初中数学数据分析技巧及练习题含答案(1)

  • 格式:doc
  • 大小:238.00 KB
  • 文档页数:11

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学数据分析技巧及练习题含答案(1)

一、选择题

1.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()

A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定

C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定

【答案】B

【解析】

【分析】

根据方差的意义求解可得.

【详解】

∵乙的成绩方差<甲成绩的方差,

∴乙的成绩比甲的成绩稳定,

故选B.

【点睛】

本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.

2.一组数据3、2、1、2、2的众数,中位数,方差分别是:()

A.2,1,2 B.3,2,0.2 C.2,1,0.4 D.2,2,0.4

【答案】D

【解析】

【分析】

根据众数,中位数,方差的定义计算即可.

【详解】

将这组数据重新由小到大排列为:12223

、、、、

平均数为:12223

2

5

++++

=

2出现的次数最多,众数为:2中位数为:2

方差为:

()()()()()

22222

2

1222222232

0.4

5

s

-+-+-+-

=

+

-

=

故选:D

【点睛】

本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.

3.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖

果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不

变,则x

y

等于()

A.3 4 a b

B.

4

3

a

b

C.

3

4

b

a

D.

4

3

b

a

【答案】D

【解析】

【分析】

根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.【详解】

解:∵甲、乙两种糖果,原价分别为每千克a元和b元,

两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,

∴两种糖果的平均价格为:

ax by

x y

+

+

∵甲种糖果单价下降15%,乙种糖果单价上涨20%,

∴两种糖果的平均价格为:

1520

(1)(1)

100100

a x

b y

x y

-?++

+

∵按原比例混合的糖果单价恰好不变,

ax by

x y

+

+

1520

(1)(1)

100100

a x

b y

x y

-?++

+

整理,得

15ax=20by

4

3

x b

y a

=,

故选:D.

【点睛】

本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.4.小明参加射击比赛,10次射击的成绩如表:

若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩

()

A.平均数变大,方差不变B.平均数不变,方差不变

C.平均数不变,方差变大D.平均数不变,方差变小

【答案】D

【解析】

【分析】

首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.

【详解】

前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,

方差:S2=

1

10

[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,

再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,

方差:S2=

1

12

[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=

7

3

平均数不变,方差变小,故选:D.

【点睛】

此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1

n

[(x1﹣x)2+(x2﹣x)

2+…+(x n﹣x)2].

5.回忆位中数和众数的概念;

6.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差239

s .后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()

A.平均分不变,方差变大B.平均分不变,方差变小

C.平均分和方差都不变D.平均分和方差都改变

【答案】B

【解析】

【分析】

根据平均数,方差的定义计算即可.

【详解】

解:∵小亮的成绩和其他39人的平均数相同,都是90分,

∴该班40人的测试成绩的平均分为90分,方差变小,

故选:B.

【点睛】

本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.

7.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:

每天加工零件数的中位数和众数为( )

A.6,5 B.6,6 C.5,5 D.5,6【答案】A

【解析】

【分析】

根据众数、中位数的定义分别进行解答即可.

【详解】

由表知数据5出现了6次,次数最多,所以众数为5;

因为共有20个数据,

所以中位数为第10、11个数据的平均数,即中位数为66

2

+

=6,

故选A.

【点睛】

本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.

8.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()

A.6 B.5 C.4.5 D.3.5

【答案】C

【解析】

若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;

若众数为5,则数据为1、5、5、7,中位数为5,符合题意,

此时平均数为1557

4

+++

= 4.5;

若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;

故选C.

9.一组数据5,4,2,5,6的中位数是()

A.5 B.4 C.2 D.6【答案】A

【解析】

试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A .

考点:中位数;统计与概率.

10.甲、乙两位运动员在相同条件下各射击10次,成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10.根据上述信息,下列结论错误的是( ) A .甲、乙的众数分别是8,7 B .甲、乙的中位数分别是8,8 C .乙的成绩比较稳定 D .甲、乙的平均数分别是8,8

【答案】C 【解析】 【分析】

分别根据众数,平均数,中位数和方差的概念以及计算方法计算出结果,然后进行判断. 【详解】

在甲的10次射击成绩中8环出现次数最多,有4次,故众数是8,而乙的10次射击成绩中7环出现次数最多,故众数是7,因此选项A 说法正确,不符合题意;

甲的10次射击成绩按大小顺序排列为:5,7,7,8,8,8,8,9,10,10,故其中位数为:

8+8

=82

; 乙的10次射击成绩按大小顺序排列为:5,7,7,7,8,8,9,9,10,10,故其中位数为:8+8

=82

,所以甲、乙的中位数分别是8,8,故选项B 说法正确,不符合题意; 甲的平均数为:

5+72+84+9+102

=810

???;乙的平均数:

5+73+82+92+102

=810

????,所以,甲、乙的平均数分别是8,8,故选项D 不符合题

意;

甲组数据的方差为:

2222221

=

[(58)2(78)4(88)(98)2(108)]10

S -+?-+?-+-+?-甲=2; 乙组数据的方差为:

2222221

=

[(58)3(78)2(88)2(98)2(108)]10

S -+?-+?-+?-+?-乙=2.2;所以甲乙两组数据的方差不相等,甲的成绩更稳定,故选项C 符合题意.

故选:C. 【点睛】

本题考查了平均数、中位数、众数和方差的定义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.

11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:

设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2

S 乙,2

S 丁,则下列判断中

正确的是( )

A .x x =乙丁,22S S <乙丁

B .x x =乙丁,22

S S >乙丁 C .x x >乙丁,22

S S >乙丁

D .x x <乙丁,22

S S <乙丁

【答案】B 【解析】 【分析】

根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】

4563555260

555

x ++++=

=乙,

则()()()()()22222

2

1455563555555525560555S ??=

?-+-+-+-+-?

?乙39.6=,

5153585657

555

x ++++=

=丁,

则()()()()()22222

2

1515553555855565557555S ??=

?-+-+-+-+-?

?丁 6.8=,

所以x x =乙丁,22

S S >乙丁,

故选B . 【点睛】

本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差

()()()

2222

121n S x x x x x x n ?

?=-+-+???+-????,它反映了一组数据的波动大小,方差越

大,波动性越大,反之也成立.

12.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:

该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )

A.平均数B.方差C.中位数D.众数

【答案】D

【解析】

【分析】

平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.

【详解】

由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.

故选D.

【点睛】

此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.

13.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()

A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6

【答案】D

【解析】

【分析】

根据平均数、中位数、众数以及方差的定义判断各选项正误即可.

【详解】

A、数据中5出现2次,所以众数为5,此选项正确;

B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;

C、平均数为(7+5+3+5+10)÷5=6,此选项正确;

D、方差为1

5

×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;

故选:D.

【点睛】

本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.

14.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:

则下列叙述正确的是()

A.这些运动员成绩的众数是 5

B.这些运动员成绩的中位数是 2.30

C.这些运动员的平均成绩是 2.25

D.这些运动员成绩的方差是 0.0725

【答案】B

【解析】

【分析】

根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.

【详解】

由表格中数据可得:

A、这些运动员成绩的众数是2.35,错误;

B、这些运动员成绩的中位数是2.30,正确;

C、这些运动员的平均成绩是 2.30,错误;

D、这些运动员成绩的方差不是0.0725,错误;

故选B.

【点睛】

考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.

15.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间

..的中位数和众数分别是()

A.9,8 B.9,9 C.9.5,9 D.9.5,8

【解析】

【分析】

根据中位数和众数的定义进行解答即可.

【详解】

由表格,得该班学生一周读书时间的中位数和众数分别是9,8.

【点睛】

本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.

16.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()

A.96分,98分B.97分,98分C.98分,96分D.97分,96分

【答案】A

【解析】

【分析】

利用众数和中位数的定义求解.

【详解】

98出现了9次,出现次数最多,所以数据的众数为98分;

共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.

故选A.

【点睛】

本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.

17.一组数据-2,3,0,2,3的中位数和众数分别是()

A.0,3 B.2,2 C.3,3 D.2,3

【答案】D

【解析】

【分析】

根据中位数和众数的定义解答即可.

【详解】

将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2;在这一组数据中3是出现次数最多的,故众数是3.

【点睛】

本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.

18.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()

A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4

【答案】A

【解析】

【分析】

根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.

【详解】

∵数据2,x,4,8的平均数是4,∴这组数的平均数为248

4

x

+++

=4,解得:x=2;

所以这组数据是:2,2,4,8,则中位数是24

2

+

=3.

∵2在这组数据中出现2次,出现的次数最多,∴众数是2.

故选A.

【点睛】

本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.

19.下列说法正确的是( )

A.打开电视机,正在播放“张家界新闻”是必然事件

B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨

C.两组数据平均数相同,则方差大的更稳定

D.数据5,6,7,7,8的中位数与众数均为7

【答案】D

【解析】

【分析】

根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】

A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;

B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;

C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;

D,数据5,6,7,7,8的中位数与众数均为7,正确,

故选D.

本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.

20.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8

【答案】C

【解析】

【分析】

+=,由众数是3知a、b中一个数据为3、另一个数据为先根据平均数为5得出a b10

7,再根据中位数的定义求解可得.

【详解】

解:Q数据3,a,4,b,8的平均数是5,

+=,

3a4b825

∴++++=,即a b10

又众数是3,

∴、b中一个数据为3、另一个数据为7,

a

则数据从小到大为3、3、4、7、8,

∴这组数据的中位数为4,

故选C.

【点睛】

此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.