当前位置:文档之家› 酚类化学

酚类化学

酚类化学
酚类化学

苯环

“羟”是化学家发明的字,以“氢”与“氧”二字各取一部份造出。读音则是“氢”的声母(qīng)加上“氧”的韵母及声调(yǎng)利用反切的方式合成一个字。因为j/q/x后面必须接i或ü,所以拼音作qiǎng。

酚类化合物是指芳香烃中苯环上的氢原子被羟基取代所生成的化合物,是芳烃的含羟基衍生物,根据其分子所含的羟基数目可分为一元酚和多元酚。

概述编辑

"酚类化合物" 英文对照

phenolic compound;

"酚类化合物" 在学术文献中的解释

根据其挥发性分挥发性酚和不挥发性酚。自然界中存在的酚类化合物大部分是植物生命活动的结果,植物体内所含的酚称内源性酚,其余称外源性酚。

酚类化合物都具有特殊的芳香气味,均呈弱酸性,在环境中易被氧化。

内源性酚编辑

研究表明,有些具有抗氧化活性的生物活性化合物对人体的健康状况起到有益的作用。

在这些生物活性化合物中,已被鉴定出的有酚类衍生物。许多饮料中都含有这些化合物,如葡萄酒、茶、咖啡等等。

酚类衍生物是含有酚的化合物,这是化合物庞大的复合家族。由于其羟基取代的高反应性和其吞噬自由基的能力,这些化合物具有抗氧化活性的潜力。人们可以把这些化合物分为两类:类黄酮化合物(果皮、籽、梗的提取物)和非类黄酮化合物(细胞液泡的提取物)。

类黄酮化合物组成低分子量的多酚基;它们可再分为黄酮、黄酮醇和黄烷酮。类黄酮化合物具有多种生物作用,由于其螯合的特性,已被证实具有抗炎症、抗变态反应、抗病毒和抗癌症特性。

酚类化合物存在于植物中,并在对其加工的各个阶段中,经受一系列反应而形成可改变饮料质量特性的复合酚类化合物。酚类成分同样会影响饮料质量特性的变化,如口味、颜色、收敛性等等。许多葡萄种植者已经开始利用酚类成分评定各种葡萄酒的制作方法对成品质量的影响。

饮料是类黄酮化合物和其他酚类衍生物的丰富来源。这些物质被看做是重要的抗氧化物的营养源。一些研究表明:人体对维生素和其他抗氧化物吸收的增大可促进人体抗自由基侵蚀的氧化保护。

人体存在着各种各样的可在血管中循环并具有生物作用的脂肪运载蛋白质或脂蛋白。

由于自由基和其结构改变的氧化结果,低密度脂蛋白(LDL)与心脏病有直接关系。低密度脂蛋白(LDL)沉积在血管的纤维壁上并引起血液的其他成分聚集,就造成了血流量受限和导致心脏病的发生。而饮料中的抗氧化成分可减少脂类氧化和形成抗心脏病的保护。美国加利福尼亚大学的研究表明:红葡萄酒中所含的酚类化合物具有高于维生素E的抗氧化的保护潜力,并可有效地减少由于动脉变狭窄而造成的梗塞。研究还表明:酚类化合物同样可防止血小板凝块的形成;不同类型的酚类衍生物对血小板起到不同的作用。

酚类化合物同样可以抑制白血病细胞的生长,其抗增生的功效相当于甚至大于传统抗癌因素。类黄酮化合物通过其非毒机理,也可能通过DNA、RNA的转让和通过细胞中蛋白质的合成来抑制白血病细胞。

外源性酚编辑

酚类化合物的毒性以苯酚为最大,通常含酚废水中又以苯酚和甲酚的含量最高。目前环境监测常以苯酚和甲酚等挥发性酚作为污染指标。

环境中的酚污染主要指酚类化合物对水体的污染,含酚废水是当今世界上危害大、污染范围广的工业废水之一,是环境中水污染的重要来源。在许多工业领域诸如煤气、焦化、炼油、冶金、机械制造、玻璃、石油化工、木材纤维、化学有机合成工业、塑料、医药、农

药、油漆等工业排出的废水中均含有酚。这些废水若不经过处理,直接排放、灌溉农田则可污染大气、水、土壤和食品。

酚是一种中等强度的化学毒物,与细胞原浆中的蛋白质发生化学反应。低浓度时使细胞变性,高浓度时使蛋白质凝固。酚类化合物可经皮肤粘膜、呼吸道及消化道进入体内。低浓度可引起蓄积性慢性中毒,高浓度可引起急性中毒以致昏迷死亡。一般来讲,酚进入人体后机体通过自身的解毒功能使之转化为无毒物质而排出体外。只有当摄入量超过解毒功能时才有蓄积而导致慢性中毒,表现为头晕、头痛、精神不安、食欲不振、呕吐腹泻等症状。

由于酚的用途极为广泛,预防其污染的工作也很困难。在生产和使用酚的工厂必须建立严格的操作制度,谨防酚的外泻。同时要搞好废水的回收利用和生物氧化处理,严禁含酚废水排入渗井、渗坑,以免污染地下水。

结构

flavonoid

盐酸-镁粉还原反应

取药材粉末少许与试管中,用乙醇或甲醇数毫升温浸提取,取提取液加镁粉少许振摇,滴加几滴浓盐酸,1-2min内即出现颜色。大多黄酮醇、二氢黄酮及二氢黄酮醇类显红-紫红色,黄酮类显橙色,异黄酮及查尔酮类无变化。如芦丁的盐酸镁粉反应中溶液由黄色变红色。

其他还原反应还有:盐酸-锌粉反应,黄酮、黄酮醇类常不显色,只有二氢黄酮醇类可被锌粉还原呈深红色;钠-汞齐反应,黄酮类成分可产生黄、橙、红等色;四氢硼钠(钾)反应,仅二氢黄酮醇类可被四氢硼钠还原呈红色,其他黄酮类不反应。

8食品中辛基酚等5种酚类物质的测定

附件2 食品中辛基酚等5种酚类物质的测定 BJS 201913 1 范围 本标准规定了食品中辛基酚、正辛基酚、壬基酚、正壬基酚、双酚A的液相色谱-串联质谱测定方法。 本标准适用于婴儿配方食品、畜肉、禽蛋、水产品、罐头食品、植物油中辛基酚、正辛基酚、壬基酚、正壬基酚、双酚A的测定。 2原理 试样中加入同位素内标后,经乙腈提取,离心,取上清液经固相萃取柱净化,采用液相色谱-串联质谱仪测定,内标法定量。 3试剂和材料 除另行规定外,本实验所用试剂均为分析纯,水为GB/T 6682规定的一级水。 3.1 试剂 3.1.1 甲醇(CH3OH):质谱级。 3.1.2 乙腈(CH3CN):质谱级。 3.1.3 氨水(NH4OH):色谱级。 3.2 试剂配制 0.05% 氨水溶液(V/V):取氨水(3.1.3)0.5mL用水稀释至1000 mL。 3.3 标准品 辛基酚、正辛基酚、壬基酚、正壬基酚、双酚A标准物质和辛基酚-13C6、正辛基酚-D17、

壬基酚-13C6、正壬基酚-D4、双酚A -D4同位素内标的中文名称、英文名称、CAS登录号、分子式、相对分子量见附录A表A.1,纯度≥98%。 3.4 标准溶液配制 3.4.1标准储备溶液(100 mg/L):分别称取辛基酚、正辛基酚、壬基酚、正壬基酚和双酚A标准物质(3.3)10 mg(精确至0.000 1 g),用甲醇(3.1.1)溶解,并转移至100 mL容量瓶中,定容至刻度,标准储备液浓度为100 mg/L。溶液转移至试剂瓶中,贮存于-20 ℃冰箱中,有效期12个月。 3.4.2混合标准中间溶液(1 mg/L):分别准确吸取辛基酚、正辛基酚、壬基酚、正壬基酚和双酚A标准储备液(100 mg/L)(3.4.1) 1 mL至100mL容量瓶中,用甲醇定容至刻度,摇匀,制成1 mg/L的混合标准中间溶液,溶液转移至试剂瓶中,置于4 ℃冰箱中保存,有效期3个月。3.4.3同位素内标标准储备溶液(100 mg/L):分别称取辛基酚-13C6、正辛基酚-D17、壬基酚-13C6、正壬基酚-D4、双酚A -D4同位素内标(3.3)10 mg(精确至0.000 1 g),用甲醇(3.1.1)溶解,并转移至100 mL容量瓶中,定容至刻度,标准储备液浓度为100 mg/L。溶液转移至试剂瓶中,贮存于-20 ℃冰箱中,有效期12个月。 3.4.4同位素内标混合标准中间溶液(1 mg/L):分别准确吸取辛基酚-13C6、正辛基酚-D17、壬基酚-13C6、正壬基酚-D4、双酚A -D4同位素内标标准储备液(100 mg/L)(3.4.3)各1 mL至100 mL 容量瓶中,用甲醇定容至刻度,摇匀,制成1 mg/L的混合标准中间溶液,溶液转移至试剂瓶中,置于4 ℃冰箱中保存,有效期3个月。 3.4.5 同位素内标混合标准工作液(100 μg/L):分别准确吸取同位素内标标准储备液(1 mg/L)(3.4.4)各1 mL至10mL容量瓶中,用甲醇定容至刻度,摇匀,制成100 μg /L的混合标准工作液。临用时配制。 3.4.6混合标准工作溶液:分别准确吸取混合标准中间液(1 mg/L)(3.4.2)适量,加入同位素内标混合标准中间溶液(1 mg/L)(3.4.4),使辛基酚、正辛基酚、壬基酚、正壬基酚和双酚A浓度

危险化学品分类

一、危险化学品的概念 化学品中具有易燃、易爆、毒害、腐蚀、放射性等危险特性,在生产、储存、运输、使用和废弃物处置等过程中容易造成人身伤亡、财产毁损、污染环境的均属危险化学品。 二、危险化学品的分类原则 险化学品目前常见并用途较广的约有数千种,其性质各不相同,每一种危险化学品往往具有多种危险性,但是在多种危险性中,必有一种主要的即对人类危害最大的危险性。因此在对危险化学品分类时,掌握“择重归类”的原则,即根据该化学品的主要危险性来进行分类。 危险化学品的分类 按我国目前已公布的法规、标准,有三个国标:GB6944-86《危险货物分类和品名编号》、GB12268-90《危险货物品名表》、GB13690-92《常用危险化学品分类及标志》、将危险化学品分为八大类,每一类又分为若干项。即第一类:爆炸品,爆炸品指在外界作用下(如受热、摩擦、撞击等)能发生剧烈的化学反应,瞬间产生大量的气体和热量,使周围的压力急剧上升,发生爆炸,对周围环境、设备、人员造成破坏和伤害的物品。爆炸品在国家标准中分5项,其中有3项包含危险化学品,另外2项专指弹药等。 第1项:具有整体爆炸危险的物质和物品,如高氯酸。 第3项:具有燃烧危险和较小爆炸危险的物质和物品,如二亚硝基苯。 第4项:无重大危险的爆炸物质和物品,如四唑并-1-乙酸。 第二类:压缩气体和液化气体,指压缩的、液化的或加压溶解的气体。这类物品当受热、撞击或强烈震动时,容器内压力急剧增大,致使容器破裂,物质泄漏、爆炸等。它分3项。 第1项:易燃气体,如氨气、一氧化碳、甲烷等。

第2项:不燃气体(包括助燃气体),如氮气、氧气等。 第3项:有毒气体,如氯(液化的)、氨(液化的)等。 第三类:易燃液体,本类物质在常温下易挥发,其蒸气与空气混合能形成爆炸性混合物。它分3项。 第1项:低闪点液体,即闪点低于-18℃的液体,如乙醛、丙酮等。 第2项:中闪点液体,即闪点在-18℃—<23℃的液体,如苯、甲醇等。 第3项,高闪点液体,即闪点在23℃以上的液体,如环辛烷、氯苯、苯甲醚等。 第四类:易燃固体、自燃物品和遇湿易燃物品,这类物品易于引起火灾,按它的燃烧特性分为3项。 第1项:易燃固体,指燃点低,对热、撞击、摩擦敏感,易被外部火源点燃,迅速燃烧,能散发有毒烟雾或有毒气体的固体。如红磷、硫磺等。 第2项:自燃物品,指自燃点低,在空气中易于发生氧化反应放出热量,而自行燃烧的物品。如黄磷、三氯化钛等。 第3项:遇湿易燃物品,指遇水或受潮时,发生剧烈反应,放出大量易燃气体和热量的物品,有的不需明火,就能燃烧或爆炸。如金属钠、氢化钾等第五类:氧化剂和有机过氧化物,这类物品具有强氧化性,易引起燃烧、爆炸,按其组成分为2项。 第1项:氧化剂,指具有强氧化性,易分解放出氧和热量的物质,对热、震动和摩擦比较敏感。如氯酸铵、高锰酸钾等。 第2项:有机过氧化物,指分子结构中含有过氧键的有机物,其本身是易燃易爆、极易分解,对热、震动和摩擦极为敏感。如过氧化苯甲酰、过氧化甲乙酮等。 第六类:毒害品,指进入人(动物)肌体后,累积达到一定的量能与体液

酚类化合物

酚类化合物 (一)主要化合物及其食物来源 酚类化合物包括了一类有益健康的化合物,其共同特性是分子中含有酚的基团,因而具有较强的抗氧化功能。根据分子组成的不同,植物性食物中的酚类化合物分为简单酚、酚酸、羟基肉桂酸衍生物及类黄酮。常见的酚类化合物有: 1.简单酚又称一元苯酚,如水果中分离出的甲酚、芝麻酚、桔酸(gallicacid)。 2.酚酸主要有香豆酸(coumaricacid)、咖啡酸(caffeicacid)、阿魏酸(ferulicacid) 和绿原酸(chlorogenicacid)等。 3.类黄酮(flavonoids),又称黄酮类化合物,包括黄酮、槲皮素、黄酮醇、黄烷醇、黄烷酮等。 4.异黄酮异黄酮广泛存在于豆科植物中,黄豆中所含异黄酮有:染料木苷元(三羟基异黄酮,又称金雀异黄素)、大豆苷元(二羟基异黄酮)、大豆苷、染料木苷、大豆黄素苷以及上述三种苷的丙二酰化合物。 5.茶多酚主要由5种单体构成,分别是表没食子儿茶素一没食子酸酯(EGCG)、表没食子儿茶素(EGC)、表儿茶素一没食子酸酯(ECG)、儿茶素(CA)和表儿茶素(EC)。其中,EGCG的含量最高,被认为是茶多酚生物学活性的主要来源。(二)生物学作用 酚类化合物与人体健康关系的研究多集中在槲皮素、大豆异黄酮、茶多酚的生物学作用方面。现将其主要的保健功能综述如下: 1.抗氧化作用植物中所含的多酚化合物是重要的抗氧化剂,可以保护低密度脂蛋白免受过氧化,从而防止动脉粥样硬化和体内过氧化反应的致癌作用。 2.血脂调节功能大豆异黄酮可以降低胆固醇,含这种成分的大豆蛋白可使动物的低密度脂蛋白和极低密度脂蛋白以及胆固醇降低30%~40%。茶多酚可减少肠内胆固醇的吸收,降低血液胆固醇,降低体脂和肝内脂肪聚积。 3.血管保护作用红葡萄酒中的多酚化合物可抑制血小板的活性,从而抑制血栓的形成,并可使已形成的血栓血小板解聚;还可促进血管内皮细胞分泌产生舒血管因子,减轻栓塞性心血管病的发生。因此,红葡萄酒所含这类化合物成分的摄入量与冠心病、心肌梗死等的发病率呈负相关关系。

受阻酚类抗氧化剂.doc

抗氧化剂 受阻酚类CHEMNOX 1010受阻酚类CHEMNOX 1076受阻酚类CHEMNOX 1098 熔点:110-125℃外观:白色粉末熔点:50-55℃外观:白色粉末熔点:156-161℃外观:白色粉末 适用:各类高分子﹑弹性体﹑胶粘剂 ﹑涂料等 优势:最常用的抗氧剂,价格低廉 适用:聚烯烃﹑工程塑料﹑PU﹑高分 子聚合弹性体﹑胶粘剂等 优势:经济性佳的抗氧剂 适用:PA﹑PU﹑聚酯﹑聚醋酸乙烯 优势:低挥发性﹑耐铜害﹑对PA效果 好 受阻酚类CHEMNOX 1024硫代酯类CHEMNOX DLTP 硫代酯类CHEMNOX DSTP 熔点:224-229℃外观:白色粉末熔点:224-229℃外观:白色粉末熔点:64-69℃外观:白色粉末 适用:PE电缆﹑热塑性高分子﹑SBR 优势:优秀的抗氧化性及优异的金属 离子络合作用 适用:聚烯烃﹑PU﹑ABS﹑聚酰胺弹 性体等 优势:相容性﹑耐热持久性好;挥发 性低,对流体熔融流动性好 适用:聚烯烃﹑PU﹑ABS﹑聚酰胺弹 性体等 优势:相容性﹑耐热持久性好;挥发性 低 亚磷酸酯类CHEMNOX 168 亚磷酸酯类CHEMNOX626 亚磷酸酯类CHEMNOX TP80 熔点:183-186℃外观:白色粉末熔点:160-180℃外观:白色粉末熔点:外观:无色液体适用:聚烯烃﹑工程塑料﹑聚酯﹑高 分子聚合弹性体﹑胶粘剂等 优势:价格低,耐水解好 适用:聚烯烃﹑PC﹑ABS﹑PVC 优势:很好的颜色保护,抗金属离子 适用:PU泡棉﹑皮革﹑涂料 优势:对PU泡棉有更好的耐热氧 化及改善红心的作用 复合型CHEMNOX B225 复合型CHEMNOX B900 复合型CHEMNOX B561 熔点:外观:白色粉末熔点:外观:白色粉末熔点:外观:白色粉末 适用:聚烯烃﹑工程塑料﹑聚氨酯﹑ 高分子聚合弹性体﹑胶粘剂等 优势:相容性好﹑耐热性好﹑挥发低 适用:聚烯烃﹑PU﹑ABS﹑PVC﹑ EV A等 优势:相容性好﹑耐热性好﹑挥发低 适用:聚烯烃﹑PU﹑ABS﹑PVC﹑ EV A等 优势:相容性好﹑耐热性好

植物次生代谢物质种类及结构

植物次生代谢物质种类及结构 次生代谢产物的化学结构差异很大,通常归为萜类化合物(萜类、甾体类)、酚类化合物(苯丙烷类、醌类、黄酮类、鞣质)、含氮化合物(生物碱、氰苷、芥子油苷、非蛋白氨基酸)和其他次生代谢产物四大类。 (1)酚类 广义的酚类分为黄酮类、简单酚类和黄酮类。黄酮类是以一大类苯色同环为基础,具有C3、C6、CH6结构的酚类化合物,其生物合成的前体是苯丙氨酸和乌龙基辅酶A。根据在B环上的连接位置的不同可分为2-苯基衍生物(黄酮、黄酮醇类)3-苯基衍生物(异黄酮)和4-苯基衍生物(新黄酮),很多黄酮类成分用于心血管疾病的治疗,如槐树槐米中的芦丁是用于治疗毛细血管脆性引起的出血症及辅助治疗高血压,许多异黄酮是植保素。 简单酚类是含有一个被烃基取代苯环的化合物,某些成分有调节植物生长的作用,有些是植保素的重要成分。 醌类化合物是有苯式多环烃氢化合物(如萘、蒽等)的芳香二氧化物。醌类的存在是植物成色的主要原因之一,有些醌类是抗菌、抗癌的主要成分,如胡桃醌和紫草宁。 举例 (1)苦荞麦中含有黄酮类物质,主要成分是芦丁。芦丁含量占总黄酮的70~90%,芦丁又名芸香甙、维生素P,具有降低毛细血管脆性和异常通透性,改善微循环的作用,在临床上主要用于糖尿病、高血压、高血糖等的辅助治疗。而芦丁在其它谷物中几乎没有。 (2)胡桃醌作为氢化胡桃醌(三羟基萘)的苷存在于胡桃科植物胡桃及其同属植物黑核桃的未成熟的外果皮(青皮)中。可从天然物质中分离,也可化学合成。桃醌具有止血和抗菌活性,也曾用于治疗湿疹、牛皮和发癣。 (2)萜类化合物

萜类化合物是由异戊二烯单元(5碳)组成的化合物,通过异戊二烯途径(又称甲羟戊酸途径),由2个、3个或4个异戊二烯单元分别组成产生的单萜、倍半萜和二萜称为低等萜类。单萜和倍半萜是植物挥发油的主要成分,也是香料的主要成分,许多倍半萜和二萜化合物是植保素。一些萜类成分具有重要的药用价值,如倍半萜成分青蒿素是治疗疟疾的最佳药物,抗癌药物紫杉醇是二萜类生物碱,存在于裸子植物红豆杉中。 甾类化合物和三萜的合成前体都是含30个碳原子的鲨烯,高等萜类。甾类化合物由1个环戊烷并多氢菲母核和3个侧链基本骨架组成植物体内三萜皂苷元和甾体皂苷元分别与糖类结合形成三萜皂苷如人参皂苷和薯蓣皂苷等。 举例 (1)青蒿素来源主要是从青蒿中直接提取得到;或提取青蒿中含量较高的青蒿酸,然后半合成得到。除青蒿外,尚未发现含有青蒿素的其它天然植物资源。主要用于间日疟、恶性疟的症状控制,以及耐氯喹虫株的治疗,也可用以治疗凶险型恶性疟,如脑型、黄疸型等。亦可用以治疗系统性红斑狼疮与盘状红斑狼疮。 (2)紫杉醇是红豆杉属植物中的一种复杂的次生代谢产物, 也是目前所了解的惟一一种可以促进微管聚合和稳定已聚合微管的药物。通过Ⅱ-Ⅲ临床研究,紫杉醇主要适用于卵巢癌和乳腺癌,对肺癌、大肠癌、黑色素瘤、头颈部癌、淋巴瘤、脑瘤也都有一定疗效。 (3)含氮有机物 含氮有机化合物中最大的一类次生代谢物质是生物碱,是一类含氮的碱性天然产物,已知的达5500种以上。按其生源途径可分为真生物碱、伪生物碱和原生物碱。真生物碱和原生物碱都是氨基酸衍生物,但后者不含杂氮环。伪生物碱不是来自氨基酸,而是来自萜类、嘌呤和甾类化合物。许多生物碱是药用植物的有效成分,如小檗碱、莨菪碱等,还有些是植保素。 含氮有机化合物还有胺类、是NH3中的氢的不同取代产物;非蛋白氨基酸,即蛋白质氨基酸类似物;生氰苷,即植物生氰过程中产生HCN的前体物质如苦杏仁苷和亚麻苦苷。 举例

九类危险品分类等级及危险标识

第1类:炸药 危险标签名称/分类货物IMP 代码/描述/评论或例子 爆炸品类别1.1 REX 具有整体爆炸危险的物质和物品 这些炸药通常被禁止使用空运 (例如∶TNT 、炸药或鱼雷等。) 爆炸品类别1.2 REX 具有整体爆炸危险的物质和物品 这些炸药通常被禁止使用空运 (例如∶TNT 、炸药或鱼雷等。) 爆炸品类别1.3 REX (RCX RGX 当被允许) 具有燃烧危险和较小爆炸或较小抛射危险、或两 者兼有,但无整体爆炸危险的物质和物品 这些炸药通常被禁止使用空运 (例如∶TNT 、炸药或鱼雷等。) 爆炸品类别1.4 REX 无重大危险的爆炸物质和物品 这些炸药通常被禁止使用空运 (例如∶TNT 、炸药或鱼雷等。) 爆炸品类别1.5 REX 具有大规模爆炸性,但极不敏感的物品 这些炸药通常被禁止使用空运 (例如∶TNT 、炸药或鱼雷等。) 爆炸品类别1.6 REX 极度不敏感的物品及没有大规模的爆炸性物品 这些炸药通常被禁止使用空运 (例如∶TNT 、炸药或鱼雷等。)

爆炸品RXB RXC RXD RXE RXG 兼容性小组任务根据DGR 表3.1.A 遇险信号、保险丝发火器, 等。 爆炸品RXB RXC RXD RXE RXG 兼容性小组任务根据DGR 表3.1.A 遇险信号、保险丝发火器, 等。 第2类:气体 危险标签名称/分类货物IMP 代码/描述/评论或例子 易燃气体类别 2.1 RFG 利用不同的气体在某些比例下混合而形 成一个易燃的混合物的压缩气体。 丁烷、氢、丙烷、乙炔、打火机 不易燃的无毒气体类别 2.2 RNG RCL> 任何不易燃, 无毒的压缩气体 二氧化碳、氖、灭火器或低温液化气体例如液化氮气或氦气 毒气类别 2.3 RPG具毒性或腐蚀性,对人的健康造成危险的气 体多数毒气被禁止为使用空运;有些被允许,例如低毒性喷 雾剂, 催泪弹等设备。 第3类:易燃液体 危险标签名称/分类货物IMP 代码/描述/评论或例子 易燃液体RFL 任何液体的闭杯式闪点闪点测定在60.5.C 或以下。 某些油漆、油漆、酒精、某些胶黏剂、丙酮、汽油等。 第4类:易燃的固体

天然酚类化合物及其保健作用

天然酚类化合物及其保健作用 酚类化合物是一族结构中含有酚的化合物,广泛存在于植物食品中,由于其羟基取代的高反应性和吞噬自由基的能力而有很好的抗氧化活性。研究发现多酚类化合物可以延缓肿瘤的发作,抑制肿瘤的形成,提高认知功能,抑制低度脂蛋白LDL氧化及抑制血小板凝集等功能。这些功能都与其抗氧化性能有关。 人体内的自由基反应对人的病理、衰老机理的研究发现反应性氧(ROS,包括超氧阴离子O2-,羟基自由基·OH、过氧化物自由基ROO·和烷氧基自由基RO·等)在体内起着很不利的作用,与机体老化及许多疾病有关。ROS在体内主要氧化脂肪、蛋白、核酸等细胞组成成分,进而引起一系列生理、病理反应。 脂质氧化反应是一个自由基介导的链反应,由高反应活性自由基如·OH从多不饱和脂肪酸双键相邻的亚甲基吸收-活泼氢而引发(反应式1)。 脂肪酸烷基自由基R·很快与O2反应形成过氧化自由基ROO·(反应式2),ROO·可从脂肪酸继续吸收活泼氢,使脂质氧化反应继续进行(反应式3)。 低密度脂蛋白LDL是人体血浆中主要的携带胆固醇的蛋白质,除富含胆固醇外,还含大量的亚油酸、花生四烯酸等不饱和脂肪酸,这些成分极易被氧自由基氧化而形成过氧化物。被氧化的LDL不能结合到LDL受体上,而是与巨噬细胞清除受体结合,形成泡沫细胞,引起动脉粥样硬化等心血管疾病。 相对于脂质而言,蛋白质和核酸较不易受自由基的攻击。蛋白质的氨基酸组成与蛋白质对ROS的敏感性有很大关系。 ROS对蛋白质的改性作用会影响其被细胞内蛋白水解酶的降解。ROS引起的蛋白质氧化可能是许多炎症反应的原因。 由氧化反应引起的核酸的改性则明显改变细胞功能,有潜在致癌性。ROS攻击DNA会引起广泛的DNA损伤,包括碱基的修饰,产生无碱基位点、碱基删除、移码、DNA解链、DNA-蛋白质交联及染色体重排等。大量的研究认为ROS在癌症的引发和发展中起了重要的作用。 多酚类化合物的抗氧化作用机理 机体有多种抗氧化防御系统,抗氧化剂主要是通过终止自由基链反应而清除自由基保护机体的。α-育酚(TOH)是生物膜中维持稳定性不可缺少的抗氧化成分,以此为例说明抗氧化剂的作用机理:当TOH的酚基团遇到过氧自由基ROO·时,反应形成生育酚自由基TO·和氢过氧化物。 该反应速率常数k3为8×104mol/s。因为链传递反应速度常数k2约10~102mol/s,远低于k3,故TOH与ROO·自由基反应的速度比RH与ROO·反应速度快约104倍。因此仅需少量即可起到有效的终止自由基链反应作用。 酚类是极好的氢或电子供体,由于形成的酚类游离基中间体的共振非定域作用和没有适合分子氧进攻的位置,比较稳定,不会引发新的游离基或者由于链反应而被迅速氧化,所以是很好的抗氧化剂。 植物中存在的天然酚类化合物谷物种子大米是亚洲主要的谷物食品,水稻壳甲醇提取物的抗氧化性能很强,从中分离并鉴定出了一种抗氧化成分异牡荆黄基类黄酮,具有独特的C -糖基结构,抗氧化能力与生育酚相当。 黑米种子即使经过长时间储存仍维持发芽力,故推测其色素物质可能有抗氧化作用。经大规模分离纯化,分离出了抗氧化色素花青素-3-0-β-D-葡萄糖苷(C3G)及dele phinidin-3-0-β-D-葡萄糖苷及花葵素-3-0-β-D-葡萄糖苷,这三种花色素型抗氧化剂在酸性条件下均呈强抗氧化活性,而C3G在中性和碱性条件下也有抗氧化性。在其

酚类化合物

酚类化合物是一类具有大而复杂基因的化合物。从化学上讲,酚是苯环(又称芳香环)上联有一个或多个羟基的化合物。多酚物质(polyphenols)是含有酚官能基团的物质,是构成植物固体部分的主要物质[5,6]。按分子质量可分为单宁化合物(相对分子量500~3000)和非单宁化合物(相对分子量<500或>3000)[3]。酚类物质是葡萄中重要的次生代谢产物,与葡萄的抗病性、采后生理、贮存、保鲜以及与葡萄汁(酒)的色泽、风味等品质指标密切相关。德、法等国在探讨酚类物质与葡萄酒的品质关系方面已经开展了大量工作,并取得了不少研究成果,国内对酚类物质的研究尚处于起步阶段[18]。葡萄与葡萄酒中常见的酚类按其化学结构可分为两大类:类黄酮和非类黄酮[1]。不同葡萄品种之间酚的含量及类型差异很大,相同品种葡萄及其酿制的葡萄酒中酚的构成及含量也会受地域、栽培条件、气候条件、成熟度,酿造工艺等多种因素的影响。 1 非类黄酮 酚酸类化合物(phenolic acids) 这类化合物具有一个苯核,多为对羟基苯甲酸和对羟基苯丙烯酸(肉桂酸)的衍生物[5,6]。主要有对羟基苯甲酸、香草酸、咖啡酸和香豆酸4种,此外还有没食子酸、原儿茶酸、阿魏酸、绿原酸、芥子酸等。 葡萄浆果中20%~25%的酚酸都以游离态的形式存在。在葡萄酒中,酚酸可与花色素和酒石酸相结合[2,5,6]。这些物质结构较简单,主要贮存在葡萄细胞中的液泡中,破碎时容易被浸出。含量最高的是羟基肉桂酸的衍生物,一般与糖、有机酸以及各种醇以酯化形式存在[1]。葡萄品种成熟条件不同,葡萄浆果中酚酸的总量和游离态酚酸的比例也不相同。 2 类黄酮 黄酮类化合物是自然界存在的酚类化合物的最大类别之一。而且大部分单宁也是由黄酮类化合物转变来的。黄酮类化合物的母核总是由15个碳原子组成,它们排列成C6-C3-C6的构型。也就是说,两个芳香环由一个成环或不成环的C3单元联结起来。这三个环分别标为A、B、C。葡萄酒中最常见的类黄酮物质有黄酮醇,儿茶素,红葡萄酒中还有花色苷等[1,11]。类黄酮主要来自于葡萄皮,葡萄籽及果梗,在红葡萄酒中占多酚物质的85%以上,在白葡萄酒中含量一般不超过总酚的20%,因此类黄酮对红葡萄酒的影响要远远大于对白葡萄酒的作用[1]。 2.1 黄酮醇类化合物(flavonols) 槲皮酮(栎精)R:HR':H 莰非醇(山奈醇):R:OH R':H 杨梅黄酮:R:OH R:OH 图1 黄酮醇类化合物结构 分子结构中含有“黄烷构架”。主要有写槲皮酮(栎精,Quercetin)、莰非醇(山奈醇,Kaempferal)、和杨梅黄酮(Myricetin)(见图1)。

受阻酚类抗氧剂作用及发展方向

受阻酚类抗氧剂作用及发展方向 受阻酚类抗氧剂多用于塑料制品,与亚磷酸酯、硫醚等辅助抗氧剂显示协间效果。有代表性的品种有2,8一二叔丁基-4一甲基苯酚、抗氧剂lU1U、抗氧剂lU6等。下面随小编去了解下受阻酚类抗氧剂吧! 一、受阻酚类抗氧剂作用 抗氧剂之间复配使用常发生2种效应:协同效应和反协同效应。合并使用2种或2种以上的抗氧剂,若比单独使用一种的效果好,称为协同效应;若比单独使用一种的效果差,称为反协同效应。协同作用包括分子间的协同和分子内的协同作用,其中分子间的协同又分为以下2种:(1)均协同作用(ho— mo-synergism),是指抗氧化机理相同的抗氧剂之间的协同作用;(2)非均协同作用(heter-synergism),是指抗氧化机理不同的抗氧剂之间的协同作用。分子内的协同又称为自协同作用(auto—synergism),它是指一种抗氧剂含有多个官能团,彼此间有协同作用。 二、受阻酚类抗氧剂发展方向 1高相对分子质量化 聚合物材料通常在高温条件下加工与应用,因此要求抗氧剂必须具有良好的热稳定性。由于高分子化合物具有挥发性低、耐抽提,尤其是耐较高温等优点,所以用增加抗氧剂的相对分子质量来提高其热稳定性的方法是最近抗氧剂研究的一个新趋势。但并不是相对分子质量越大越好,因为氧化主要发生在制品表面,当表面抗氧剂消耗尽时,制品内部的抗氧剂能否及时迁移到表面成为其发挥效能的关键,所以抗氧剂相对分子质量通常在1500以下。高相对分子质量的抗氧剂1010比低相对分子质量的抗氧剂1076耐水解能力、耐迁移性、耐抽提性均有明显改善。Sasaki等合成的抗氧剂GA一80便是结构较复杂、相对分子质量较高的抗氧剂,具有抗氧效果好、耐水解性强、挥发性低等优点。

水中烷基酚类物质去除方法

水中烷基酚类物质去除方法 工业水处理 率达95.6%,同时对体系中的总氮去除率为43.9%。该菌株通过无氧化过程使乙氧基链逐渐缩短的途径降解去除NPEOs,可避免产生危害性更大的烷基酚聚氧乙烯醚的羧酸化产物。该反应的降解速率常数为0.224d-1,半衰期为3.09d。张志刚等〔9〕对采自上海某石化腈纶厂废水处理站的塔式生物滤池和沉淀池水进行分离筛选,得到1株能降解2,6-二叔丁基酚的菌株,经固定化后的菌株在pH5~9,温度 35~45℃,底物质量浓度100.0mg/L条件下,12d内对污染物的降解率可达到86%,动力学常数为0.1519,半衰期为4.56d。1.2活性污泥法 活性污泥法是一种常见的污水生物处理法。该方法具有工艺简单、运行方式灵活、基建费用低等优点,广泛用于对城市污水的处理中。 蒋俊等〔10〕从好氧活性污泥中分离到1株能降解NP的菌株,经鉴定为柠檬酸杆菌属。他们由正交试验确定了该菌株降解NP的最佳条件为:温度 35℃、初始pH=5.5、NP初始质量浓度为10mg/L,在最佳条件下降解24h,NP去除率达79.64%。同时他 们指出可通过后续研究跟踪监测菌株添加到环境后的生存状况及降解能力的变化,评价生物添加效果,并通过检测降解过程中的代谢产物,从生化学角度揭示菌株降解机理。外国学者也对烷基酚做了进一步研究,揭示了烷基酚的去除降解方式。N.N. Tuan等〔11〕发现Acinetobactersp.OP5可以将雌激素 活性较强的烷基酚降解为短链烷基酚,减低其激素活性,然后通过多元裂解和双氧酶的作用去除短链烷基酚。在对4-甲基邻苯二酚、儿茶酚、4-乙基苯酚等的去除研究中发现,烷基酚的链越短去除效果越好。 一些学者还分离得到了只以烷基酚为碳源的微生物,从而提高了微生物对烷基酚的降解效果。古新等〔12〕从城市污水处理厂活性污泥中分离得到1株能够在缺氧条件下以壬基酚聚氧乙烯醚(NPEOs)为唯一碳源和能源生长的菌株NP25b(红细菌属)。该菌株对NPEOs 在缺氧条件下有较高的降解率;在底物质量浓度为400mg/L、温度为30℃时,7d内该菌株对NPEOs的降解率最高可达84%。颜丙花等〔13〕用微生物法处理制革废水中的NPEOs,得到1株以 NPEOs为唯一碳源生长的菌株OPQa3,该菌株属于短波单胞菌属Brevundimonassp.,结果表明,在746mg/L的NPEOs培养基中,120h内该菌株对NPEOs 范荣桂,等:水体中烷基酚类物质的去除研究进展的降解率可达84.5%,OPQa3生长的最佳温度为 30℃,最适pH≈7。降解性质粒检测结果表明,降解菌OPQa3对NPEOs的降解功能是由质粒控制的。该研究成果为制革废水中NPEOs降解菌的进一步 研究奠定了基础。 刘易〔14〕研究了好氧菌群对低浓度OP的生物降解特性和群落特征,其发现在OP 初始质量浓度为 50~200μg/L的条件下,OP初始浓度的升高对好氧菌群形成一定的代谢抑制。弱碱性条件(pH=8)最有利于好氧活性污泥对OP的生物降解,有机添加物 (甲醇、葡萄糖、苯酚、酵母浸出物)可普遍改善微生物对OP的生物代谢,其中,苯酚和酵母浸出物的促进效果最明显,在OP初始质量浓度为200μg/L的条件下,可使OP 的降解半衰期从5.3d分别缩短至

酚类化合物

酚类化合物主要来源于石油加工产品,煤焦油,煤液化油,三者中酚类化合物的组成具有很大的相似性。煤焦油,煤液化油中主要的含氧酸性物质即为酚类化合物,其含量受煤种,工艺条件影响很大,低温馏分段中的酚含量较高,质量分数可达30%以上,如此高的酚含量会显著增加后续过程的氢耗量,导致生产成本的增加;此外,酚类化合物的不稳定性不利于油品的存储与运输;酚类化合物作为一种重要的有机中间体和生产原料而被广泛应用到各大领域,因而具有相当大的市场需求和应用价值。然而,我国市场每年的酚类供应都存在较大缺口,随着国家对煤炭资源利用的愈发重视,从煤焦油和煤液化油产品中提取酚类化合物不仅符合国家能源战略的需求,也是挖掘煤焦油和煤液化油的潜在价值。 一、目前获得酚类的方法 酚类物质最初发现于蔬菜,水果,谷物等植物中,如生育酚,儿茶素,白黎芦醇,芝麻林酚,大豆黄素等等,这些天然的酚类化合物大多具有抗氧化性,可以延缓衰老,对于癌症也有一定的抵制作用,所以其医药上的应用潜力越来越得到人们的重视。 煤液化油中提取酚类化合物的原因有一下几点: 1)人们在煤焦油和液化油产品的加工过程中发现,酚类化合物由于其具有特殊的结构特点,会影响油品的安定性[3, 4]、煤液化工艺中的循环溶剂性能[5],因此分离出煤焦油或液化油中的酚类物质将有助于油品的存储,运输,及优化工艺结构。 2)酚类化合物具有弱酸性,是煤焦油液化油中含氧化合物[6]的主要组成部分。在后续加工过程中,高的酚含量将显著增加氢耗量,氢气在合成工业中是一种贵重的原料,这无疑会提升生产的成本。 3)酚类化合物是一种高附加值产品,表1-5 为典型酚类化合物的用途[1],可见酚类化合应用范围非常广,涉及医药、农药、有机合成等等,与人们的生活和工业生产密切相关。从油品中分离酚类化合物将大大增加煤加工产品的附加值,具有很高的经济效益。 4)随着工业的发展,石化能源的消耗带来了巨大的含酚废水排放量[7, 8],是世界上主要的污染物之一,已经严重威胁到人们的生活,健康及安全。由于现行的工艺条件限制,在油品加工过程中会产生的大量含酚废水需要处理,增加生产成本,还会污染环境,与绿色工艺的要求相差甚远,急需对其加以改进。如果能从源头萃取分离出绝大部分的酚类化合物,既不会对后续加工产生负面影响,又能简化工艺流程,

骨碎补中的两个新酚酸类化合物_梁永红

·874·药学学报Acta Pharmaceutica Sinica 2010, 45 (7): 874?878 骨碎补中的两个新酚酸类化合物 梁永红, 叶敏*, 张灵芝, 李卉芳, 韩健, 王宝荣, 果德安* (北京大学药学院天然药物与仿生药物国家重点实验室, 北京 100191) 摘要: 为了研究骨碎补的化学成分, 采用硅胶、ODS、Sephadex LH-20柱色谱及半制备高效液相色谱等技术, 从中药骨碎补的70%乙醇提取物中分离得到9个酚酸类化合物。其结构经1H NMR、13C NMR、2D NMR、HR-ESI-MS等谱学方法分别鉴定为4, 4'-dihydroxy-3, 3'-imino-di-benzoic acid (1)、原儿茶酸 (protocatechuic acid, 2)、没食子酸 (gallic acid, 3)、对羟基苯甲酸(p-hydroxybenzoic acid, 4)、咖啡酸 [(E)-caffeic acid, 5]、ethyl trans- 3, 4-dihydroxycinnamate (6)、咖啡酸4-O-β-D-葡萄糖苷(caffeic acid 4-O-β-D-glucopyranoside, 7)、对-香豆酸4-O- β-D-葡萄糖苷(p-coumaric acid 4-O-β-D-glucopyranoside, 8) 和23(S)-12-O-caffeoyl-12-hydroxyllauric acid glycerol ester (9)。其中, 化合物1和9为新化合物, 化合物3、4、6为首次从槲蕨属植物中分离得到。 关键词: 骨碎补; 槲蕨; 酚酸; 23(S)-12-O-caffeoyl-12-hydroxyllauric acid glycerol ester; 4, 4'-dihydroxy-3, 3'- imino-di-benzoic acid 中图分类号: R284.1 文献标识码:A 文章编号: 0513-4870 (2010) 07-0874-05 Two new phenolic acids from Drynariae Rhizoma LIANG Yong-hong, YE Min*, ZHANG Ling-zhi, LI Hui-fang, HAN Jian, WANG Bao-rong, GUO De-an* (The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China) Abstract: To study the chemical constituents of Drynariae Rhizoma, nine phenolic acids were isolated from a 70% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as 4, 4'- dihydroxy-3, 3'-imino-di-benzoic acid (1), protocatechuic acid (2), gallic acid (3), p-hydroxybenzoic acid (4), (E)-caffeic acid (5), ethyl trans-3, 4-dihydroxycinnamate (6), caffeic acid 4-O-β-D-glucopyranoside (7), p-coumaric acid 4-O-β-D-glucopyranoside (8), and 23(S)-12-O-caffeoyl-12-hydroxyllauric acid glycerol ester (9), separately. Among them, 1 and 9 are new compounds, and 3, 4, and 6 were isolated from Drynaria species for the first time. Key words: Drynariae Rhizoma; Drynaria fortunei; phenolic acids;23(S)-12-O-caffeoyl-12-hydroxyl lauric acid glycerol ester; 4, 4'-dihydroxy-3, 3'-imino-di-benzoic acid 骨碎补为水龙骨科槲蕨属植物槲蕨Drynaria fortunei (Kunze.) J. Sm.的干燥根茎, 性温, 味苦, 入肾、肝二经, 具有补肾强骨、续伤止痛的功效[1]。用 收稿日期: 2010-01-08. 基金项目: 教育部创新团队计划 (985-2-063-112); 北京大学医学部985项目 (985-2-119-121). *通讯作者Tel / Fax: 86-10-82802700, E-mail: yemin@https://www.doczj.com/doc/c014773617.html, or gda@https://www.doczj.com/doc/c014773617.html, 于治疗肾虚腰痛, 耳聋、耳鸣, 牙齿松动, 跌扑闪挫, 筋骨折伤; 外用治疗斑秃、白癫风。国内外文献报道槲蕨的化学成分主要有黄酮类[2–6]、三萜类[7–9]及苯丙素类化合物[10], 也有学者利用GC-MS分析了其挥发油成分[11]。为了进一步寻找其生物活性成分, 作者对中药骨碎补的化学成分作了进一步的研究。采用硅胶柱色谱、ODS柱色谱、Sephadex LH-20柱色谱及半 DOI:10.16438/j.0513-4870.2010.07.004

食品中的天然酚类抗氧化物

食品中的天然酚类抗氧化剂 食品在加工、运输及销售期间,引起品质劣化的原因有微生物污染、脂质氧化及褪色等。除了微生物造成的腐败之外,脂质氧化常使食品组织变差、香味丧失、降低营养价值以及产生安全上的顾虑,想解决这些问题,在食品中添加抗氧化剂是可行而有效的方法之一。食品中的油脂受到日光、氧气、离子辐射、金属离子或酶催化的作用,经由一连串的反应而产生具有令人不悦的臭味,该种油脂的劣化现象称为油脂的变败或酸败。畜产品、鱼贝类、干制品等所产生的哈喇味就是油脂酸败的现象。 目前美国食品药物管理局(FDA)批准使用的合成酚类抗氧化剂有丁基羟基茴香醚(BHA)、丁基羟基甲苯(BHT)、特丁基对苯二酚(TBHQ)和没食子酸丙酯(PG)等,天然酚类抗氧化剂有:生育酚、类黄酮等。近年来由于崇尚天然食品,因此天然的酚类抗氧化剂愈来愈受到重视,它既可作为自由基的终结者,又可作为金属螫合剂。生育酚和类黄酮已被证实具抗氧化活性并进行工业化生产。另外,在自然界的植物性食品、香辛料、真菌及烟熏材料中亦含有天然酚类抗氧化剂,本文亦将做一介绍。 1. 生育酚(维生素E) 生育酚属于酚类化合物,广泛存在于动植物性食品中,具有抗氧化作用。它有α、β、γ和δ生育酚等四种同系物,这四种同系物在生物体内的相对抗氧化活性是α>β>γ>δ。但它们在食品中的抗氧化活性与生物组织中正好相反,即δ>γ>β>α。 脂肪和含脂肪的食品中生育酚的含量差别很大。例如棉籽油、玉米油、花生油和芝麻油等植物油中生育酚含量为10-60mg/100g,而谷物胚油中生育酚含量更为丰富,为150-500mg/100g。粗制的植物油中含有较多的生育酚,因此具有足够的氧化稳定性。而精炼植物油中由于在精炼过程中会造成生育酚大量损失,因此在精炼植物油中需加入抗氧化物质。而动物性食品中生育酚含量微乎其微,约在0.5-1.5mg/100g 之间,故生育酚往往都用于富含猪油、禽脂及牛脂等的动物性食品中。 生育酚具有防止细胞脂质及细胞膜脂质被氧化的功能,因此口服维生素E药丸或富含维生素E的膳食,会保持青春延缓衰老,但其为脂溶性维生素,当大量摄食时不易排出体外而造成在体内聚积,反而有害于健康,因此必须加以注意。 2. 类黄酮 类黄酮为花朵、果实、蔬菜及树皮中所含的色素,广泛地分布于自然界,在植物体活细胞中以游离式糖苷的状态存在,若以酶或酸热处理则会降解为糖苷配基及糖。类黄酮目前已被证实是具有极佳抗氧化功能的抗氧化剂。类黄酮是在3号位置和7号位置上具有鼠李糖或鼠李葡萄糖的黄酮糖苷。类黄酮包括黄酮(栎精、漆树黄酮、刺槐亭、芸香苷)、黄烷酮(毒叶素、柚苷配基、橙皮苷)、黄酮醇、黄烷酮醇、异黄烷酮及其衍生物,其抗氧化活性平均为玉米油的3~4倍。 3. 自然界具有抗氧化效果的植物性食品 在日常的饮食中,如果每天每样食物都平均摄取,则在不补充维生素E药丸的情况下,生育酚的摄取量应该不会缺乏,不但可维持维生素E在体内的正常运转达到防止细胞脂质氧化的功能,而且天然植物性食品也没有摄食过量在体内聚积的危险。以下将介绍数种在日常饮食中常见的植物性食品,内含许多不同的抗氧化物质及含量不等的抗氧化活性,这些食品包括大豆、花生、棉籽、芥菜、油菜籽、大米、芝麻籽和茶叶等。 3.1 大豆 大豆制品中含有多种抗氧化化合物。大豆油中主要的抗氧化物质为α-生育酚;大豆粉中含有生育酚、黄酮、异黄酮、配糖物及其衍生物、磷脂质。氨基酸和多肽等,所以大豆粉常常用作抗氧化剂加人到油脂、焙烤食品或肉制品中,例如在饼干中添加4~20%的大豆粉即可有效防止饼干中油脂的氧化,达到产品的稳定性;除大豆粉外,许多被提取的大豆衍生物也是抗氧化物质的大宗来源,作为添加物添加在食品中亦具有良好的抗氧化能力,例如:①以水溶液萃取出的异黄酮糖苷、异黄酮糖苷配基及酚酸;②以有机溶剂

危险化学品的分类(标准版)

危险化学品的分类(标准版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0325

危险化学品的分类(标准版) 第一类:爆炸品,爆炸品指在外界作用下(如受热、摩擦、撞击等)能发生剧烈的化学反应,瞬间产生大量的气体和热量,使周围的压力急剧上升,发生爆炸,对周围环境、设备、人员造成破坏和伤害的物品。爆炸品在国家标准中分5项,其中有3项包含危险化学品,另外2项专指弹药等。 第1项:具有整体爆炸危险的物质和物品,如高氯酸。 第2项:具有燃烧危险和较小爆炸危险的物质和物品,如二亚硝基苯。 第3项:无重大危险的爆炸物质和物品,如四唑并-1-乙酸。 第二类:压缩气体和液化气体,指压缩的、液化的或加压溶解的气体。这类物品当受热、撞击或强烈震动时,容器内压力急剧增

大,致使容器破裂,物质泄漏、爆炸等。它分3项。 第1项:易燃气体,如氨气、一氧化碳、甲烷等。 第2项:不燃气体(包括助燃气体),如氮气、氧气等。 第3项:有毒气体,如氯(液化的)、氨(液化的)等。 第三类:易燃液体,本类物质在常温下易挥发,其蒸气与空气混合能形成爆炸性混合物。它分3项。 第1项:低闪点液体,即闪点低于-18℃的液体,如乙醛、丙酮等。 第2项:中闪点液体,即闪点在-18℃—<23℃的液体,如苯、甲醇等。 第3项,高闪点液体,即闪点在23℃以上的液体,如环辛烷、氯苯、苯甲醚等。 第四类:易燃固体、自燃物品和遇湿易燃物品,这类物品易于引起火灾,按它的燃烧特性分为3项。 第1项:易燃固体,指燃点低,对热、撞击、摩擦敏感,易被外部火源点燃,迅速燃烧,能散发有毒烟雾或有毒气体的固体。如

涨知识——酚酸类化合物含量检测方法

涨知识——酚酸类化合物含量检测方法 我们通常采用色谱技术对植物中的酚酸类化合物进行分离、纯化和鉴定。此外,色谱技术也可用于研究酚酸类化合物与其他食品成分之间的相互作用。 高效液相色谱法(HPLC ) 植物中酚酸类化合物的定量分析取决于检测前成分的化学性质、提取方法、粒径、储存的时间和条件,以及测定方法和干扰剂(如脂肪、萜烯和叶绿素)。通常采用色谱技术进行定量,其中高效液相色谱法(HPLC )是最常用的。在HPLC 方法中,采用不同的色谱柱、流动相、柱温和流速对酚酸类化合物进行检测。水、甲醇和乙腈是流动相中最常见的成分。有时必须要加入改性剂,如甲酸、醋酸铵和醋酸,以防止色谱峰拖尾。就分析时间而言,它不是固定参数,因为可以通过调节流动相的流速来延长或缩短。还可以采用不同的检测器对酚酸类化合物进行定量分析,如UV-Vis 检测器、二极管阵列检测器、化学发光检测器、库仑阵列检测器和质谱(MS )检测器。此外,反相高效液相色谱(RP-HPLC )也可以检测酚酸类化合物含量。 气相色谱法(GC ) 由于GC 需要高温处理,而样品在高温下容易分解,所以气相色谱不常用于酚酸类化合物检测。但GC 可以用于检测600D 以下的小分子酚酸类化合物。气质联用(GC-MS )常用于植物样品中酚酸类化合物分析。与LC-MS 比较而言,GC-MS 具有更高的选择性、精密度及准确度,尤其在分析少量组分的时候。 毛细管电泳法(CE ) 近年来,毛细管电泳技术在酚酸类化合物分析中的应用越来越广泛。CE 技术可以分离并检测离子型和非离子型化合物,极性和非极性化合物。CE 具有电解液体积小,分析时间短,分辨率高,样品量少等优点。为了得到更高的分辨率,需要优化缓冲液、pH 、浓度、毛细管类型、电泳温度、电压以及进样方式等参数。 LC-MS 和GC-MS 的比较(来源:迪信泰检测平台) 以上所有的检测技术都具有一定的局限性。液相色谱配备DAD 和MS 检测器可以减少所需样品量,缩短分析时间。然而,GC 常与MS 联用,需要较高温度处理样品,可能会导致样品分解。此外,GC 只能用于分析小于600D 的小分子酚酸类化合物。近年来,CE 技术也常用于酚参数 LC-MS GC-MS 样品前处理时间 20 min 180 min 分析时间 60 min 50 min 线性范围 窄 宽 选择性 好 高 检出限 5-15 ng/mL 10-18 ng/mL 鉴定 方程计算 具有许多化合物的质谱库; 碎裂片段可以推测分子结构

相关主题
文本预览
相关文档 最新文档