u |x0 0, 或: u(a,t) 0 (2)自由端:x=a 端既不固定,又不受位移方向力的作用。
u
TY
0
x xa
u 0 x xa
ux (a,t) 0
(3) 弹性支承端:在x=a端受到弹性系数为k 的弹簧的支承。
STY
u x
xa
k u
xa
或
u x
解的稳定性:定解条件有微小变动时,解是否有相应 的微小变动。
在研究物理现象时,对定解条件是通过测量得到的, 而测量不免有误差。
如果定解条件的细小误差便导致了解的极大变化,那 么所考察的定解问题,实际上就不能正确的反映所想要 确定的物理现象。这样,在数学上就不能保证所获得的 解是实际所需要的解的近似。
1、定义 (续)
定义3: 设任意函数f(x)在x = 0点连续, 则
d (x)f (x)dx f (0) -
f(x)称为检验函数.
d -函数的图示:
d (x)
1 x
0
d (x,y)
y
1
x
0
四、 d -函数
则 lim n
fn
( x)
d
( x)
单位电量点电荷的电荷密度, 单位光通量点光源的发光度,
fn(x)可以是Nrect(Nx), Nsinc(Nx), NGaus(Nx),
单位能量无限窄电脉冲的瞬时功率 二维圆域函数等等.
等等.
物理系统已无法分
辨更窄的函数
§1-2 脉冲函数 d -Function
C、泊松方程和拉普拉斯方程的初始条件 不含初始条件,只含边界条件条件
注意:初始条件必须写完整,也就是要把整个体系所有点的初始态都写出来。