致密砂岩气藏地质特征与开发关键技术
- 格式:pdf
- 大小:2.05 MB
- 文档页数:59
致密砂岩的岩石物理特征研究文献综述摘要:致密砂岩是一种非常规的砂岩,一般由致密的碎屑岩组成,主要包括粉砂岩、细砂岩以及部分中-粗砂岩。
致密砂岩气藏与深盆气藏和盆地中心气藏以及持续性聚集型气藏有着紧密的联系。
本文在对致密砂岩气层的成藏地质特征进行了总结,并介绍了地震响应特征有关的岩石物理参数(例如纵横波速度、密度、泊松比、含气饱和度)等相关概念,在此基础之上,介绍了关于国内外致密砂岩的岩石物理特征研究的基本情况。
关键词:致密砂岩气层岩石物理特征研究现状一、致密砂岩气层及其岩石物理特征1.致密砂岩气层的成藏地质特征致密砂岩气藏的地质成因由多方面因素控制,主要有沉积作用、成岩作用和构造作用,但前面二者起到主控作用。
沉积物的物源特征和沉积环境控制着储层物性、岩性以及孔喉结构分布,其中,地层的沉积作用是形成储层低孔低渗特性最基本的作用条件,不仅控制着这类储层的物性特征,还决定了成岩作用的类型和强度。
一般情况下,低孔低渗储层主要形成于冲积扇沉积等近源沉积相带或前三角洲沉积等远源沉积相带中。
致密砂岩气藏的一般特征为:(1)基质颗粒杂乱,分选性差,孔喉结构复杂,渗透率较低;(2)致密气藏的非均质性较强,岩性变化大,井与井之间的小层划分及对比难度大;(3)储层具有高含水饱和度,低可流动流体饱和度,以及低气体相对渗透率;(4)气体驱替压力高,存在启动压力现象;(5)气水关系复杂,油、气、水的重力分异不明显,在毯状致密砂层中气和水呈明显的倒置关系,在透镜体状致密砂岩含气层系中一般无明显的水层,致密气藏一般不出现分离的气水接触面,产水不大,含水饱和度高(大于40%);(6)分布隐蔽,常规的勘探方法难以发现。
深层浅层成藏关系密切——在致密化程度高而晚期构造相对活动地区,高丰度超压天然气侧向运移困难,势必寻求垂向突破,产生烟囱作用。
2.致密砂岩气层的岩石物理参数早期的地震数据主要用于构造解释,通过构造结合其它地质信息的综合研究,进行间接地推断该构造的含油气性。
致密砂岩储层特征及气藏成藏过程伏海蛟;汤达祯;许浩;陈晓智;崔立伟;马英哲【期刊名称】《断块油气田》【年(卷),期】2012(019)001【摘要】非常规天然气作为一种潜力巨大的替代能源,开发应用前景十分广阔.致密砂岩气作为非常规天然气的重要组成部分,越来越受到广大石油地质工作者的关注,而正确地认识致密砂岩气是有效开发利用它的前提条件.文章从致密砂岩气藏的概念、储层的分类方案、储层特性及其与常规储层异同点、气藏成藏过程和分布规律等方面出发,详细阐述了致密砂岩气藏的研究现状,讨论了致密砂岩气藏在国内的分布情况和开发潜力,旨在对国内致密砂岩气藏的前期勘探工作起到一定的指导作用,并为后期开发方案的制订提供合理的参考意见.【总页数】4页(P47-50)【作者】伏海蛟;汤达祯;许浩;陈晓智;崔立伟;马英哲【作者单位】中国地质大学(北京)能源学院,北京100083;中国地质大学(北京)能源学院,北京100083;中国地质大学(北京)能源学院,北京100083;中国地质大学(北京)海相储层演化与油气富集机理教育部重点实验室,北京100083;中国地质大学(北京)海相储层演化与油气富集机理教育部重点实验室,北京100083;中国石油大学(北京)地球科学学院,北京102249【正文语种】中文【中图分类】TE112.2【相关文献】1.中国致密砂岩煤成气藏地质特征及成藏过程——以鄂尔多斯盆地上古生界与四川盆地须家河组气藏为例 [J], 张水昌;米敬奎;刘柳红;陶士振2.川东北地区普光气田长兴-飞仙关气藏成藏模式与成藏过程 [J], 马永生;傅强;郭彤楼;杨凤丽;周祖翼3.川西坳陷什邡地区蓬莱镇组天然气藏特征及成藏过程分析 [J], 赵双丰;张枝焕;李文浩;刘杏;姜丽娜4.渤海湾盆地黄骅坳陷板桥凹陷深层低渗透(致密)砂岩气藏充注特征及成藏过程[J], 赵贤正;卢异;曾溅辉;韩国猛;冯森;石倩茹;刘亚洲;付东立;王亚奴;宗杰5.徐家围子断陷气藏成藏过程及成藏压力研究 [J], 吴玉明;闫伟贺;云建兵;张帆因版权原因,仅展示原文概要,查看原文内容请购买。
第44卷 第5期 新 疆 石 油 地 质Vol. 44,No.52023年10月 XINJIANG PETROLEUM GEOLOGY Oct. 2023文章编号:1001-3873(2023)05-0554-08 DOI :10.7657/XJPG20230506苏里格气田致密砂岩气藏剩余气分布特征及其挖潜石耀东1,王丽琼1,臧苡澄2,张吉1,3,李鹏2,李旭1(1.中国石油 长庆油田分公司 第四采气厂,内蒙古 鄂尔多斯 017300;2.中国石油 长庆油田分公司 勘探开发研究院,西安 710018;3.低渗透油气田勘探开发国家工程实验室,西安 710018)摘 要:苏里格气田中区苏36-11区块已开发17年,开发程度和储量动用程度均高,储集层非均质性强,储量动用不均衡,剩余气分布复杂,剩余气分布的确定及挖潜是气田稳产的关键。
通过储集层构型精细表征,明确剩余气分布的主要影响因素,确定不同类型剩余气分布规律,提出对应的挖潜对策。
研究结果表明:研究区含气砂体主要分布在4级构型单元心滩坝与点坝中,整体规模小,宽度为150~500 m ,长度为300~800 m ,连通性差,受各级次渗流屏障影响大,区块北东—南西向主砂带开发程度最高,地层压力低,剩余气主要分布在区块西北部盒8段下亚段;剩余气分布主要受储集层非均质与开采非均匀影响,可分为井网未控制型、复合砂体阻流带型、水平井未动用次产层型、直定向井未射开气层型和投产未采出型5类;提出井间加密、老井侧钻、查层补孔和老井挖潜4种动用措施,调整方案后,预测可稳产7年,采收率可达45%。
关键词:苏里格气田;致密砂岩;储集层构型;剩余气储量评价;剩余气分布;挖潜对策;开发中—后期;开发调整方案中图分类号:TE122 文献标识码:A©2018 Xinjiang Petroleum Geology. Creative Commons Attribution-NonCommercial 4.0 International License 收稿日期:2022-11-12 修订日期:2023-04-13基金项目:国家科技重大专项(2016ZX05050);中国石油科技重大专项(2016E-0509)第一作者:石耀东(1973-),男,陕西靖边人,高级工程师,气田开发与生产管理,(Tel )************(E-mail )syd_cq@通讯作者:王丽琼(1989-),女,甘肃华池人,高级工程师,硕士,油气田开发,(Tel )************(E-mail )wangliqiong12_cq@petrochina..Distribution and Potential Tapping Strategies of Remaining Gasin Tight Sandstone Gas ReservoirsSHI Yaodong 1,WANG Liqiong 1,ZANG Yicheng 2,ZHANG Ji 1,3,LI Peng 2,LI Xu 1(1.No.4 Gas Production Plant, Changqing Oilfield Company, PetroChina, Ordos, Inner Mongolia 017300, China;2.Research Institute of Exploration and Development, Changqing Oilfield Company, PetroChina, Xi ’an, Shaanxi 710018, China ;3.National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi ’an, Shaanxi 710018, China )Abstract :The Su 36⁃11 block in the central area of Sulige gas field has been developed for 17 years, with high degrees of development and reserves producing. The strong reservoir heterogeneity in this block leads to uneven producing of reserves and complex distribution of re⁃maining gas. Distribution determination and potential tapping of the remaining gas are crucial for maintaining stable production in the gas field. By accurately characterizing the reservoir architecture, the main factors influencing remaining gas distribution were identified, the distribution patterns of different types of remaining gas were determined, and corresponding strategies for recovering the remaining gas were proposed. The research results show that the gas⁃bearing sand bodies in the study area are mainly distributed in the 4th⁃order architec⁃ture units, such as channel bar and point bar, these sand bodies are significantly affected by various levels of flow barriers, with small over⁃all scale, poor connectivity, width of 150-500 m and length of 300-800 m. The main NE⁃SW sand belt in the block has been developed the most, with low formation pressure, and the remaining gas is mainly distributed in the lower He 8 member in the northwestern part of the block. Remaining gas, whose distribution is mainly influenced by reservoir heterogeneity and uneven development, can be divided into five types: gas uncontrolled by well pattern, gas in composite sand body flow barrier, gas in secondary pay zone unexploited by horizontal well, gas in unperforated gas⁃bearing layer in vertical well, and gas unproduced. Four potential tapping measures were proposed, including well infilling, reperforation, sidetracking and potential tapping in exsisting wells. According to the adjusted development plan, it is predicted that stable production can be maintained for 7 years with the recovery efficiency reaching 45%.Keywords :Sulige gas field; tight sandstone; reservoir architecture; remaining gas reserves evaluation; remaining gas distribution; potential tapping; middle-late development stage; adjusted development plan中国致密气资源总量及开发潜力巨大,约占全球资源量的十分之一,主要分布在鄂尔多斯盆地、四川盆地、塔里木盆地等区域。
致密砂砾岩油藏开发中地质工程一体化实践与思考王鑫发布时间:2021-07-01T10:10:27.490Z 来源:《基层建设》2021年第9期作者:王鑫[导读] 摘要:砂砾岩是一种含砾成分较高的砂岩,也称为含砾砂岩,国内外一般是将砾岩、砾状砂岩等粗碎屑岩为主的油气藏统称为砂砾岩油气藏。
广西恩品工程设计咨询有限公司广西南宁 530000摘要:砂砾岩是一种含砾成分较高的砂岩,也称为含砾砂岩,国内外一般是将砾岩、砾状砂岩等粗碎屑岩为主的油气藏统称为砂砾岩油气藏。
致密砂砾岩油藏具有储层物性差、非均质性强、储层展布规律复杂等特点。
从国内外致密油气开发积累的经验来看,进行地质工程一体化研究,使地质认识和工程实践最大限度地紧密结合,能够更有效挖掘各个开发环节的效益。
关键词:致密砂砾岩油藏开发中地质工程一体化实践与思考引言地质工程一体化本质上是一种技术管理模式,其核心是实现地质、工程跨学科、跨部门多元协作,实现快速高效科学决策与实施。
成功的地质工程一体化项目,往往具备一支多学科扁平化、高效一体化的团队,具有现场作业协同化运作机制和地质工程一体化工作平台,从而降低工程风险、提高工作效率,增加经济效益。
1工程地质学和地质工程学简述工程地质是一门基于应用方案的学科,其基础是对建筑工程地质条件的研究以及工程分析的原则和方法。
分析、预测、预测石油和天然气勘探开发前后的地理分布、应力、石料、三压特性和技术影响及变化,研究地质质量和环境条件,并为钻井、石油钻井等开发设计开发项目。
地质工程是一门工程科学,它研究和解决了工程地质和岩性的地质问题,解决了地质、设计和施工偏差等领域的实际工作问题。
地质科学侧重于地质构造和地质背景相关的岩土工程问题。
本组织与地质、地质、地球物理、数据处理技术等方法合作,开发地质结构,利用地质材料进行建筑,开发或保护地质结构的施工环境,并通过现代施工技术支持经济。
在实践中,地球工程和工程促进发展,特别是在信息时代,促进发展的一体化。
等效孔隙结构模型在鄂尔多斯致密含气砂岩中的应用
等效孔隙结构模型是一种广泛应用于石油地质领域中的模型,通过对岩石的孔隙结构进行数学建模,可以更精确地理解岩石的物理特性和储集性能。
在鄂尔多斯盆地的致密含气砂岩中,等效孔隙结构模型可以帮助研究人员更好地理解岩石储气能力,提高页岩气勘探开发的效率和成功率。
首先,等效孔隙结构模型可以帮助确定鄂尔多斯盆地致密含气砂岩的孔隙结构类型和数量。
通过分析孔隙结构特征,识别不同类型的孔隙结构(如纳米孔隙、微孔隙、裂隙等)以及其数量,可以更好地了解岩石的孔隙网络组成和储气能力,进而确定最优的气藏区域。
其次,等效孔隙结构模型可以帮助评估鄂尔多斯盆地致密含气砂岩的物理特性。
通过将岩石数据与合理的等效孔隙结构模型进行比对,可以计算出岩石不同物理参数(如孔隙度、渗透率、孔隙尺寸分布等),为确定岩石储气潜力和开发方案提供参考。
最后,等效孔隙结构模型可以帮助优化鄂尔多斯盆地致密含气砂岩的开发方案。
基于对岩石孔隙结构和物理特性的深入理解,可以采用更科学的岩石水压裂解技术,优化产层石油气采集效果,提高采收率和经济效益。
综上所述,等效孔隙结构模型在鄂尔多斯致密含气砂岩中的应用具有重要意义。
它有助于更好地了解岩石孔隙结构和储气能力,预测气藏分布和储量,选择最佳的采油气工艺和方案,为
鄂尔多斯盆地页岩气勘探和开发的成功实施提供有力的科学支持。
致密砂岩气储量标准一、储量估算致密砂岩气储量估算是在对致密砂岩气藏进行详细勘探的基础上,通过对气藏储层、盖层和保存条件等进行详细研究和分析,结合现代地球物理和地质勘查技术手段,对气藏的储量和规模进行科学估算。
二、储层描述致密砂岩储层是致密砂岩气藏的重要组成部分,其描述包括以下方面:1.储层岩石学特征:主要描述储层岩石的矿物组成、粒度、磨圆度、分选性等特征。
2.储层物性特征:主要描述储层的孔隙度、渗透率、含气饱和度等物性参数。
3.储层含气性特征:主要描述储层中天然气的类型、含量、丰度等特征。
4.储层保存条件:主要描述储层的构造、岩性、热流等地质条件对天然气的保存和运移的影响。
三、气藏特征致密砂岩气藏是一种特殊的天然气藏,其特征包括以下方面:1.气藏压力高:致密砂岩气藏一般具有较高的气藏压力,需要采用特殊的高压开采技术。
2.气藏产量低:由于致密砂岩储层的孔隙度和渗透率较低,气藏的产量相对较低。
3.开发难度大:由于致密砂岩气藏具有较高的压力和较低的产量,开发难度较大,需要采用特殊的开采技术和设备。
4.经济价值高:由于致密砂岩气藏的天然气品质较好,价格较高,因此具有较高的经济价值。
四、资源品质致密砂岩气的资源品质主要取决于天然气的组成和含量。
一般来说,致密砂岩气的组成比较单一,主要成分是甲烷,含量较高,具有较高的热值和较低的杂质含量,因此是一种优质的清洁能源。
此外,致密砂岩气还具有较高的碳氢比和较低的含氧量,这些特征都表明致密砂岩气具有较高的资源品质。
五、储量规模致密砂岩气的储量规模是衡量其开发价值的重要指标之一。
一般来说,致密砂岩气的储量规模较大,但由于其储层物性较差,产量较低,因此需要采用特殊的开采技术和管理措施来提高采收率。
此外,致密砂岩气的开发还需要考虑地质风险、技术条件、经济成本等因素的影响,因此需要结合具体情况进行综合评估。
六、开发方案致密砂岩气的开发方案需要根据具体情况进行制定。
一般来说,开发方案需要考虑以下因素:1.地质特征:包括气藏的压力、温度、组成等特征。
致密砂岩气藏读书总结本次对于致密砂岩气藏的文献阅读主要从致密砂岩气藏的概念、分类、气藏特征、成藏要素、成藏机理以及国内外不同盆地致密砂岩气藏的特点等方面进行的,总结如下:1.致密砂岩气藏的概念国内外学者对致密砂岩气藏的定义与很多,其共同特点是储层致密,孔隙度渗透率很低。
国内普遍认可的定义为:致密砂岩气是指孔隙度低(<12%)、渗透率比较低(1×10-3μm2)、含气饱和度低(<60%)、含水饱和度高(>40%)、天然气在其中流动速度较为缓慢的砂岩层中的非常规天然气(关德师,中国非常规油气地质,1995)。
2.致密砂岩气藏的分类致密砂岩气藏根据产状分类可分为致密深盆气、致密根源气、致密连续型砂岩气。
通过阅读学习发现,对于致密砂岩气藏比较合理的分类方式是按照气藏的成因进行分类,根据有机质大量生、排烃时间与储层致密化时间的关系可将致密砂岩气藏分为三大类:“先成型”深盆气藏、“后成型”致密砂岩气藏、后期改造复合型砂岩气藏。
“先成型”深盆气藏是指有机质大量生排烃时间晚于储层致密化的时间,即储层先致密后成藏。
“后成型”致密砂岩气藏与“先成型”相反,是储层先成藏后致密,可见,“先成型”早期属于常规气藏,也称为常规致密砂岩气藏,根据圈闭类型可分为:致密构造类砂岩气藏和致密岩性类砂岩气藏。
第三类后期改造复合型致密砂岩气藏是指早期形成的致密类油气藏受到构造变动改造后形成的、地质特征可能完全不同的一种新类型的油气藏或者致密常规型油气藏与致密深盆型油气藏在地史过程中叠加复合而形成的致密型砂岩类油气藏。
3.致密砂岩气藏地质特征:(1)储层致密,储层孔隙度低,一般都在12%以下;储层渗透率低,一般都在1×10-3μm2以下。
(2)致密砂岩气藏埋深变化范围大,分布面积较大。
(3)储量规模大,但储量丰度低,产能低、开采难度大。
(4)油藏压力特征复杂,既有异常高压又有异常低压。
一般的,深盆气藏随着成藏演化由异常高压变为异常低压。
库车坳陷迪北致密砂岩气藏特征琚岩;孙雄伟;刘立炜;谢亚妮;魏红兴【摘要】迪北气藏位于库车坳陷东部迪北斜坡带中段,产层主要为侏罗系阿合组,次为阳霞组.该气藏储集层连片,源储紧贴呈“三明治”式叠置,有利于油气大面积高效率聚集;持续生排烃、持续强充注,有利于油气高丰度聚集;晚期调整、构造翘倾,导致气藏类型多样化,总体具有致密砂岩气藏特征.从烃源岩、储盖组合和构造等条件分析,库车坳陷东部侏罗系具有形成大面积致密砂岩气藏的地质条件,勘探潜力巨大.【期刊名称】《新疆石油地质》【年(卷),期】2014(035)003【总页数】4页(P264-267)【关键词】塔里木盆地;库车坳陷;下侏罗统;致密砂岩气藏【作者】琚岩;孙雄伟;刘立炜;谢亚妮;魏红兴【作者单位】中国石油塔里木油田分公司勘探开发研究院,新疆库尔勒841000;中国石油大学地球科学与技术学院,山东青岛266580;中国石油塔里木油田分公司勘探开发研究院,新疆库尔勒841000;中国石油塔里木油田分公司勘探开发研究院,新疆库尔勒841000;中国石油塔里木油田分公司勘探开发研究院,新疆库尔勒841000;中国石油塔里木油田分公司勘探开发研究院,新疆库尔勒841000【正文语种】中文【中图分类】TE112.43迪北气藏位于库车坳陷东部迪北斜坡带中段,产层主要为下侏罗统阿合组,次为下侏罗统阳霞组。
受燕山运动、喜马拉雅构造运动影响,库车坳陷东部具有典型的前陆逆冲变形特征,北部发育一系列规模不一的北倾逆冲断裂,形成叠瓦状逆冲推覆构造,在地表表现为一系列东西走向的线性背斜,已发现依奇克里克油田;依奇克里克断裂上盘为依奇克里克构造带,发育多个东西向的长轴背斜;下盘为迪北斜坡带,发育一系列断鼻、断背斜、背斜,已发现迪北和吐孜洛克等气藏(图1)。
目前,库车坳陷东部共完钻侏罗系探井11口,1998年依南2井在侏罗系阿合组分四段完井测试,日产气34 779~66 470 m3,依据断块气藏模式上交天然气预测地质储量1 635.24×108m3.1998年钻探依南4井和依南5井评价该气藏,钻探依深4井预探上盘背斜构造,又钻探克孜1井和依西1井,加深钻探吐孜2井,但全部失利。
致密砂岩气研究现状根据中国近年来发现的大型致密砂岩气藏的开发地质特征,可将致密砂岩气划分为 3 种主要类型。
透镜体多层叠置致密砂岩气,以鄂尔多斯盆地苏里格气田为代表。
发育众多的小型辫状河透镜状砂体,交互叠置形成了广泛分布的砂体群,整体上叠置连片分布,但气藏内部多期次河道的岩性界面约束了单个储渗单元的规模,导致储集层井间连通性差,单井控制储量低。
苏里格气田砂岩厚度一般为30〜50 m辫状河心滩形成的主力气层厚度平均10 m左右,砂岩孔隙度一般4%- 10% 常压渗透率为(0.001〜1.000 )X 10-3卩m2含气饱和度55%〜65% 埋藏深度3 300〜3 500 m异常低压,平均压力系数0.87,气藏主体不含水。
鄂尔多斯盆地上古生界天然气藏,鄂尔多斯盆地构造简单稳定。
成熟源岩面积13X104平方千米,烃源岩成熟度0.6%~3%,砂岩平均孔隙度8.3% , 平均渗透率小于1*1032卩m;四川盆地上三叠统须家河组平均孔隙度 4. 77% ,平均渗透率小于1*103卩m;为致密-超致密砂岩储层,储层总体表现为低孔低渗高含水,强非均质性的特征。
孔喉直径均值0.313卩m;成熟度1.0%~3.6%源岩分布面积(1.4~1.7 )X104如2 (大于100m,连片砂体面积超过1X 104如2,砂体普遍含气,以川中地区须家河组气藏、松辽盆地长岭气田登娄库组气藏为代表的多层状致密砂岩气,砂层横向分布稳定。
川中地区须家河组气藏发育 3 套近100 m 厚的砂岩层,横向分布稳定,但由于天然气充注程度较低,构造较高部位含气饱和度较高,而构造平缓区表现为大面积气水过渡带的气水同层特征。
须家河组砂岩孔隙度一般为4%〜12%,常压渗透率一般为(0.001〜2.000 )X 10-3卩m2埋藏深度为2 000〜3 500 m,构造高部位含气饱和度55%〜60%,平缓区含气饱和度一般为40%〜50%,常压—异常高压,压力系数1.1 〜1.5。
致密砂岩气藏水平井多学科综合导向新技术——以鄂尔多斯盆地为例费世祥1,2 杜玉斌3 王一军4 陈楠5 高阳5 王树慧1,2 何鎏1,21.中国石油长庆油田公司勘探开发研究院2.低渗透油气田勘探开发国家工程实验室3.中国石油长庆油田公司气田开发事业部4.中国石油集团东方地球物理勘探有限责任公司研究院长庆分院5.中国石油长庆油田公司第一采气厂摘要 鄂尔多斯盆地上古生界致密砂岩气藏的储层主要表现为近南北方向条带状展布,河道分叉、交汇频繁,单砂体接触方式以侧向加积形成的多层式接触为主,河流交汇处砂体具有近东西向横卧分布的特征,给水平井地质导向带来了很大的难度。
为了提高水平井储层钻遇率,系统分析了水平井地质导向现状和储层沉积特征,利用三维地质建模与三维地震对储层空间展布进行预测,同时结合对已钻水平井砂体空间展布的认识,不断完善和丰富水平井地质导向技术与方法,形成了“小层精细对比入靶、地质小尺度、地震大方向”的多学科思维深度融合的综合导向新技术,并进行了现场应用。
研究结果表明:①沉积模型导向可在入靶过程中精确制导,提高一次入靶成功率,是斜井段入靶导向的主要方法;②地质建模导向可指导水平井钻进,但与地下真实地质体存在着一定的误差,可作为水平段辅助导向方法;③三维地震导向可区分复合河道界限和判断优势砂体空间相对位置,对水平段导向有很好的预判和指导性,是水平段导向的主要方法;④新方法在致密砂岩气示范区应用于水平井62口,实现平均水平段长1 430 m、平均砂岩钻遇率86.2%、平均气层钻遇率70.2%,水平井气层钻遇率提高了10%以上。
关键词 鄂尔多斯盆地 致密砂岩气藏 水平井 沉积模型 地质建模 三维地震 多学科 综合导向 储集层钻遇率DOI: 10.3787/j.issn.1000-0976.2019.12.007A new multi-disciplinary integrated steering technology for horizontal wells intight sandstone gas reservoirs: A case study of the Ordos BasinFei Shixiang1,2, Du Yubin3, Wang Yijun4, Chen Nan5, Gao Yang5, Wang Shuhui1,2 & He Liu1,2(1. Exploration and Development Research Institute, PetroChina Changqing Oilfield Company, Xi'an, Shaanxi 710018, China;2. National Engineering Laboratory of Low-permeability Oil & Gas Exploration and Development, Xi'an, Shaanxi 710018, China;3. Gasfield Development Division, PetroChina Changqing Oilfield Company, Xi'an, Shaanxi 710018, China;4. CNPC Changqing Branch of BGP Inc., Xi'an, Shaanxi 710018, China;5. No.1 Gas Production Plant, PetroChina Changqing Oilfield Company, Xi'an, Shaanxi 710000, China)NATUR. GAS IND. VOLUME 39, ISSUE 12, pp.58-65, 12/25/2019. (ISSN 1000-0976; In Chinese) Abstract: The sandstone layers of the Upper Paleozoic tight clastic gas reservoirs in the Ordos Basin are generally distributed in a pattern of nearly NS strip, and the channel branches and intersects frequently. A single sand body is in a multilayered contact mode resulted from lateral accretion, and the sand bodies at the river intersections present a feature of lying in the nearly EW direction, which brings great difficulties to the geosteering of horizontal wells. In order to improve the reservoir drilling rate of horizontal wells, this paper systemat-ically analyzed the geosteering status of horizontal wells and the sedimentary characteristics of reservoirs. Then, the spatial distribution of reservoirs was predicted using 3D geological modeling and 3D seismic. In addition, based on the cognitions on the space distribution of sand bodies from the drilled horizontal wells, the horizontal-well geosteering technology and method were constantly improved and enriched. Thus, an integrated steering technology of "fine sublayer correlation for target entering, geology in small scale, and seismic in large scale" based on in-depth integration of multidisciplinary thinking was newly formed, and it was also applied on site. And the follow-ing research results were obtained. First, under the guidance of the sedimentation model, the target entering process is controlled precise-ly and the success rate of one-trip target entering is improved, so it is one important method for the target steering of deviated hole sec-tions. Second, geological modeling can guide the drilling of horizontal wells, but to some extent, it is deviated from the real underground geologic bodies, so it can be used as an auxiliary horizontal-well steering method. Third, 3D seismic steering can tell the boundary of complex river channel and discriminate the spatial relative location of predominant sand bodies, so it is the primary method for horizon-tal-well steering to provide excellent judgement and guidance on the steering of horizontal hole sections. Fourth, owing to the application of this new method in 62 horizontal wells drilled in the tight gas demonstration area, the average horizontal section length reaches 1 430 m, the average sandstone drilling rate is 86.2%, the average gas layer drilling rate is 70.2%, and the gas layer drilling rate of horizontal wells is increased by more than 10%.Keywords:Ordos Basin; Tight sandstone gas reservoirs; Horizontal well; Sedimentation model; Geological modeling; 3D seismic; Multi-disciplinary; Integrated steering; Reservoir drilling rate基金项目:国家科技重大专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(编号:2016ZX05050)、中国石油科学研究与技术开发项目“长庆油田5 000万吨持续高效稳产关键技术研究与应用”(编号:2016E-0509)。
0 引言四川盆地西部(以下简称川西地区)深层致密砂岩广泛分布,以上三叠统须家河组气藏为主,是深层致密气藏勘探开发的主要目标,埋深介于3000~6 000 m [1]。
须家河组油气成藏条件较复杂,非均质性强,储层低孔、低渗透特征明显,与围岩测井及地震响应特征差异小;油气高产强烈依赖于裂缝对储层的改善,小—微尺度裂缝体的预测是油气高产富集带预测的关键;气水关系复杂,气水分异程度低,准确的含气性识别较困难。
为了解决深层致密气藏储层预测、裂缝检测及含气性识别的难题,中国石化西南油气分公司在川西地区进行了大规模的三维三分量地震勘探实践与攻关,仅在孝泉—新场—合兴场—丰谷地区,采集的三维三分量资料面积就超过1 600 km 2。
以上述资料为基础,针对深层须家河组四段、二段致密气藏,进行多波地震预测技术研究,以期推动该区的油气勘探工作。
1 储层主要特征川西地区深层须家河组从下至上发育须二段、川西深层致密气藏多波地震预测技术及应用张 虹 李曙光 徐天吉 郑公营中国石化西南油气分公司勘探开发研究院摘 要 四川盆地西部深层致密气藏普遍具有低孔、低渗透、非均质性的特征,气水关系复杂,油气高产对储层裂缝发育的依赖性强,常规地震技术手段难以解决其储层预测、裂缝检测及含气性识别难题。
为此,对川西地区实施三维三分量地震勘探,针对川西地区深层致密气藏预测难题,利用P 波叠前同时反演及纵横波叠后联合反演技术进行储层预测,利用纵波各向异性及转换波横波分裂技术进行裂缝预测,利用多波频率衰减属性及流体密度反演技术进行含气性预测。
通过对多波信息的挖掘利用,提高了储层预测反演的精度,增强了小—微尺度裂缝检测的能力,拓展了含气性检测的手段,实现川西深层致密气藏较全面的多波预测及应用,为川西深层致密气藏的勘探和开发提供了重要的支撑,也为其他地区的多波地震研究提供了经验。
关键词 多波 致密气藏 裂缝检测 各向异性 转换波 四川盆地西部DOI: 10.3787/j.issn.1000-0976.2019.S1.015作者简介:张虹,女,1966年生,教授级高级工程师;主要从事地震综合研究工作。
非常规天然气资源类型的地质特征【摘要】非常规天然气资源因其低碳、洁净、绿色、低污染的特性,已成为当今新能源发展的重要方向。
在全球范围内,非常规天然气资源丰富,开发利用技术日趋成熟,是常规天然气资源最现实的接替资源,在世界能源结构中扮演着重要的角色。
本文简要介绍非常规天然气中的几种。
【关键字】非常规天然气、致密砂岩气、煤层气、页岩气一、致密砂岩气1.概念致密砂岩气最原始的定义可以追溯到 1978 年,美国天然气政策法案将其定义为砂岩储层天然气的渗透率小于或等于 0.1×10-3μm2的气藏。
致密砂岩气又称致密气,通常是指低渗-特低渗砂岩储层中无自然产能,须通过大规模压裂或特殊采气工艺技术才能产出具有经济价值的天然气。
致密砂岩气藏大多分布在盆地中心或盆地的构造深部,呈大面积连续分布,是连续型气藏的一种重要类型。
2.成藏机理2.1成藏过程姜福杰等通过实验模拟,按照出气孔出水速率的变化特征将成藏过程划分为 3 个阶段:1)充注前期,即能量积累阶段。
此阶段为注气的初始阶段,此时的天然气无法进入致密砂体的孔隙内,只有当注入量达到一定程度,充注能量积累到足以突破毛细管阻力作用时,天然气才开始充注。
2)充注期,即成藏充注主阶段。
在此阶段,由于气体的膨胀力排驱孔隙水的作用,天然气在致密砂体内呈指状向上运移。
低渗砂体与“相对高渗砂体”的逐渐连通使出水速率明显增加。
低渗砂体内的气柱会随着出水速率的增加迅速萎缩并与“相对高渗砂体”分离,最终形成稳定的天然气分布范围。
3)充注后期,即气藏保存阶段。
在此阶段,天然气分布范围保持稳定,游离相的天然气直接从出水孔喷出,但并不出水,最终使整个致密砂体内形成统一的天然气聚集。
“后成型”致密气藏在致密化前后都具有天然气运移和聚集的条件,但大规模运移、聚集一般发生在储层致密化之前。
由于成岩早期储层物性相对较好,天然气的聚集分异与常规气藏的成藏模式相同,并且此时气藏的生、储、盖组合及气水分布特征均与常规气藏相似。