二维导热物体温度场的数值模拟教程文件
- 格式:docx
- 大小:305.60 KB
- 文档页数:7
传热大作业二维导热物体温度场的数值模拟(等温边界条件)姓名:班级:学号:墙角稳态导热数值模拟(等温条件)一、物理问题有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在下列两种情况下试计算:(1)砖墙横截面上的温度分布;(2)垂直于纸面方向的每米长度上通过砖墙的导热量。
外矩形长为,宽为;内矩形长为,宽为。
第一种情况:内外壁分别均匀地维持在0℃及30℃;第二种情况:内外表面均为第三类边界条件,且已知:外壁:30℃,h1=10W/m2·℃,内壁:10℃,h2= 4 W/m2·℃砖墙的导热系数λ= W/m·℃由于对称性,仅研究1/4部分即可。
二、数学描写对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程02222=∂∂+∂∂y t x t这是描写实验情景的控制方程。
三、方程离散用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。
每一个节点都可以看成是以它为中心的一个小区域的代表。
由于对称性,仅研究1/4部分即可。
依照实验时得点划分网格:建立节点物理量的代数方程对于内部节点,由∆x=∆y ,有)(411,1,,1,1,-+-++++=n m n m n m n m n m t t t t t由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。
设立迭代初场,求解代数方程组。
图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。
以C t 000 为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于,认为已达到迭代收敛。
四、编程及结果1) 源程序#include <>#include <>int main(){int k=0,n=0; double t[16][12]={0},s[16][12]={0};double epsilon=;double lambda=,error=0; double daore_in=0,daore_out=0,daore=0;FILE *fp;fp=fopen("data3","w");for (int i=0;i<=15;i++)for (int j=0;j<=11;j++){if ((i==0) || (j==0)) s[i][j]=30;if (i==5)if (j>=5 && j<=11) s[i][j]=0;if (j==5)if (i>=5 && i<=15) s[i][j]=0;} for (int i=0;i<=15;i++)for(int j=0;j<=11;j++)t[i][j]=s[i][j];n=1;while(n>0){n=0;for(int j=1;j<=4;j++)t[15][j]=*(2*t[14][j]+t[15][j-1]+t[15][j+1]);for(int i=1;i<=4;i++)t[i][11]=*(2*t[i][10]+t[i-1][11]+t[i+1][11]);for(int i=1;i<=14;i++)for(int j=1;j<=4;j++)t[i][j]=*(t[i+1][j]+t[i-1][j]+t[i][j+1]+t[i][j-1]);for(int i=1;i<=4;i++)for(int j=5;j<=10;j++)t[i][j]=*(t[i+1][j]+t[i-1][j]+t[i][j+1]+t[i][j-1]);for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)if(fabs(t[i][j]-s[i][j])>epsilon)n++;for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)s[i][j]=t[i][j];k++;实验结果可知:等温边界下,数值解法计算结果与“二维导热物体温度场的电模拟实验“结果相似,虽然存在一定的偏差,但由于点模拟实验存在误差,而且数值解法也不可能得出温度真实值,同样存在偏差,但这并不是说数值解法没有可行性,相反,由于计算结果与电模拟实验结果极为相似,恰恰说明数值解法分析问题的可行性。
维导热物体温度场的数值模拟Urwvorwty of 帥©fix T KhzIogy Beijing金属凝固过程计算机模拟题目二维导热物体温度场的数值模拟Solidworks十字接头的传热分析作者:张杰学号:S2*******学院:北京有色金属研究总院专业:材料科学与工程成绩:2015年12月二维导热物体温度场的数值模拟图1二维均质物体的网格划分用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x 与y 可以是不变的常量,即等步长,也可以是变量(即在区域内 的不同处是不同的),即变步长?如果区域内各点处的温度梯度相差很大,则在温度 变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些?至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定 ?在有限的区域内,将二维不稳定导热方程式应用于节点(i , j )可写成:2T 2T ,jP十P 1 十PT T,j T.i ,j5工i ,j x 2i ,j当 时,即x 、PTx i . i ,jP PP T i 1 ,j 2T ,jTi 1 ,j2T P T Pi , j i ,j 1 2yy 较小时,忽略()、x)2y)2x)2、2y )项。
当X yx 、 y 方向网格划分步长相等?最后得到节点U ,j)的差分方程:T P 1T P匚 T PT P T P T P 4T P1 i ,jT i ,jF 0T i 1 ,jT i 1, j 1 i ,j 1 T i ,j 1 4l i ,j式中:F o 2C p x假设边界为对流和辐射边界,对流用以下公式计算:P 1 P P PPPT i , j T i , j F 0 2T i 1 ,j T i ,j 1 T i ,j 1 4T i ,jMATLAB 编程模拟表1计算机模拟参数在MATLAB 中编程求解,程序如下: clc; clear; format lo ng %%参数输入moni_canshu=xlsread 模拟参数输入.xlsx',1,'B2:B11'); %读取exceI 中的模拟参数 s=moni_canshu(1);%几何尺寸,m t0=moni_can shu(2);% 初始温度,°C tf=mo ni_can shu(3); % 辐射(空气)边界,C rou=mon i_ca nshu(4);% 密度,kg/m3 lamda=moni_canshu(5);%导热系数,w/(m C ) Cp=moni_can shu(6);% 比热,J/(kg C )n=moni_canshu(7);%工件节点数,个 <1000 dt=60*mo ni_can shu(8); % 时间步长,min to s m=moni_canshu(9);%时间步数,个 <100 dx=s/( n-1);% 计算 dx f0=lamda*dt/(rou*Cp*dx*dx); %计算f0 %%初始参数矩阵,初始温度 for iii=1: n for jjj=1: n Told(iii,jjj)=t0; end endTold(1,:)=tf; Told( n,:)=tf; Told(:,1)=tf; Told(:, n)=tf; %%写文件表头xlswrite('data.xlsx',{['坐标位置']}, 'sheet1:'A1'); asc=97; for ii=1: nbiaotou 仁{['第'nu m2str(ii)'点']};a cT fT j , jC p xasc=asc+1;xlswrite('data.xlsx',biaotou1:sheet1:[char(asc) '1']);xlswrite('data.xlsx',biaotou1:sheet1:['A' num2str(ii+1)]);end%%模拟运算for jj=1:2copyfile('data.xlsx:'data1.xlsx)Tn ew(1:1: n)=tf;Tn ew( n:1: n)=tf;Tn ew(1: n:1)=tf;Tn ew(1: n:n )=tf;for i=2: n-1for j=2: n-1Tn ew(i:j)=Told(i:j)+fO*(Told(i-1:j)-4*Told(i:j)+Told(i+1:j)+Told(i:j- 1)+Told(i:j+1));endendTold=T new;pcolor(Told);% 绘图shad ingin terpcolormap(jet)pause(O.I)saveas(gcf:[第' num2str(jj*0.1) 's温度图像.jpg']);xlswrite('data1.xlsx',Told,'sheet1:'B2');copyfile('data1.xlsx:['第'num2str(jj*0.1) 's数据.xlsx']) delete(datal.xlsx);end模拟结果:251010 15 20 25图3模拟物体的温度分布25201 J5 10 15 20 25图2模拟物体的温度等高线图和温度梯度分布图。
二维导热物体温度场的计算机模拟实验一、实验目的(1)学习电、热类比的原理及边界条件的处理;(2)通过计算机编程的方式求出墙角导热的离散温度场。
二、实验原理二维稳态过程,导热方程为∂2t ðx2+∂2tðy2=0二维稳态导热内部节点的差分方程为t i+1,j+t i−1,j+t i,j+1+t i,j−1−4t i,j=0于是内部节点的迭代计算式为t i,j=t i+1,j+t i−1,j+t i,j+1+t i,j−14对于恒温边界条件,除了绝热边界时使用对称性外,只使用上面一个迭代计算式即可。
但是对于对流边界,边界上的点,按位置分为内角点、外角点和平直边界,按类型分为对流边界、绝热边界,计算步骤相比恒温边界下更为复杂。
按位置:a)内角点:4个方向均有导热热流,有dx2+dy2面积的对流换热b)外角点:2个方向有导热,有dx2+dy2面积的对流换热c)平直边界:3个方向有导热,有dx或dy面积的对流换热按类型:a)绝热边界:该点的绝热一侧没有热流量,基尔霍夫定律中,此方向的热流量代入0计算b)对流边界:该点该方向的对流换热量由牛顿冷却公式q=hA(t∞−t i,j)计算得出综上所述:对流边界下的差分方程为:Φi−1,j+Φi+1,j+Φi,j−1+Φi,j+1+Φ对流=0其中,Φi−1,j,Φi+1,j,Φi,j−1,Φi,j+1为导热量,q对流为对流边界换热量。
Φi−1,j=λA(t i−1,j−t i,j)dx,Φ对流=ℎA(t∞−t i,j)。
代入所有q的计算式,可解得t i,j=∑λA k t kdxk+ℎ对流A对流t∞∑λA kdxk+ℎ对流A对流注意:a)k为实际参与导热的几个方向,对于内角点有4项,外角点有2项,平直边界有3项,绝热边界还要去掉这一方向的那一项b)A k的值根据实际位置确定,内角点得两个方向为0.5dx两个方向为1dx,外角点的两实验名称个方向均为0.5dx,平直边界有两个0.5dx和一个1dxc)内外测流体的ℎ不相等,对流面积为该网格实际与流体接触的面积角点为0.5dx,平直边界为1dx。
实用标准文案传热学二维导热物体温度场的数值模拟作者:陈振兴学号:10037005 学院 ( 系) :化工学院专业:过程装备与控制工程班级:装备01指导教师:李增耀实验时间:2012-10二维导热物体温度场的数值模拟一、物理描述有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸和示意图如图1-1 所示,假设在垂直纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在以下情况下试计算:(1)砖墙横截面上的温度分布;(2)垂直于纸面方向的每米长度上通过砖墙的导热量。
1、内外表面均为第三类边界条件,且已知:t 1 30 C, h1 10 .33 W / m2 Ct 2 10 C,h2 3.93 W / m2 C砖墙的导热系数0.53W / m C2、内外壁分布均匀地维持在 0 C及 30C;图1-1二、数学描述该结构的导热问题可以作为二维问题处理,并且其截面如图1-1 所示,由于对称性,仅研究其 1/4 部分即可。
其网络节点划分如图2-1 ;上述问题为二维矩形域内的稳态、无内热源、常物性的导热问题,对于这样的物理问题,我们知道,描写其的微分方程即控制方程,就是导热微分方程:2 t 2 tx2 y 2第三类边界条件:内外表面均为第三类边界条件,且已知:t 1 30 C, h1 10.33 W / m2 Ct 2 10 C, h2 3.93 W / m2 C砖墙的导热系数0.53W / m Ca f( m, n)c bx = yxn ye m d图 2-1三:方程的离散如上图2-1 所示,用一系列与坐标轴平行的网络线把求解区域划分成许多子区域,以网格线的交点作为需要确定温度值的空间位置,即节点,节点的位置已该点在两个方向上的标号m、n 来表示。
每一个节点都可以看成是以它为中心的小区域的代表,如上(m,n):对于( m,n)为内节点时:由级数展开法或热平衡法都可以得到,当x = y时:t m,n 1(t m 1,n t m 1,ntm,n 1tm ,n 1) 4对于( m,n)为边界节点时:位于平直边界上的节点:t m, n 1(t m 1,n 2t m 1,ntm,n 1) 4外部角点:如图 2-1 中 a、 b、 d、 e、 f 点,t m,n 1(t m 1,ntm,n 1) 2内部角点:如图 2-1 中 c 点,t m,n 1( t m 1,n2tm 1,n2tm,n 1tm,n 1) 6由已知条件有,当 m=1或 n=13 时的节点的温度衡为t w1 =30 C )和(n=8 ,当( m=6且 n<9且6<m<17)时的节点的温度为 t w2 =10 C。
金属凝固过程计算机模拟题目:二维导热物体温度场的数值模拟Solidworks十字接头的传热分析作者:张杰学号:S2*******学院:北京有色金属研究总院专业:材料科学与工程成绩:2015 年12 月二维导热物体温度场的数值模拟图1 二维均质物体的网格划分用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x ∆与y ∆可以是不变的常量,即等步长,也可以是变量(即在区域内的不同处是不同的),即变步长。如果区域内各点处的温度梯度相差很大,则在温度变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些。至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定。在有限的区域内,将二维不稳定导热方程式应用于节点,)i j (可写成: ,2222 ,i jPPp i j T T T C x y ρλτ⎛⎫∂∂∂=+ ⎪∂∂∂⎝⎭,1 , ,()i jP P Pi j i jT T T οτττ+-∂⎛⎫=+∆ ⎪∂∆⎝⎭ (), 1 , , 1 ,222()i j P P P Pi j i j i j T T T T x x x ο+--+∂⎛⎫=+∆ ⎪∂⎝⎭∆ () , ,1 , ,1222()i jPP P Pi j i j i j T T T T y y y ο+--+⎛⎫∂=+∆ ⎪∂∆⎝⎭τ∆、x ∆、y ∆ 当τ∆、x ∆、y ∆较小时,忽略()οτ∆、2()x ο∆、2()y ο∆项。
当x y ∆=∆时,即x 、y 方向网格划分步长相等。最后得到节点,)i j (的差分方程: ()1 , ,0 1 , 1 , ,1 ,1 ,4P P P P P P Pi j i j i j i j i j i j i j T T F T T T T T ++-+-=++++-式中:()02p F C x λτρ∆=∆。假设边界为对流和辐射边界,对流用以下公式计算:()(),1 , ,0 1 , ,1 ,1 ,24Pc f i j P P P P P P i j i j i j i j i j i j p a T T T T F T T T T C xτρ+-+-∆-=+++-+∆MATLAB 编程模拟clc; clear;format long %% 参数输入moni_canshu=xlsread('模拟参数输入.xlsx',1,'B2:B11'); %读取excel 中的模拟参数 s=moni_canshu(1); %几何尺寸,m t0=moni_canshu(2); %初始温度,℃tf=moni_canshu(3); %辐射(空气)边界,℃ rou=moni_canshu(4); %密度,kg/m3lamda=moni_canshu(5); %导热系数,w/(m ℃) Cp=moni_canshu(6); %比热,J/(kg ℃)n=moni_canshu(7); %工件节点数,个<1000 dt=60*moni_canshu(8); %时间步长,min to s m=moni_canshu(9); %时间步数,个<100 dx=s/(n-1);%计算dxf0=lamda*dt/(rou*Cp*dx*dx);%计算f0 %% 初始参数矩阵,初始温度 for iii=1:n for jjj=1:nTold(iii,jjj)=t0; end endTold(1,:)=tf; Told(n,:)=tf; Told(:,1)=tf;Told(:,n)=tf;%% 写文件表头xlswrite('data.xlsx',{['坐标位置']},'sheet1','A1');asc=97;for ii=1:nbiaotou1={['第' num2str(ii) '点']};asc=asc+1;xlswrite('data.xlsx',biaotou1,'sheet1',[char(asc) '1']);xlswrite('data.xlsx',biaotou1,'sheet1',['A' num2str(ii+1)]);end%% 模拟运算for jj=1:2copyfile('data.xlsx','data1.xlsx')Tnew(1,1:n)=tf;Tnew(n,1:n)=tf;Tnew(1:n,1)=tf;Tnew(1:n,n)=tf;for i=2:n-1for j=2:n-1Tnew(i,j)=Told(i,j)+f0*(Told(i-1,j)-4*Told(i,j)+Told(i+1,j)+Told(i,j-1)+Told(i,j+1)); endendTold=Tnew;pcolor(Told);%绘图shading interpcolormap(jet)pause(0.1)saveas(gcf,['第' num2str(jj*0.1) 's温度图像.jpg']);xlswrite('data1.xlsx',Told,'sheet1','B2');copyfile('data1.xlsx',['第' num2str(jj*0.1) 's数据.xlsx'])delete('data1.xlsx');end图3 模拟物体的温度分布图2 模拟物体的温度等高线图和温度梯度分布图。
二维导热物体温度场的数值模拟班级:建环11姓名:谢庄璞学号:2110701017物理问题:一个长方形截面的冷空气通道的尺寸如图1所示。
假设在垂直于纸面的方向上冷空气及通道墙壁的温度变化很小,可以忽略。
试用数值方法计算下列两种情况下通道壁面中的温度分布及每米长度上通过壁面的冷量损失:(1).内、外壁分别维持在0摄氏度及30摄氏度;(2).内、外壁与流体发生对流传热,且已知:(由于本人实验做的是对流边界条件,专门编写了第三类的程序,第一类边界条件参考的是别人的程序,节点设计有所不同)T1=30,h1=10(实验值是10.34)T2=10,h2=4(实验值是3.93)(图1)(图2)分析问题:因为截面材料均匀,且边界条件对称,故截面上的温度分布也对称,可去1/4的截面如图2,本题采用数值法求解,将截面上的点进行划分,如图3所示,网格的交点为所选取的节点。
图30.53程序内容:(1)PROGRAM MAINIMPLICIT NONEINTEGER::I,J,KREAL::V=0.53,TF1=10,TF2=30REAL::M1=0,M2=0,N1=0,N2=0,Q1=0,Q2=0REAL::T(16,12)=0 !初设节点温度均为0摄氏度!设置内壁温度为10摄氏度DO I=6,16T(I,6)=TF1END DODO J=6,12T(6,J)=TF1END DO!设置外壁温度为30摄氏度T(I,1)=TF2END DODO J=1,12T(1,J)=TF2END DO!设置其他节点DO K=1,1000!设置内部节点DO I=2,5DO J=2,11T(I,J)=(T(I-1,J)+T(I+1,J)+T(I,J-1)+T(I,J+1))/4 END DOEND DODO I=6,15DO J=2,5T(I,J)=(T(I-1,J)+T(I+1,J)+T(I,J-1)+T(I,J+1))/4 END DOEND DO!设置对称线上的节点DO J=2,5T(16,J)=(2*T(15,J)+T(16,J-1)+T(16,J+1))/4END DODO I=2,5T(I,12)=(2*T(I,11)+T(I-1,12)+T(I+1,12))/4END DOEND DODO I=1,16DO J=1,12WRITE(*,*)I,J,T(I,J)OPEN(1,FILE='T01.txt')WRITE(1,*)T(I,J)END DOEND DODO J=6,11M1=M1+V*(T(5,J)-T(6,J))END DOM2=M2+V*(T(I,5)-T(I,6))END DOQ1=0.5*V*(T(5,12)-T(6,12))+0.5*V*(T(16,5)-T(16,6))+M1+M2 !内壁面能放出的热量DO J=2,11N1=N1+V*(T(1,J)-T(2,J))END DODO I=2,15N2=N2+V*(T(I,1)-T(I,2))END DOQ2=0.5*V*(T(1,12)-T(2,12))+0.5*V*(T(16,1)-T(16,2))+N1+N2 !外壁面能吸收的热量WRITE(*,*)"Q1=",Q1,"Q2=",Q2,"冷量损失为:",(Q1+Q2)/2END PROGRAM MAIN(2)program mainimplicit nonereal h1,h2,lenda,tf1,tf2real t(16,12)integer i,j,xh1=10.34h2=3.93lenda=0.53tf1=30tf2=10h1=h1/10 !注:由于下面未算节点长度,在次进行修正h2=h2/10open(01,file='CH.dat')!zhengti fu chuzhido j=1,12,1do i=1,16,1t(i,j)=10end doend dodo x=1,1000000do j=2,11,1!dui yu di 1 lie j cong 2 dao 11------------------------------------------------------1t(1,j)=1./(h1+2*lenda)*(h1*tf1+lenda/2*t(1,j+1)+lenda/2*t(1,j-1)+lenda*t(2,j)) end do!dui yu wai jiao dian t(1,12)---------------------------------------------------------2t(1,12)=1./(h1+lenda)*(h1*tf1+lenda/2*(t(2,12)+t(1,11)))do i=2,15,1!dui yu di 12 hang i cong 2 dao 15----------------------------------------------------3t(i,12)=1./(h1+2*lenda)*(lenda/2*(t(i-1,12)+t(i+1,12))+lenda*t(i,11)+h1*tf1) end dodo i=7,15,1!dui yu di 7 hang i cong 7 dao 15-----------------------------------------------------4t(i,7)=1./(h2+2*lenda)*(lenda*t(i,8)+lenda/2*(t(i-1,7)+t(i+1,7))+h2*tf2)end dodo j=2,6,1!dui yu di 6 lie j cong 2 dao 6-------------------------------------------------------5t(6,j)=1./(h2+2*lenda)*(lenda*t(5,j)+lenda/2*(t(6,j+1)+t(6,j-1))+h2*tf2)end do!dui yu nei jiao dian t(6,7)----------------------------------------------------------6t(6,7)=1./(3*lenda+h2)*(lenda*(t(6,8)+t(5,7))+lenda/2*(t(7,7)+t(6,6))+h2*tf2)do i=2,5,1!dui yu di 1 hang i cong 2 dao 5------------------------------------------------------7t(i,1)=1./4*(t(i-1,1)+t(i,2)+t(i+1,1)+t(i,2))end dodo j=8,11,1!duiyu di 16 lie j cong 8 dao11------------------------------------------------------8t(16,j)=1./4*(t(15,j)+t(15,j)+t(16,j+1)+t(16,j-1))end do!dui yu jiedian t(1,1)----------------------------------------------------------------9t(1,1)=1./(2*lenda+h1)*(lenda*(t(2,1)+t(1,2))+h1*tf1)!duiyu jiedian t(6,1)-----------------------------------------------------------------10t(6,1)=1./(2*lenda+h2)*(lenda*(t(6,2)+t(5,1))+h2*tf2)!duiyu jiedian t(16,7)----------------------------------------------------------------11t(16,7)=1./(2*lenda+h2)*(lenda*(t(16,8)+t(15,7))+h2*tf2)!dui yu jiedian t(16,12)--------------------------------------------------------------12t(16,12)=1./(2*lenda+h1)*(lenda*(t(16,11)+t(15,12))+h1*tf1)do j=2,7,1do i=2,5,1!dui yu niebujiedian------------------------------------------------------------------1 3t(i,j)=1./4*(t(i-1,j)+t(i+1,j)+t(i,j+1)+t(i,j-1))end doend dodo j=8,11,1do i=2,15,1!dui yu niebujiedian------------------------------------------------------------------1 4t(i,j)=1./4*(t(i-1,j)+t(i+1,j)+t(i,j+1)+t(i,j-1))end doend doend doprint*,tdo j=1,12do i=1,16write(01,*) i,j,t(i,j)1 !用于导出数据方便作图end doend doclose(01)do i=2,11q1=q1+10.34*0.1*(30-t(1,i)) end doq1=q1+10.34*0.05*(30-t(1,1)) do i=2,15q1=q1+10.34*0.1*(30-t(i,12)) end doq1=q1+10.34*0.05*(30-t(16,12)) q1=q1+10.34*0.1*(30-t(1,12)) print*,q1do i=2,6q2=q2+3.93*0.1*(t(6,i)-10)end dodo i=7,15q2=q2+3.93*0.1*(t(i,7)-10)end doq2=q2+3.93*0.1*(t(6,7)-10)q2=q2+3.93*0.05*(t(6,1)-10)q2=q2+3.93*0.05*(t(16,7)-10) print*,q2q=(q1+q2)/2print*,qEndprogram由于有4个部分,所以总热量是q=28.24457*4=112.97828 w编程思路:对整个区域进行节点离散化,写出各个节点与周围节点的关系式,然后进行迭代,直到前后两次算出来的结果相差符合误差要求为止(本实验中循环次数足够多后数值基本不变,故没有设计判断的部分)。
实验一: 二维导热物体温度场的电模拟试验一.实验的目的1.学习电、热类比的原理。
2.通过对电模型的电量测量,求出墙角导热的温度场。
二.实验原理对于稳态过程,二维固体导电及导热系统的数学描述均为拉普拉斯方程。
即:0//2222=∂∂+∂∂y e x e 和 0//2222=∂∂+∂∂y t x t (1) 由于数学描述的一致,现象之间将是类似的。
即可用电势的变化规律描述温势(温差)的变化规律。
电势的测量较温差测量要方便得多。
固体稳定温度场的电模拟法可分为连续式和网络式两类。
连续式使用导电纸作电模型;网络式则用电阻元件构成的电阻网络作模型。
本实验采用网络式。
显然,对网络而言,模拟是建立在差分方程类似的基础上。
当导热系数为常数时,对均匀网络,二维稳态导热差分方程为(图1):图1 内部节点网络单元→t i +1,j +t i-1,j +t i,j +1+t i.j-1-4t i,j =0______________________(2)相应的网络上的电势方程由电学中的可希霍夫定律可得出.为:041=∑=n In___________________(3)即 (e i-1,j -e i,j )/R 1+(e i+1,j -e i,j )/R 3+(e i,j+1-e i,j )/R 4+(e i,j-1-e i,j )/R 2=0________(4) 只要满足 R 1=R 2=R 3=R 4,则e i+1,j +e i-1,j +e i,j+1+e i,j-1-e i,j =0______________________(5)式(2)和(5)完全类似,适用于一切二维稳态无内热源导热与导电问题的网络内部节点。
但是用电阻网络来模拟某一具体的热系统时,还必须使电—热系统之间有类似的边界条件,既当满足了电—热系统之间的边界条件类似后。
在电网络节点上测得的电势分布才能真正模拟热系统中的温度分布。
下面分别讨论二维的等温、绝热和对流边界条件的边界电模拟条件:1.等温边界时最简单的情况。
核科学与技术学院《传热学》二维稳态导热问题的数值解法作业姓名:罗晓学号:2014151214班级:20141512任课教师:李磊,张智刚哈尔滨工程大学核科学与技术学院2016年11月28日问题重述:第一题:如图所示,一个无限长矩形柱体,其横截面的边长分别为L 1和L 2,常物性。
该问题可视为二维稳态导热问题,边界条件如图中所示,其中L 1=0.6m ,L 2=0.4m ,T w 1=60℃,T w 2=20℃,λ=200W/(mK)。
1)编写程序求解二维导热方程。
2)绘制x =L 1/2和y=L 2/2处的温度场,并与解析解进行比较。
已知矩形内的温度场的解析解为:()()()()1211w2w1sh sh sin ,L L L y L x t t y x t πππ+=。
第二题将第一题中2y L =处的边界条件变为2w t t =,其他条件不变。
1)编写程序求解二维导热方程并计算从y =0处导入的热量2Φ。
2)当21L L 时,该二维导热问题可简化为一维导热问题。
在一维的近似下,试计算从y =0处导入的热量1Φ,并比较不同L 2/L 1下21ΦΦ的比值。
由该问题的解析解可知:L 2/L 10.0070.010.050.080.121ΦΦ0.99870.99120.9560.930.912解:(第一题第一问)对于此问题,由于可以视为二维稳态导热问题,由二维稳态热传导1,1,,,1,1,22220m n m n m nm n m n m nt t t t t t xy+-+-+-+-+=∆∆基本方程:22220t tx y∂∂+=∂∂用数值法对该区域进行节点划分(如下图所示):x 方向上一共划分M 个节点,y 方向上一共划分N 个节点。
可以将以上方程改为:如果我们取x y ∆=∆则有:1,1,1,1,,4m n m n m n m nm n t t t t t +-+-+++=考虑到节点位置的特殊性,我们在此将节点的种类进行如下划分,并给出节点的离散方程。
传热学数值模拟实例教程王志军编著邓权威河南理工大学二〇〇九年十二月前言一、实验说明导热问题实际上就是对导热微分方程(能量方程)在规定的定解条件下进行求解,而对流问题除了对能量方程进行求解外,往往还需对质量守恒方程以及动量方程进行求解。
对于少数几何形状以及边界条件简单的问题能获得分析解,但对于大多数工程技术中遇到的许多几何形状或边界条件复杂的导热对流问题,数学上还无法得除其分析解。
另一方面,在近几十年中,随着计算机技术的迅速发展,数值模拟技术得到了飞速的发展,其中CFD (计算流体力学)能解决流体流动,传热传质等很多工程问题,因而发展非常快。
Fluent 作为目前国际上最流行的商用CFD软件之一,在美国和中国的市场占有率都超过60%。
只要涉及到流体、热传递以及化学方法等问题都可以用Fluent进行求解。
它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、消防火灾、环境分析等方面都有着广泛的应用。
本模拟实例库主要是运用成熟的Fluent软件对传热学的一些简单问题进行数值求解,主要包括一维稳态导热问题的求解,二维多热源的稳态导热问题,二维方腔内自然对流和混合对流,管内强制对流换热问题的数值模拟。
模拟实验的目的在于是为同学们提供一个形象直观而又生动的工具,为本科传热学的学习提供一个新的视角,使传热学的学习从抽象的理论中解放出来,变得直接而有主动,增强他们学习的兴趣与动力,从枯燥的灌输中解放出来。
另一方面数值模拟还能加深学生对基本概念、基本规律的理解。
杨世铭说:“传热学课程的教学应当从以往的单纯地为后续专业课服务而转变到着重培养学生的素质与能力方面来。
通过将CFD数值模拟方法渗透到传热学的本科实验中,为培养学生的素质与能力提供一个强有力的工具,最终促进学生创新能力和应用能力的全面提升。
二、Fluent软件简介Fluent软件是美国Fluent公司开发的通用CFD流场计算分析软件,囊括了Fluent Dynamic International、比利时Polyflow和Fluent Dynamic International(FDI)的全部技术力量(前者是公认的粘弹性和聚合物流动模拟方面占领先地位的公司,而后者是基于有限元方法CFD软件方面领先的公司)。
核科学与技术学院《传热学》二维稳态导热问题的数值解法作业姓名:罗晓学号:2014151214班级:20141512任课教师:李磊,张智刚哈尔滨工程大学核科学与技术学院2016年11月28日问题重述:第一题:如图所示,一个无限长矩形柱体,其横截面的边长分别为L 1和L 2,常物性。
该问题可视为二维稳态导热问题,边界条件如图中所示,其中L 1=0.6m ,L 2=0.4m ,T w 1=60℃,T w 2=20℃,λ=200W/(mK)。
1)编写程序求解二维导热方程。
2)绘制x =L 1/2和y=L 2/2处的温度场,并与解析解进行比较。
已知矩形内的温度场的解析解为:()()()()1211w2w1sh sh sin ,L L L y L x t t y x t πππ+=。
第二题将第一题中2y L =处的边界条件变为2w t t =,其他条件不变。
1)编写程序求解二维导热方程并计算从y =0处导入的热量2Φ。
2)当21L L 时,该二维导热问题可简化为一维导热问题。
在一维的近似下,试计算从y =0处导入的热量1Φ,并比较不同L 2/L 1下21ΦΦ的比值。
由该问题的解析解可知:L 2/L 10.0070.010.050.080.121ΦΦ0.99870.99120.9560.930.912解:(第一题第一问)对于此问题,由于可以视为二维稳态导热问题,由二维稳态热传导1,1,,,1,1,22220m n m n m nm n m n m nt t t t t t xy+-+-+-+-+=∆∆基本方程:22220t tx y∂∂+=∂∂用数值法对该区域进行节点划分(如下图所示):x 方向上一共划分M 个节点,y 方向上一共划分N 个节点。
可以将以上方程改为:如果我们取x y ∆=∆则有:1,1,1,1,,4m n m n m n m nm n t t t t t +-+-+++=考虑到节点位置的特殊性,我们在此将节点的种类进行如下划分,并给出节点的离散方程。
实验一 二维墙角导热水电模拟一 实验目的1 巩固所学传热学和相似原理方面的知识,熟悉电模拟实验方法,测定出二维墙角导热温度场;2 参考二维墙角导热数值模拟的结果,对比实测与数值模拟之间方法和结果的差别。
二 实验原理大自然中有许多相类似的现象。
所谓类似,就是指事物客观发展过程不同,而描述它们的数学模型形式相同的现象。
固体内无内热源的稳定导热现象和导电体内无感应的稳定导电现象就是属于两种性质、但微分方程形式相同的类似现象。
它们都可以用拉普拉斯方程来描述,即02=ϕ∇ (1)式中,ϕ可以代表电势,又可以代表温度。
因此,人们可以通过研究电学现象去确定导热现象的规律性。
这并不是利用现象本身的相似性,而是用类比的方法,用其它物理现象来重演所要研究的现象。
也可以说,是利用那些具有相同的数学微分方程式所表达的物理现象来互相模拟。
而测量电压、电流和电阻等参数比起测量热量和温度来说,既简便又精确。
这种研究方法称为电模拟,它具有很大的实用价值。
由于它们的数学方程属于同一类型,故两个现象的对应量之间存在一个类比关系。
由导热现象中的付立叶定律写出T R t x t q ∆∆∆==λ (2) 由导电现象中的欧姆定律写出AR uI ∆=(3) 式中 q — 导热量, WΔt —温度差, Cλ — 物体的导热系数, )/(C m W ⋅x ∆— 导热物体的厚度,mT R — 导热体内的热阻, ℃/ WI — 导电量, A Δu — 电位差, VA R — 导电体内的电阻, Ω于是,可以建立用电流来模拟热流、用电势差来模拟温度差、用电阻来模拟热阻的类比关系。
根据相似原理,只要建立二者的几何条件相似和边界条件相似,则方程式的解就具有同一形式。
对于工程上简单的二维或三维导热温度场,如二维墙角的导热温度场,完全可以通过水电模拟方法来确定它的分布规律。
所谓几何条件相似,就是使导热体模型的各方向几何尺寸和导电体模型的各方向几何尺寸比值为同一相似倍数。
《传热学》上机实践大作业二维导热物体温度场的数值模拟 能动A02 赵凯 2010031134一、物理问题有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在下列两种情况下试计算:砖墙横截面上的温度分布;垂直于纸面方向的每米长度上通过砖墙的导热量。
第一种情况:内外壁分别均匀地维持在0C ︒及30C ︒; 第二种情况:内外表面均为第三类边界条件,且已知:Km K m W h C t Km W h C t •=•=︒=•=︒=∞∞/35.0/93.3,10/35.10,30222211λ砖墙导热系数二、数学描写1、控制方程该问题为无内热源的二维稳态导热问题,因此控制方程为导热微分方程:02222=∂∂+∂∂y t x t 2、边界条件该问题中,导热物体在x 方向上,y 方向上都是对称的,因此可以只取其中的四分之一部分作为研究对象,其他部分情况完全相同,如下图所示:对于上图所示各边界:边界1:由对称性可知:其为绝热边界,即0=w q 。
边界2:第一种情况:其为等温边界,满足第一类边界条件。
即: C t w ︒=0第二种情况:其为对流边界,满足第三类边界条件。
即:)()(2f w w w t t h ntq -=∂∂-=λ 边界3:第一种情况:其为等温边界,满足第一类边界条件。
即: C t w ︒=30 第二种情况:其为对流边界,满足第三类边界条件。
即:)()(1f w w w t t h ntq -=∂∂-=λ三、方程离散如下图所示,用一系列与坐标轴平行的间隔10cm 的网格线将求解区域划分成子区域。
可将上图所示各节点分成内节点与边界点两类。
分别利用热平衡法列各个节点的代数方程。
第一种情况(等温边界): 边界点:边界1(绝热边界):5~2),2(411,11,12,1,=++=+-m t t t t m m m m 11~8),2(411,161,16,15,16=++=+-n t t t t n n n n 边界2(内等温边界): 7,16~7;7~1,6,0,=====n m n m t n m边界3(外等温边界): 12,16~2;12~1,1,30,=====n m n m t n m内节点:11~8,15~6;11~2,5~2);(411,1,,1,1,====+++=-+-+n m n m t t t t t n m n m n m n m n m第二种情况(对流边界): 边界点:边界1(绝热边界):5~2),2(411,11,12,1,=++=+-m t t t t m m m m11~8),2(411,161,16,15,16=++=+-n t t t t n n n n边界2(内对流边界):6~1,)2(222111,61,6,5,6=++++=∆∆-+n Bi t Bi t t t t n n n n16~7,)2(2221117,17,18,7,=++++=∆∆-+m Bi t Bi t t t t m m m m边界3(外对流边界):11~1,)2(2222221,11,1,2,1=++++=∆∆-+n Bi t Bi t t t t n n n n16~2,)2(22222212,112,111,12,=++++=∆∆-+m Bi t Bi t t t t m m m m内角点: )3(22)(21116,67,78,67,57,6+++++=∆∆Bi t Bi t t t t t外角点: )1(222211,112,212,1+++=∆∆Bi t Bi t t t内节点:11~8,15~6;11~2,5~2);(411,1,,1,1,====+++=-+-+n m n m t t t t t n m n m n m n m n m(10,22121==∆=∞∆t t xh Bi λ;30,21212==∆=∞∆t t xh Bi λ)四、编程求解第一种情况(等温边界):Fortran程序代码如下所示:Program denwengimplicit noneinteger::t1=0integer::t2=30integer m,nreal::t(16,12),ta(16,12),et(16,12)real::epslona=1realfainei,fainei1,fainei2,fainei3,fainei4,fainei5,fai nei6,fainei7realfaiwai,faiwai1,faiwai2,faiwai3,faiwai4,faiwai5 ,faiwai6,faiwai7real pianchado n=1,7t(6,n)=t1end dodo m=7,16t(m,7)=t1end dodo n=1,12t(1,n)=t2end dodo m=2,16t(m,12)=t2end dodo m=2,5do n=1,11t(m,n)=10end doend dodo m=6,16do n=8,11t(m,n)=10end doend doopen(01,file='dengwen.dat')do while(epslona>0.00000001)do m=2,5ta(m,1)=0.25*(2*t(m,2)+t(m-1,1)+t(m+1,1)) end dodo m=2,5do n=2,11ta(m,n)=0.25*(t(m+1,n)+t(m-1,n)+t(m,n+1)+t( m,n-1))end doend dodo m=6,15do n=8,11ta(m,n)=0.25*(t(m+1,n)+t(m-1,n)+t(m,n+1)+t( m,n-1))end doend dodo n=8,11ta(16,n)=0.25*(2*t(15,n)+t(16,n-1)+t(16,n+1)) end dodo n=1,7ta(6,n)=t1end dodo m=7,16ta(m,7)=t1end dodo n=1,12ta(1,n)=t2end dodo m=2,16ta(m,12)=t2end dodo m=1,16do n=1,12et(m,n)=abs(ta(m,n)-t(m,n))end doend doepslona=maxval(et(1:16,1:12))do m=1,16do n=1,12t(m,n)=ta(m,n)end doend doend dofainei1=0.5*lanbuda*t(5,1)fainei3=lanbuda*t(5,8)fainei5=0.5*lanbuda*t(16,8)fainei2=0do n=2,7fainei6=lanbuda*t(5,n)fainei2=fainei2+fainei6end dofainei4=0do m=6,15fainei7=lanbuda*t(m,8)fainei4=fainei4+fainei7end dofainei=4*(fainei1+fainei2+fainei3+fainei4+fai nei5)faiwai1=0.5*lanbuda*(30-t(2,1))faiwai3=lanbuda*(30-t(2,11))faiwai5=0.5*lanbuda*(30-t(16,11))faiwai2=0do n=2,10faiwai6=lanbuda*(30-t(2,n))faiwai2=faiwai2+faiwai6end dofaiwai4=0do m=3,15faiwai7=lanbuda*(30-t(m,11))faiwai4=faiwai4+faiwai7end dofaiwai=4*(faiwai1+faiwai2+faiwai3+faiwai4+ faiwai5)print*,' m n t 'do m=1,16do n=1,12print*, m,n,t(m,n)write(01,*) m,n, t(m,n)end doend dopiancha=abs(fainei-faiwai)/((fainei+faiwai)/2) print*,'内部热流量=',faineiprint*,'外部热流量=',faiwaiprint*,'热平衡偏差=',pianchaend program denweng运行结果如图所示:第二种情况(对流边界): Fortran程序代码如下所示:program duiliuimplicit noneinteger::t1=10integer::t2=30integer m,nreal::t(16,12),ta(16,12),et(16,12)real::epslona=1real bi1,bi2realfainei,fainei1,fainei2,fainei3,fainei4,fainei5,fai nei6,fainei7realfaiwai,faiwai1,faiwai2,faiwai3,faiwai4,faiwai5 ,faiwai6,faiwai7real pianchabi1=h1*detax/lanbudabi2=h2*detax/lanbudado m=1,16do n=1,12t(m,n)=10end doend doopen(01,file='crs.dat')do while(epslona>0.000000001)do m=2,5ta(m,1)=0.25*(2*t(m,2)+t(m-1,1)+t(m+1,1)) end dodo n=8,11ta(16,n)=0.25*(2*t(15,n)+t(16,n-1)+t(16,n+1)) end dodo n=2,6 ta(6,n)=(2*t(5,n)+t(6,n+1)+t(6,n-1)+2*bi1*t1) /(2*bi1+4)end dodo m=7,15ta(m,7)=(2*t(m,8)+t(m+1,7)+t(m-1,7)+2*bi1* t1)/(2*bi1+4)end dodo n=2,11ta(1,n)=(2*t(2,n)+t(1,n+1)+t(1,n-1)+2*bi2*t2) /(2*bi2+4)end dodo m=2,15ta(m,12)=(2*t(m,11)+t(m+1,12)+t(m-1,12)+2 *bi2*t2)/(2*bi2+4)end dodo m=2,5do n=2,11ta(m,n)=0.25*(t(m+1,n)+t(m-1,n)+t(m,n+1)+t( m,n-1))end doend dodo m=6,15do n=8,11ta(m,n)=0.25*(t(m+1,n)+t(m-1,n)+t(m,n+1)+t( m,n-1))end doend dota(6,7)=(2*t(5,7)+2*t(6,8)+t(7,7)+t(6,6)+2*bi1*t1)/(2*bi1+6)ta(1,12)=(t(2,12)+t(1,11)+2*bi2*t2)/(2*bi2+2) ta(6,1)=(t(5,1)+t(6,2)+bi1*t1)/(bi1+2)ta(16,7)=(t(16,8)+t(15,7)+bi1*t1)/(bi1+2)ta(16,12)=(t(16,11)+t(15,12)+bi2*t2)/(bi2+2) ta(1,1)=( t(2,1)+t(1,2)+bi2*t2)/(bi2+2)do m=1,16do n=1,12et(m,n)=abs(ta(m,n)-t(m,n))end doend doepslona=maxval(et(1:16,1:12))do m=1,16do n=1,12t(m,n)=ta(m,n)end doend doend dofainei1=0.05*h1*(t(6,1)-10)fainei3=0.1*h1*(t(6,7)-10)fainei5=0.05*h1*(t(16,7)-10)fainei2=0do n=2,6fainei6=0.1*h1*(t(6,n)-10)fainei2=fainei2+fainei6end dofainei4=0do m=7,15fainei7=0.05*h1*(t(m,8)-10)fainei4=fainei4+fainei7end dofainei=4*(fainei1+fainei2+fainei3+fainei4+fai nei5)faiwai1=0.05*h2*(30-t(1,1))faiwai3=0.1*h2*(30-t(1,12))faiwai5=0.05*h2*(30-t(16,12))faiwai2=0do n=2,11 faiwai6=0.1*h2*(30-t(1,n))faiwai2=faiwai2+faiwai6end dofaiwai4=0do m=2,15faiwai7=0.1*h2*(30-t(m,12))faiwai4=faiwai4+faiwai7end dofaiwai=4*(faiwai1+faiwai2+faiwai3+faiwai4+ faiwai5)do n=1,12do m=1,16print*, m,n,t(m,n)write(01,*) m,n,t(m,n)end doend dopiancha=abs(fainei-faiwai)/((fainei+faiwai)/2) print*,'内部热流量=',faineiprint*,'外部热流量=',faiwaiprint*,'热平衡偏差=',pianchaclose(01)end program duiliuWORD完整版----可编辑----教育资料分享运行结果如图所示:----完整版学习资料分享----五、结果讨论1,、温度场分布图用以上数值模拟得到的各节点温度绘制温度场分布图。
实验课程名称:计算机在材料科学与工程中的应用五、实验原始记录(程序设计类实验:包括原程序、输入数据、运行结果、实验过程发现的问题及解决方法等;分析与设计、软件工程类实验:编制分析与设计报告,要求用标准的绘图工具绘制文档中的图表。
系统实施部分要求记录核心处理的方法、技巧或程序段;其它实验:记录实验输入数据、处理模型、输出数据及结果分析)1、进入GANBIT软件主控画面,进行→→操作创建坐标网格图,如下图1所示:图1 坐标网格图2、由节点创建直线、圆弧边,并有线组成面后,确定边界线的内部节点分布。
然后进行→→操作创建结构化网格,如下图2所示:3、进入FIUENT软件中,建立求解模型、设置流体属性、设置边界条件后,求解点击Solver →Iterate进行300次迭代后得到出口界面上的平均温度变化曲线,再进行200次迭代运算后,监视器曲线为一条直线,说明出口处平均温度已经达到稳定状态,如下图3所示。
4、显示实验结果。
在进行Display →Contours操作后,分别得到速度分布图,如下图4;温度分布图,如下图5;温度等值曲线图,如下图6;速度矢量图,如下图7;混合器内等压线图,如下图8;混合器内速度水头等值线图,如下图9。
在进行Plot →XY Plot操作后,得到出流口截面上温度、压力、速度分布图,分别如下图10、图11、图12所示。
图2 换热器的网格图图3 出口平均温度变化曲线(左为300次后,右为再200次后)图4 速度分布图图5 温度分布图图6 温度等值曲线图图7 速度矢量图图8 混合器内等压线图图9 混合器内速度水头等值线图图10 出流口截面上温度分布图图11 出流口截面上速度分布图图12 出流口截面上压力分布图5、利用二阶离散化方法重新计算得到混合器内温度分布图,如下图13所示。
图13 二阶离散化法得到混合器内温度分布图上图13与图5比较,可以看出温度分布得到较好的改善,说明使用二阶离散化方法计算结果更合理。
传热大作业二维导热物体温度场的数值模拟(等温边界条件)姓名:班级:学号:墙角稳态导热数值模拟(等温条件)一、物理问题有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在下列两种情况下试计算:(1)砖墙横截面上的温度分布;(2)垂直于纸面方向的每米长度上通过砖墙的导热量。
外矩形长为3.0m ,宽为2.2m ;内矩形长为2.0m ,宽为1.2m 。
第一种情况:内外壁分别均匀地维持在0℃及30℃; 第二种情况:内外表面均为第三类边界条件,且已知: 外壁:30℃ ,h1=10W/m2·℃, 内壁:10℃ ,h2= 4 W/m2·℃ 砖墙的导热系数λ=0.53 W/m ·℃由于对称性,仅研究1/4部分即可。
二、数学描写对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程02222=∂∂+∂∂ytx t这是描写实验情景的控制方程。
三、方程离散用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。
每一个节点都可以看成是以它为中心的一个小区域的代表。
由于对称性,仅研究1/4部分即可。
依照实验时得点划分网格:建立节点物理量的代数方程 对于内部节点,由∆x=∆y ,有)(411,1,,1,1,-+-++++=n m n m n m n m n m t t t t t由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。
设立迭代初场,求解代数方程组。
图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。
以C t 000=为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于0.01,认为已达到迭代收敛。
四、编程及结果1) 源程序#include <stdio.h> #include <math.h> int main() { int k=0,n=0;double t[16][12]={0},s[16][12]={0}; double epsilon=0.001;double lambda=0.53,error=0;double daore_in=0,daore_out=0,daore=0;FILE *fp;fp=fopen("data3","w");for(int i=0;i<=15;i++)for(int j=0;j<=11;j++){if((i==0) || (j==0)) s[i][j]=30;if(i==5)if(j>=5 && j<=11) s[i][j]=0;if(j==5)if(i>=5 && i<=15) s[i][j]=0;}for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)t[i][j]=s[i][j];n=1;while(n>0){n=0;for(int j=1;j<=4;j++)t[15][j]=0.25*(2*t[14][j]+t[15][j-1]+t[15][j+1]);for(int i=1;i<=4;i++)t[i][11]=0.25*(2*t[i][10]+t[i-1][11]+t[i+1][11]);for(int i=1;i<=14;i++)for(int j=1;j<=4;j++)t[i][j]=0.25*(t[i+1][j]+t[i-1][j]+t[i][j+1]+t[i][j-1]);for(int i=1;i<=4;i++)for(int j=5;j<=10;j++)t[i][j]=0.25*(t[i+1][j]+t[i-1][j]+t[i][j+1]+t[i][j-1]);for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)if(fabs(t[i][j]-s[i][j])>epsilon)n++;for(int i=0;i<=15;i++)for(int j=0;j<=11;j++)s[i][j]=t[i][j];k++;//printf("%d\n",k);}for(int j=0;j<=5;j++){ for(int i=0;i<=15;i++){ printf("%4.1f ",t[i][j]);fprintf(fp,"%4.1f ",t[i][j]);}printf("\n");fprintf(fp,"\n");}for(int j=6;j<=11;j++){ for(int i=0;i<=5;i++){ printf("%4.1f ",t[i][j]);fprintf(fp,"%4.1f ",t[i][j]);}fprintf(fp,"\n");printf("\n");}for(int i=1;i<=14;i++)daore_out+=(30-t[i][1]);for(int j=1;j<=10;j++)daore_out+=(30-t[1][j]);daore_out=4*(lambda*(daore_out+0.5*(30-t[1][11])+0.5*(30-t[15][1])));for(int i=5;i<=14;i++)daore_in+=t[i][4];for(int j=5;j<=10;j++)daore_in+=t[4][j];daore_in=4*(lambda*(daore_in+0.5*t[4][11]+0.5*t[15][4]));error=abs(daore_out-daore_in)/(0.5*(daore_in+daore_out));daore=(daore_in+daore_out)*0.5;printf("k=%d\n内墙导热=%f\n外墙导热=%f\n平均值=%f\n偏差=%f\n",k,daore_in,daore_out,daore,error);}2)结果截图七.总结与讨论1.由实验结果可知:等温边界下,数值解法计算结果与“二维导热物体温度场的电模拟实验“结果相似,虽然存在一定的偏差,但由于点模拟实验存在误差,而且数值解法也不可能得出温度真实值,同样存在偏差,但这并不是说数值解法没有可行性,相反,由于计算结果与电模拟实验结果极为相似,恰恰说明数值解法分析问题的可行性。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。