运动到点B1(0,1),接着由点B1→C1→A1,然后按图中箭头所示方向在x轴,y轴及其平行线上运动,且每秒移动1个单位长度,求该粒子从原点运动到点P(16,44)时所需要的时间.解:设粒子从原点到达An、Bn、Cn时所用的时间分别为an、
bn、cn, 则有:a1=3,a2=a1+1, a3=a1+12=a1+3×4,a4=a3+1,