当前位置:文档之家› 2020中考数学压轴题精选精析(91-100例)

2020中考数学压轴题精选精析(91-100例)

2020中考数学压轴题精选精析(91-100例)
2020中考数学压轴题精选精析(91-100例)

2020中考数学压轴题精选精析(91-100例)

19.(2020·浙江温州·模拟9)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.

(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?

(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:

实际售价x(元/千克)…150 160 168 180

月销售量y(千克)…500 480 464 440 …

①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;

②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;

③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?

答案:解:(1)依题意,每千克原料的进货价为160×75%=120(元) --------------2分

设化工商店调整价格后的标价为x元,

则0.8x-120=0.8x×20%解得x=187.5

187.5×0.8=150(元)

----------------------------------------------------------------------2分

∴调整价格后的标价是187.5元,打折后的实际售价是150元.----------1分

(2)①描点画图,观察图象,可知这些点的发展趋势近似是一条直线,

所以猜想y与x之间存在着一次函数关系.

第24题

--------------------------------------------------------------2分

②根据①中的猜想,设y 与x 之间的函数表达式为y =kx +b ,

将点(150,500)和(160,480)代入表达式,得

?

??

??

500=150k +b 480=160k +b 解得?

??

??

k =-2

b =800

∴y 与x 的函数表达式为y =-2x +800

---------------------------------------------2分

将点(168,464)和(180,440)代入y =-2x +800均成立, 即这些点都符合y =-2x +800的发展趋势.

∴①中猜想y 与x 之间存在着一次函数关系是正确的.---------------------------1分

③设化工商店这个月销售这种原料的利润为w 元, 当y =450时,x =175

∴w =(175-120)×450=24750(元)

答:化工商店这个月销售这种原料的利润为24750元.---------------------------2分

20.(2020·浙江温州·模拟10)如图,抛物线的顶点坐标是

??? ??892

5

,-,且经过点) 14 , 8 (A .

(1)求该抛物线的解析式;

(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点

D

A

O x

y

C

B . (第24题图)

(点C 在点D 的左边),试求点B 、C 、D 的坐标;

(3)设点P 是x 轴上的任意一点,分别连结AC 、BC . 试判断:PB PA +与BC AC +的大小关系,并说明理由.

答案:(1)(4分)设抛物线的解析式为89252

-??? ??

-=x a y ………………………1分

∵抛物线经过)14,8(A ,∴89258142

-??? ??

-a =,解得:21=a …………2分

∴8

9

25212

-??? ??-=x y (或225212+-=x x y ) …………………………1分

(2)(4分)令0=x 得2=y ,∴)2,0(B ……………………………………1分 令0=y 得

022

5

212=+-x x ,解得11=x 、42=x ………………………2分 ∴)0 , 1(C 、) 0, 4(D …………………………………………………………1分 (3)(4分)结论:BC AC PB PA +≥+ …………………………………1分 理由是:①当点

C

P 与点重合时,有

BC AC PB PA +=+ ………………………………1分

②当时异于点点C P ,∵直线AC 经过点)14,8(A 、)0,1(C ,

∴直线AC 的解析式为22-=x y ………3分 设直线AC 与y 轴相交于点E ,令0=x ,得2-=y , ∴)2,0(-E ,

则)2,0()2,0(B E 与点-关于x 轴对称 ∴EC BC =,连结PE ,则PB PE =, ∴AE EC AC BC AC =+=+,

∵在APE ?中,有AE PE PA >+

∴BC AC AE PE PA PB PA +=>+=+…………………………………1分

综上所得BC AC BP AP +≥+

21.(2020·浙江温州·模拟11) 如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线x=1交x 轴于点B 。P 为线段AB 上一动点,作直线PC ⊥PO ,交直线x=1于点C 。过P 点作直线MN 平行于x 轴,交y 轴于点M ,交直线x=1于点N 。 (1)当点C 在第一象限时,求证:△OPM ≌△PCN ;

C x

y

A

B D

E

O P .

(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;

(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。

答案:(1)∵OM∥BN,MN∥OB,∠AOB=900,

∴四边形OBNM为矩形。

∴MN=OB=1,∠PMO=∠CNP=900

∵AM PM

AO BO

=,AO=BO=1,

∴AM=PM。

∴OM=OA-AM=1-AM,PN=MN-PM=1-PM,

∴OM=PN,

∵∠OPC=900,

∴∠OPM+CPN=900,

又∵∠OPM+∠POM=900∴∠CPN=∠POM,

∴△OPM≌△PCN. 4分(2)∵AM=PM=APsin450=

2

m

2

∴NC=PM=

2

m

2

,∴BN=OM=PN=1-

2

m

2

∴BC=BN-NC=1-

2

m-

2

m=12m

-

(3)△PBC可能为等腰三角形。6分

①当P与A重合时,PC=BC=1,此时P(0,1)

②当点C在第四象限,且PB=CB时,

A

B

C

N

P

M

O

x

y

x=1

有BN=PN=1

2

m,

-m,

∴NC=BN+BC=1-

2m

-m,7分

由⑵知:

NC=PM=

2

m,

∴1-

2m

-m=

2

m,∴m=1. 8分

∴PM=

2m

=

2

,BN=1

2

m=1

2

,1

).

∴使△PBC为等腰三角形的的点P的坐标为(0,1

)或(

2,1

2

)10分

22.(2020·浙江温州·模拟12)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。过P 点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。

(1)当点C在第一象限时,求证:△OPM≌△PCN;

(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;

(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。

答案:(1)∵OM∥BN,MN∥OB,∠AOB=900,

∴四边形OBNM为矩形。

∴MN=OB=1,∠PMO=∠CNP=900

∵AM PM

AO BO

,AO=BO=1,

∴AM=PM。

∴OM=OA-AM=1-AM,PN=MN-PM=1-PM,

∴OM=PN,

∵∠OPC=900,

∴∠OPM+CPN=900,

又∵∠OPM+∠POM=900∴∠CPN=∠POM,∴△OPM≌△PCN.

(2)∵AM=PM=APsin450=2 m,

∴NC=PM=2

m,∴BN=OM=PN=1-

2

m;

∴BC=BN-NC=1-

2

m

2

-

2

m

2

=12m

(3)△PB C可能为等腰三角形。

①当P与A重合时,PC=BC=1,此时P(0,1)

②当点C在第四象限,且PB=CB时,

有BN=PN=1-

2

2

m,

22-m,

∴NC=BN+BC=1-

2

2

m2-m,

由⑵知:2

∴1-

2

2

m2-m=

2

2

m,∴m=1.

∴PM=

2

2

m=

2

2

,BN=1-

2

2

m=1-

2

2

∴P(

2

2

,1-

2

2

).

∴使△PBC为等腰三角形的的点P的坐标为(0,1)或(

2

2

,1-

2

2

23、(2020江苏通州通西一模试卷)(12分)如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).

(1)当t=1时,得P1、Q1两点,求过A、P1、Q1三点的抛物线解析式及对称轴l;

(2)当t为何值时,PC⊥QC;此时直线PQ与⊙C是什么位置关系?请说明理由;

(3)在(2)的条件下,(1)中的抛物线对称轴l上存在一点N,使得NP+NQ最小,求出点N的坐标.

解:(1)

2

22

8

33

y x x

=-++,对称轴为直线:1

2

x=…………………………3分

(2)当t=2时,PC⊥QC ………………………………………………………6分此时直线PQ与⊙C相切,理由略………………………………………9分

(3)N(1

2,

20

3)……………………………………………………………12分

E

D

C B A

24、(09河南扶沟县模拟)如图,已知:四边形AEBD 中,对角线AB 和DE 相交于点C ,且AB 垂直平分DE ,,,,0AC a BC b CD ab a b ===

≥>其中.

(1)用尺规作图法作出以AB 为直径的⊙O (保留作图痕迹) (2)试判断点D 与⊙O 的位置关系,并说明理由;

(3)试估计代数式a b ab +和2的大小关系,并利用图形中线段的数量关系证明你的结论.

答案:解:(1)如图所示,(注:必须保留作图痕迹,没有作图痕迹扣2分即作AB 的垂直平分线不用圆规画,扣2分)

(2)解:∵ AC = a ,BC = b ,CD = ab ∴ CD 2

= AC ·CB ,即

CD CB

AC CD

=

又∵∠DCA = ∠DCB = 90° ∴ △DCA ∽ △BCD

∴ ∠DAB = ∠CDB

∵ ∠DAB +∠ADC = 90°

∴ ∠ADC +∠CDB = 90°即∠ADB = 90° ∴ OA = OB = OD

∴ 点D 在⊙O 上

(3)结论:a + b ≥ab 由(2)知,点D 、E 都在⊙O 上 ∵ AB 是⊙O 的直径,AB ⊥DE ∴ab ∵ AB ≥ DE ∴ a + b ≥ab

25.(09河南扶沟县模拟)如图,顶点为D 的抛物线y=x 2

+bx-3与x 轴相交于A 、B 两点,与

O

C

E

D

A

y 轴相交于点C ,连结BC ,已知tan ∠ABC=1。 (1)求点B 的坐标及抛物线y=x 2

+bx-3的解析式;

(2)在x 轴上找一点P,使△CDP 的周长最小,并求出点P 的坐标;

(3)若点E (x,y )是抛物线上不同于A 、B 、C 的任意一点,设以A 、B 、C 、E 为顶点的四边形的面积为S,求S 与x 之间的函数关系式。

答案:解:(1) B(3,0),322

--=x x y (2))0,7

3(P

(3)当E 在第四象限,)30(629

232<<++-

=x x x s 当E 在第三象限,)01(62

1

212<<-+--=x x x s

当E 在第一象限或第二象限,)31(422

>-<-=x x x x s 或

26.(09巩义市模拟)如图平面直角坐标系中,抛物线y=-12 x 2+3

2 x +2 交x 轴于A 、B

两点,交y 轴于点C .

(1)求证:△ABC 为直角三角形;

(2)直线x =m (0<m <4)在线段OB 上移动,交x 轴于点D ,交抛物线于点E ,交BC 于点F .求当m 为何值时,EF=DF ?

(3)连接CE 和BE 后,对于问题“是否存在这样的点........E .,使△...BCE ...的面积最大.....?” 小红同学认为:“当E 为抛物线的顶点时,△BCE 的面积最大.”

她的观点是否正确?提出你的见解,若△BCE 的面积存在最大值,请求出点E 的坐标和△BCE 的最大面积.

B

C

O

A D

E

F

答案:解: (1)对于y=-12 x 2+3

2

x +2

当y=0时, -12 x 2+3

2 x +2=0,解得x 1=-1, x 2=4;

当x =0时, y=2

∴A 、B 、C 三点的坐标分别为 A (-1,0),B (4,0),C (0,2) ∴OA=1,OB=4,OC=2, ∴AB=OA+OB=5,∴AB 2

=25

在Rt △AOC 中,AC 2

=OA 2

+OC 2

=12

+22

=5 在Rt △COB 中,BC 2

=OC 2

+OB 2

=22

+42

=20 ∴AC 2

+BC 2

=AB 2

∴△ABC 是以∠ACB 为直角的直角三角形.

(2)解:∵直线DE 的解析式为直线x =m,∴OD= m, DE ⊥OB.

∵OC ⊥AB ,∴OC ∥DE ,∴△BDE ∽△BOC , ∴DF OC =BD

BO

∵OC=2,OB=4,BD=OB -OD=4-m,∴DF=

()m m BO OC BD 2

1

2442-=-=?. 当EF=DF 时,DE=2DF=4-m,∴E 点的坐标为(m, 4-m ) ∵E 点在抛物线y=-12 x 2+32 x +2上,∴4-m =-12 m 2+3

2

m +2

解得m 1=1,m 2=4. ∵0<m <4,∴m =4舍去, ∴当m =1时,EF=DF

(3)解:小红同学的观点是错误的

∵OD= m, DE ⊥OB , E 点在抛物线y=-12 x 2+3

2 x +2上

∴E 点的坐标可表示为(m, -12 m 2+3

2

m +2)

∴DE=-12 m 2+32 m +2.∵DF=2-12 m ,∴EF=DE -DF=-12 m 2

+2m

∵S △BCE =S △CEF +S △BEF =12 EF·OD+12 EF·BD=1

2

EF·(OD+BD )

=12 EF·OB=1

2

EF·4=2EF ∴S △BCE =-m 2

+4m =-(m 2

-4 m+4-4)=-(m -2)2

+4

B

C O

A D

E

F

∴当m =2时, S △BCE 有最大值,△BCE 的最大面积为4;) ∵当m =2时,-12 m 2+3

2

m +2=3,∴E 点的坐标为(2, 3)

而抛物线y=-12 x 2+32 x +2的顶点坐标为(32 ,25

8 ),∴小红同学的观点是错误的

27、(09黄陂一中分配生素质测试)

如图,在平面直角坐标系中,矩形OABC 的顶点A 的坐标为4(,)0,点C 的坐标为0(,)2,O 为坐标原点。设P 点在第一象限,以P 为圆心,半径为1的⊙P 与y 轴及矩形OABC

的边BC 都相切. 已知抛物线2

(0)y ax bx c a =++≠经过O 、P 、A 三点.

(1)求抛物线的解析式;

(2)若⊙P 与矩形OABC 组合得到的图形的面积能被一条直线l 平分,求这条直线l 的解析式;

(3)若点N 在抛物线上,问x 轴上是否存在点M ,使得以M 为圆心的⊙M 能与PAN ?的三边PA 、PN 、AN 所在直线都相切,若存在,请求出M 点的坐标;若不存在,请说明理由.

答案:解:(1)0(O Θ,)0,1(P ,)3,4(A ,)0,

在抛物线)0(2≠++=a c bx ax y 上,?????=+=+=∴041630b a b a c ,即??

?

??==-=041

c b a ,

所以抛物线的解析式为:x x y 42+-= ………… 2分 (2)连结AC 、OB 相交于Q ,则Q 是矩形OABC 的对称中心,

∵P 是⊙P 的对称中心 ,∴PQ 平分⊙P 与矩形OABC 组合得到的图形的面积

设PQ 的解析式为b kx y +=,Θ1(P ,)3、2(Q ,)1 ……………… 4分 ??

?=+=+∴123b k b k ,?

??=-=∴52

b k ,所以PQ 解析式为52+-=x y ………… 5分

(利用其它直线割补平分面积,求得直线的解析式的参照给分)

(3)假设x 轴上存在点M ,使得⊙M 与PAN ?的三边PA 、PN 、AN 所在的直线都相切,

则有如下两种情形:

① 当⊙M 与PAN ?的三边PA 、PN 、AN 相切时,则M 是PAN ?的内心.

ΘM 在x 轴上,x ∴轴为PAN ∠的平分线, ∴1(P ,)3关于x 轴的对称点1(G ,)3-在AN 上,

所以AN 的解析式为:4-=x y ,

由?

??+-=-=x x y x y 442

得到1(-N ,)5- ………… 7分 作ox PR ⊥轴于R ,ΘAR PR ==3,045=∠∴PAO , 在等腰直角ARP ?中,AR PR ==3,23=∴PA 作ox NH ⊥轴于H ,因为AN 的解析式为:4-=x y , 所以045=∠NAH , 在等腰直角AHN ?中,

5=AH ,3=NH ,25=∴AN ,在NAP Rt ?中,17222=+=AN PA PN

∴NAP Rt ?的内切圆⊙M 的半径17242

-=-+=

PN

PA AN MT ,

3482-==∴MT AM ,434(-∴M ,)0 …………… 9分

② 当⊙M 与PAN ?的边AP 、AN 的延长线相切于J 、S ,且与AN 边相切于K 时,则M 是PAN ?的旁心.

由①NAP Rt ?的三边长度分别为:

25=AN ,23=PA ,172=PN

NK NS =∴,PJ PK =,

∴旁切圆的半径17242

+=++=

PN

AN AP MS 3482+==∴MS AM ,434(--M ,)0

O

A

C

P

Q

G

N

B

y

R

M

T

H

A

P

N

M

S

J

K P

综上所述:x 轴上存在点M ,使得⊙M 与PAN ?的三边PA 、PN 、AN 所在的直线都相切434(-M ,)0、4

34(--M ,)0 ………………… 12分 28、(09枝江英杰学校模拟)如图矩形OABC ,AB=2OA=2n ,分别以OA 和OC 为x 、y 轴建立

平面直角坐标系,连接OB ,沿OB 折叠,使点A 落在P 处。过P 作PQ ⊥y 轴于Q 。 (1)求OD:OA 的值。

(2)以B 为顶点的抛物线:y=ax 2

+bx+c ,经过点D ,与直线 OB 相交于E ,过E 作EF ⊥y 轴于F ,试判断2·PQ ·EF 与矩形OABC 面积的关系,并说明理由。

答案:(1)在矩形OABC 中AB ∥OC,∴∠ABO=∠BOC,根据题中的折叠得∠PBO=∠BOC ∴∠PBO=∠BOC, ∴BO=DO,设DO=k,则DB=k 在Rt ⊿BCD 中BC=n,DG=2n-k,BD=k ∴(2n-k)2

+n 2

=k 2

, ∴OD=

4

5

n,OD:OA=5/4 (2)设以B 为顶点的抛物线为y=a(x-n)2

+2n,把D(0, n)代入,得a=n

43

-

∴y=

n 43-(x-n)2

+2n==n 43-x 2+23x+45n,直线OB 为y=2x,二者联立,得 E(-35n,- 310n), ∴EF=3

5

n,

根据PQ ⊥y 轴于Q ,∠ B CO=900

,得⊿BDC ∽⊿PDQ,通过BD=OD=45n,得PD=4

3n

BD PD =53

=BC PQ =n PQ ∴PQ=5

3n, ∴2·PQ ·EF=2n 2

即矩形OABC 面积

(1)求b 的值;

()将直线绕着点旋转到与轴平行的位置时(如图①),直2y kx b B x =+

线与抛物线相交,其中一个交点为,求出点的坐标;y x P P =

+1412

()将直线继续绕着点旋转,与抛物线相交,其··

··

314

12

y kx b B y x =+=

+

中一个交点为P'(如图②),过点P'作x 轴的垂线P'M ,点M 为垂足。是否存在这样的点P',使△P'BM 为等边三角形?若存在,请求出点P'的坐标;若不存在,请说明理由。(09武冈市福田中学一模)

(十三)

答案:解:(1)∵直线y =kx +b 过点B (0,2) ∴b =2

(2)y =kx +b 绕点B 旋转到与x 轴平行,即y =2

依题意有:1

412

2x +=

x =±2 ∴P (2,2)或P (-2,2)

()假设存在点,,使为等边三角形300P x y P BM '()'?

如图,则∠BP'M =60°

29. 如图(十三),已知抛 物线 ,直线 经过点 ( , ) y x y kx b B = + = + 1

4

1 0

2 2

()()P M y P B P M y '''==-=-0

02222

且P'M =P'B

()即y y 0022=-

y 04=

又点在抛物线上P y x '=

+1412

∴1

4142x += x =±23

∴当直线绕点旋转时与抛物线相交,存在一个交点y kx b B y x P =+=

+1412

'

(,)或(,)234234P'-

使△P'BM 为等边三角形

30、(09九江市浔阳区中考模拟)如图2—14,四边形ABCD 是边长为4的正方形,动点P 、Q 同时从A 点出发,点P 沿AB 以每秒1个单位长度的速度向终点B 运动.点Q 沿折线ADC 以每秒2个单位长度的速度向终点C 运动,设运动时间为t 秒. (1)当t=2秒时,求证PQ=CP.

(2)当2

(3)设CPQ ?的面积为S ,那么S 与t 之间的函数关系如何?并问S 的值能否大于正方形ABCD 面积的一半?为什么?

答案:. (1)当t=2时,(如图1),Q 与D 重合,P 恰好是AB 的中点, DAP CBP ???, 则PQ=CP

(2)当2

Q

P

D

C

B

A

(2t-4)=4-t.PB=4-t ,PB=PE,BC=EQ CBP DEP ∴?V V ,∴PC=PQ 仍然成立 (3)当0≤t≤2时,(如图3),CDQ PBC APQ S S S S ???---=16

()()t t

t t 2442

1

221442116-?-?--?-= 26S t t =-+

2

CQ=4-(2t-4)=8-2t.过P 作PF CQ ⊥, 则PF=4.1

4(82)4162

S t t =

?-=-+ 又2

2

6(3)9S t t t =-+=--+Q 开口向下对称轴为t=3, ∴0≤t≤2时,S 随t 增大而增大,当t=2时,S 取得最大值为8. 又 ∵S=-4t+16,164s t -=

2

s

-≤48s ?>≥0, ∴S 的值不可能超过正方形面积的一半8. 31.(09上浦镇中学九年级“回头看”试题)

如图1,正方形ABCD 的顶点A,B 的坐标分别为(0,10),(8,4),顶点C ,D 在第一象限.点P 从点A 出发,沿正方形按逆时针方向运动,同时,点Q 从点E (4,0)出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P ,Q 两点同时停止运动.设运动时间为t(s).

(1)求正方形ABCD 的边长.

(2)当点P 在AB 边上运动时,△OPQ 的面积S (平方单位)与时间t(s)之间的函数图

像为抛物线的一部分(如图2所示),求P ,Q 两点的运动速度.

(3)求(2)中面积S (平方单位)与时间t(s)的函数解析式及面积S 取最大值时点P 的坐标.

(4)若点P,Q 保持(2)中的速度不变,则点P 沿着AB 边运动时,∠OPQ 的大小随着时

间t 的增大而增大;沿着BC 边运动时,∠OPQ 的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,能使∠OPQ =90°吗?若能,直接写出这样的点P 的个数;若不能,直接写不能.

20

28

S

P

C

D

A

y

答案:解:(1)作BF ⊥y 轴于F. ∵A (0,10),B (8,4) ∴FB=8,FA=6,

∴AB=10

(2)由图2可知,点P 从点A 运动到点B 用了10s ∵AB=10

∴P 、Q 两点的运动速度均为每秒一个单位长度. (3)解法1:作PG ⊥y 轴于G ,则PG ∥BF. ∴△AGP ∽△AFB

GA AP FA AB =,即610

GA t

=

. ∴3

5

GA t =.

∴3

105

OG t =-.

又∵4OQ t =+

∴113(4)(10)225S OQ OG t t =

??=+- 即2319

20105

S t t =-++

∵19

1953232()10

b a -=-=?-,且193在0≤t ≤10内,

∴当19

3t =时,S 有最大值.

此时476331

,1051555GP t OG t ==

=-=, ∴7631

(,)155

P

解法2:由图2,可设2

20S at bt =++,

∵抛物线过(10,28)∴可再取一个点,当t=5时,计算得632

S =, ∴抛物线过(63

5,

2

),代入解析式,可求得a,b. O

Q

E

P

B

C

D

A

x

y

(第8题)

图 1 O 10 20

28 t

S 2

(4)这样的点P 有2个.

32.(09綦江县三江中一模)已知,在Rt △OAB 中,∠OAB =900

,∠BOA =300

,AB =2。若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内。将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处。 (1)求点C 的坐标;(2分)

(2)若抛物线bx ax y +=2

(a ≠0)经过C 、A 两点,求此抛物线的解析式;(3分) (3)若抛物线的对称轴与OB 交于点D ,点P 为线段DB 上一点,过P 作y 轴的平行线,交抛物线于点M 。问:是否存在这样的点P ,使得四边形CDPM 为等腰梯形?若存在,请求出此时点P 的坐标;若不存在,请说明理由。(5分)

注:抛物线c bx ax y ++=2

(a ≠0)的顶点坐标为???

?

??--a b ac ,a b 4422,对称轴公式

为a

b

x 2-

=

答案:(1)过点C 作CH⊥x 轴,垂足为H

∵在Rt △OAB 中,∠OAB =900

,∠BOA =300

,AB =2 ∴OB=4,OA =32

由折叠知,∠COB =300

,OC =OA =32

∴∠COH =600

,OH =3,CH =3

∴C 点坐标为(3,3)

(2)∵抛物线bx ax y +=2

(a ≠0)经过C (3,3)、A (32,0)两点

∴()()

???

??+=+=b a b a 323203332

2

解得:???=-=321b a

∴此抛物线的解析式为:x x y 322

+-=

(3)存在。因为x x y 322

+-=的顶点坐标为(3,3)即为点C

MP ⊥x 轴,设垂足为N ,PN =t ,因为∠BOA =300

,所以ON =3t

∴P (3t ,t )

作PQ ⊥CD ,垂足为Q ,ME ⊥CD ,垂足为E

把t x ?=

3代入x x y 322+-=得:t t y 632+-=

∴ M (3t ,t t 632+-),E (3,t t 632

+-)

同理:Q (3,t ),D (3,1) 要使四边形CDPM 为等腰梯形,只需CE =QD 即(

)

16332

-=+--t t t ,解得:3

4

1=t ,12=t (舍) ∴ P 点坐标为(

33

4

,34)

∴ 存在满足条件的点P ,使得四边形CDPM 为等腰梯形,此时P 点的坐为(33

4

,34)

33、(安徽桐城白马中学模拟一).我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线. 如图1,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),

AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.

(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;

(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学压轴题100题精选【含答案】

中考数学压轴题100题精选【含答案】 【001 】如图,已知抛物线 2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;

(新)中考数学--选择题压轴题(含答案)

题型一选择题压轴题 类型一选择几何压轴题 1?如图,四边形ABCD是平行四边形,ZBCD=I20o , AB = 2, BC = 4,点E是直线BC上的点,点F是直线CD上的点,连接AF, AE, EF,点M, N分别是AF, EF 的中点,连接MW则MN的最小值为() 2.如图,四边形ABCD是菱形,对角线AC与BD交于点0, AB = 4, AC = 2√TT,若直线1满足:①点A到直线1的距离为2;②直线1与一条对角线平行;③直线1与菱形ABCD的边有交点,则符合题意的直线1的条数为() 3?如图,在四边形ABCD 中,AD/7BC, AB=CD, AD = 2, BC = 6, BD = 5.若点P 在四边形ABCD的边上,则使得APBD的面积为3的点P的个数为() -√3 (第2(第3

4?如图,点M是矩形ABCD的边BC, CD上的动点,过点B作BN丄AM于点P,交

矩形ABCD 的边于点N,连接DP.若AB=4, AD = 3,则DP 的长的最小值为( ) A. √T3-2 5?如图,等腰直角三角形ABC 的一个锐角顶点A 是。()上的一个动点,ZACB= 90° ,腰AC 、斜边AB 分别交Oo 于点E, D,分别过点D, E 作OO 的切线,两线 交于点F,且点F 恰好是腰BC 上的点,连接O C, ()D, OE.若Θ0的半径为2,则 OC 的长的最大值为( ) 6.如图,在矩形ABCD 中,点E 是AB 的中点,点F 在AD 边上,点M, N 分别是 CD, BC 边上的动点?若AB=AF 二2, AD 二3,则四边形EFMN 周长的最小值是( ) 7.如图,OP 的半径为1,且点P 的坐标为(3, 2),点C 是OP 上的一个动点, 点A, B 是X 轴上的两点,且OA=OB, AC 丄BC,则AB 的最小值为( ) √TT √T3 C. √5+l +√13 √2+2√5 ÷√5 √2+1 O B (第5 (第6 (第7(第8

中考数学压轴题典型题型精讲含答案

2009年全国中考数学压轴题精选精析(四) 41.(09年湖北恩施州)24.如图,在ABC ?中,∠A 90=°,10=BC ,ABC ?的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .设x DE =以DE 为折线将△ADE 翻折,所得的DE A '?与梯形DBCE 重叠部分的面积记为 y. (1).用x 表示?ADE 的面积; (2).求出0﹤x ≤5时y 与x 的函数关系式; (3).求出5﹤x ﹤10时y 与x 的函数关系式; (4).当x 取何值时,y 的值最大?最大值是多少? (09年湖北恩施州24题解析)解:(1)∵ D E ∥BC ∴∠ADE=∠B,∠AED=∠C ∴△ADE ∽△ABC ∴ 2 )(BC DE S S ABC ADE =?? 即2 4 1x S ADE = ? 3分 (2)∵BC=10 ∴BC 边所对的三角形的中位线长为5 ∴当0﹤5≤x 时 2 4 1x S y ADE = =? 6分 (3)x ≤5﹤10时,点A '落在三角形的外部,其重叠部分为梯形 ∵S △A 'DE =S △ADE =24 1x ∴DE 边上的高AH=AH '=x 2 1 由已知求得AF=5 ∴A 'F=AA '-AF=x-5 由△A 'MN ∽△A 'DE 知 2 DE A'MN A')H A'F A'(=??S S C B A

2MN A')5(-=?x S ∴25104 3 )5(41222-+-=--=x x x x y 9分 (4)在函数2 4 1x y =中 ∵0﹤x ≤5 ∴当x=5时y 最大为:4 25 10分 在函数 251043 2-+-=x x y 中 当3202= -=a b x 时y 最大为:325 11分 ∵425﹤3 25 ∴当320=x 时,y 最大为:3 25 12分 39.(09年黑龙江绥化)28.(本小题满分lO 分) (09年黑龙江绥化28题解析)

中考数学压轴题十大类型经典题目75665

中考数学压轴题十大类型 目录 第一讲中考压轴题十大类型之动点问题 1 第二讲中考压轴题十大类型之函数类问题7 第三讲中考压轴题十大类型之面积问题13 第四讲中考压轴题十大类型之三角形存在性问题19 第五讲中考压轴题十大类型之四边形存在性问题25 第六讲中考压轴题十大类型之线段之间的关系31 第七讲中考压轴题十大类型之定值问题38 第八讲中考压轴题十大类型之几何三大变换问题44 第九讲中考压轴题十大类型之实践操作、问题探究50 第十讲中考压轴题十大类型之圆56 第十一讲中考压轴题综合训练一62 第十二讲中考压轴题综合训练二68

第一讲 中考压轴题十大类型之动点问题 一、知识提要 基本方法: ______________________________________________________; ______________________________________________________; ______________________________________________________. 二、精讲精练 1. (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E , AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△P AQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题: (1) 当x =2s 时,y =_____ cm 2;当x =9 2 s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出15 4 y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

中考数学压轴题(选择填空)

中考数学压轴题解题技巧 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。 二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。 解中考压轴题技能技巧: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

中考数学压轴题解题技巧超详细

2012年中考数学压轴题解题技巧解说 数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。下面谈谈中考数学压轴题的解题技巧。 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段 CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB 交AC于点E. ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值. 解:(1)点A的坐标为(4,8)…………………1分 将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx 8=16a+4b 得 0=64a+8b 解得a=-1 2 ,b=4 ∴抛物线的解析式为:y=-1 2 x2+4x …………………3分 (2)①在Rt△APE和Rt△ABC中,tan∠PAE=PE AP = BC AB ,即 PE AP = 4 8 ∴PE=1 2 AP= 1 2 t.PB=8-t. ∴点E的坐标为(4+1 2 t,8-t). ∴点G的纵坐标为:-1 2 (4+ 1 2 t)2+4(4+ 1 2 t)=- 1 8 t2+8. …………………5分 ∴EG=-1 8 t2+8-(8-t) =- 1 8 t2+t. ∵-1 8 <0,∴当t=4时,线段EG最长为2. …………………7分 ②共有三个时刻. …………………8分 t=16 , t= 40 ,t= 85 .…………………11分

最新全国各地中考数学解答题压轴题解析2

全国各地中考数学解答题压轴题解析2

2011年全国各地中考数学解答题压轴题解析(2) 1.(湖南长沙10分)如图,在平面直角坐标系中,已知 点A(0,2),点P是x轴上一动点,以线段AP为一边, 在其一侧作等边三角线APQ。当点P运动到原点O处时, 记Q得位置为B。 (1)求点B的坐标; (2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值; (3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。 【答案】解:(1)过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=3,OC=AC=1。即B( 3 1,)。 (2)不失一般性,当点P在x轴上运动(P不与O重合)时, ∵∠PAQ==∠OAB=60°,∴∠PAO=∠QAB, 在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立。 ∴∠ABQ=∠AOP=90°总成立。 ∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。 (3)由(2)可知,点Q总在过点B且与AB垂直的直线上, ∴AO与BQ不平行。

①当点P 在x 轴负半轴上时,点Q 在点B 的下方, 此时,若AB∥OQ ,四边形AOQB 即是梯形, 当AB∥OQ 时,∠BQO=90°,∠BOQ=∠ABO=60°。 又OB=OA=2,可求得BQ=3。 由(2)可知,△APO≌△AQB ,∴OP=BQ=3, ∴此时P 的坐标为(3 0-, )。 ②当点P 在x 轴正半轴上时,点Q 在点B 的上方, 此时,若AQ∥OB ,四边形AOQB 即是梯形, 当AQ∥OB 时,∠ABQ=90°,∠QAB=∠ABO=60°。 又AB= 2,可求得BQ=23, 由(2)可知,△APO≌△AQB ,∴OP=BQ=23, ∴此时P 的坐标为(23 0, )。 综上所述,P 的坐标为(3 0-, )或(23 0,)。 【考点】等边三角形的性质,坐标与图形性质;全等三角形的判定和性质,勾股定理,梯形的判定。 【分析】(1)根据题意作辅助线过点B 作BC⊥y 轴于点C ,根据等边三角形的性质即可求出点B 的坐标。 (2)根据∠PAQ═∠OAB=60°,可知∠PAO=∠QAB ,得出△APO≌△AQB 总成立,得出当点P 在x 轴上运动(P 不与Q 重合)时,∠ABQ 为定值90°。 (3)根据点P 在x 的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果。 2.(湖南永州10分)探究问题:

中考数学选择题压轴题汇编

资料收集于网络,如有侵权请联系网站删除 2017年中考数学选择题压轴题汇编(1) 2a的解为正数,且使关于的分式方程y的不等(2017重庆)若数a使关于x1.4?? x?11?xy?2y???1?23的解集为y,则符合条件的所有整数a的和为()式组 2???????0y?2a? A.10 B.12 C.14 D.16 【答案】A 【解析】①解关于x的分式方程,由它的解为正数,求得a的取值范围. 2a 4??x?11?x去分母,得2-a=4(x-1) 去括号,移项,得4x=6-a 6?a 1,得x=系数化为46?a6?a≠1,解得a且a≠2;6?,且,∴x≠1∵x且00?? 44②通过求解于y的不等式组,判断出a的取值范围. y?2y???1?32 ?????0y?2a?解不等式①,得y;2???a;解不等式②,得y ∵不等式组的解集为y,∴a;2??2??③由a且a≠2和a,可推断出a的取值范围,且a≠2,符合条件的所有整数6?a6??2?2??a为-2、-1、0、1、3、4、5,这些整数的和为10,故选A.2.(2017内蒙古赤峰)正整数x、y满足(2x-5)(2y-5)=25,则x+y等于()A.18或10 B.18 C.10 D.26 【答案】A, 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)只供学习与交流. 资料收集于网络,如有侵权请联系网站删除 又∵正整数x、y满足(2x-5)(2y-5)=25, ∴2x-5=5,2y-5=5或2x-5=1,2y-5=25 解各x=5,y=5或x=3,y=15. ∴x+y=10或x+y=18. 故选A. x?a?0?3.(2017广西百色)关于x的不等式组的解集中至少有5个整数解,则正数a?2x?3a?0?的最小值是() 2 D..1 B.2 CA. 3 3B. 【答案】3a3a<x≤a,因为该解集中至少5个整数解,所以a比至少【解析】不等式组的解集为??223a+5,解得a≥2 a≥.大5,即?2111122=n-m-2,则-的值等于(4.(2017四川眉山)已知m+n )44mn1D.- 1 C.B0 .-A.1 4C 【答案】11112222,m+1)n+(-1)m=0,从而=-2即1)1)由题意,【解析】得(m+m++(n-n +=0,(24421111 =-1.=n2,所以-=-2nm2-端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙.(2017聊城)5之前的函数关系式如图所示,下列两队与时间500米的赛道上,所划行的路程(min)my()x 说法错误的是()到达终点.乙队比甲队提前A0.25min 时,此时落后甲队.当乙队划行B110m15m

2020年中考数学压轴题突破(含答案)

2014中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。 答题规范动作 1.试卷上探索思路、在演草纸上演草。

2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练) 一、图形运动产生的面积问题 一、知识点睛 1.研究_基本_图形 2.分析运动状态: ①由起点、终点确定t的范围; ②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3.分段画图,选择适当方法表达面积. 二、精讲精练 1.已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以 1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为t秒. (1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积. (2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.

南昌中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交 于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2 x y =?? =-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

近年来中考数学压轴题大集合

近年来中考数学压轴题大集合 【一】函数与几何综合的压轴题 1.〔2004安徽芜湖〕如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 假如有一抛物线通过A ,E ,C 三点,求此抛物线方程. (3) 假如AB 位置不变,再将DC 水平向右移动k (k >0)个单位,如今AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解]〔1〕 〔本小题介绍二种方法,供参考〕 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ' '''== 又∵DO ′+BO ′=DB ∴1EO EO AB DC ' ' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ' '=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D 〔1,0〕,A 〔-2,-6〕,得DA 直线方程:y =2x -2① 再由B 〔-2,0〕,C 〔1,-3〕,得BC 直线方程:y =-x -2② 联立①②得 2 x y =?? =-? ∴E 点坐标〔0,-2〕,即E 点在y 轴上 〔2〕设抛物线的方程y =ax 2+bx +c (a ≠0)过A 〔-2,-6〕,C 〔1,-3〕 E 〔0,-2〕三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 〔3〕〔本小题给出三种方法,供参考〕 由〔1〕当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同〔1〕可得:1E F E F AB DC ''+=得:E ′F =2 图①

中考数学压轴题精选含详细答案

目 录 2.1 由比例线段产生的函数关系问题 例1 2012年上海市徐汇区中考模拟第25题 例2 2012年连云港市中考第26题 例3 2010年上海市中考第25题 例1 2012年上海市徐汇区中考模拟第25题 在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点. (1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系; (2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域. 图1 图2 图3 动感体验 请打开几何画板文件名“12徐汇25”,拖动点O 在AB 上运动,观察△OMP 的三个顶点与对边的垂直平分线的位置关系,可以体验到,点O 和点P 可以落在对边的垂直平分线上,点M 不能. 请打开超级画板文件名“12徐汇25”, 分别点击“等腰”按钮的左部和中部,观察三个角度的大小,可得两种等腰的情形.点击“相切”按钮,可得y 关于x 的函数关系. 思路点拨 1.∠B 的三角比反复用到,注意对应关系,防止错乱. 2.分三种情况探究等腰△OMP ,各种情况都有各自特殊的位置关系,用几何说理的方法比较简单. 3.探求y 关于x 的函数关系式,作△OBN 的边OB 上的高,把△OBN 分割为两个具有公共直角边的直角三角形. 满分解答

(1) 在Rt △ABC 中,AC =6,53sin =B , 所以AB =10,BC =8. 过点M 作MD ⊥AB ,垂足为D . 在Rt △BMD 中,BM =2,3sin 5MD B BM ==,所以65 MD =. 因此MD >MP ,⊙M 与直线AB 相离. 图4 (2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况. ②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形. 在Rt △BOM 中,BM =2,4cos 5BO B BM ==,所以85BO =.此时425 OA =. ③如图6,当OM =OP 时,设底边MP 对应的高为OE . 在Rt △BOE 中,BE =32,4cos 5BE B BO ==,所以158BO =.此时658 OA =. 图5 图6 (3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y . 在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45 BF y =. 在Rt △ONF 中,4105 OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55 x y x y y +=--+. 整理,得2505040 x y x -=+.定义域为0<x <5. 图7 图8 考点伸展 第(2)题也可以这样思考: 如图8,在Rt △BMF 中,BM =2,65MF =,85 BF =.

中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于 E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. ~ [解] (1)(本小题介绍二种方法,供参考) ' 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2x y =??=-? 》 ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? ( = 1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

中考数学压轴题精选及答案(整理版)

20XX 年全国各地中考数学压轴题精选 1、(黄石市20XX 年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1 O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合) ,直线CB 与⊙1O 交于另一点D 。 (1)如图(8),若 AC 是⊙2O 的直径,求证:AC CD =; (2)如图(9),若C 是⊙1O 外一点,求证:1O C AD ⊥; (3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。 2、(黄石市20XX 年)(本小题满分10分)已知二次函数 2248y x mx m =-+- (1)当2x ≤时,函数值 y 随x 的增大而减小,求m 的取值范围。 (2)以抛物线 2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接 正三角形 AMN (M ,N 两点在抛物线上) ,请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线 2248y x mx m =-+-与x 轴交点的横坐标均为整数,求整数m 的值。

3、(20XX 年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0) ,与x 轴相交于点A (5,0),过点A 的直线AB 与 y 轴的正半轴交于点B ,与⊙P 交于点C . (1)已知AC=3,求点B的坐标; (4分) (2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明 理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数 x k y = 的图象经过点1O ,求k 的值(用含a 的代数式表示). 4、庆市潼南县20XX 年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物 线的顶点为D . (1)求b ,c 的值; (2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的 垂线 交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标; (3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛 物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由. 第3题图 χ y

中考数学选择题压轴题汇编

年中考数学选择题压轴题汇编

————————————————————————————————作者:————————————————————————————————日期: 2

3 2017年中考数学选择题压轴题汇编(1) 1.(2017重庆)若数a 使关于x 的分式方程2411a x x +=--的解为正数,且使关于y 的不等式组()213220y y y a +?->???-≤? 的解集为y 2<-,则符合条件的所有整数a 的和为( ) A .10 B .12 C . 14 D .16 【答案】A 【解析】①解关于x 的分式方程,由它的解为正数,求得a 的取值范围. 2411a x x +=-- 去分母,得2-a =4(x -1) 去括号,移项,得 4x =6-a 系数化为1,得x = 64a - ∵x 0>且x≠1,∴64a -0>,且64 a -≠1,解得a 6<且a≠2; ②通过求解于y 的不等式组,判断出a 的取值范围. ()213220y y y a +?->???-≤? 解不等式①,得y 2<-; 解不等式②,得y ≤a ; ∵不等式组的解集为y 2<-,∴a 2≥-; ③由a 6<且a≠2和a 2≥-,可推断出a 的取值范围26a -≤<,且a≠2,符合条件的所有整数a 为-2、-1、0、1、3、4、5,这些整数的和为10,故选A . 2.(2017内蒙古赤峰)正整数x 、y 满足(2x -5)(2y -5)=25,则x +y 等于( ) A .18或10 B .18 C .10 D .26 【答案】A , 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)

相关主题
文本预览
相关文档 最新文档