聚丙烯的结晶形态与性能 PPT
- 格式:ppt
- 大小:128.00 KB
- 文档页数:20
实验1 聚丙烯的结晶形态与性能聚丙烯(PP)是性能优良、应用广泛的通用塑料,具有机械性能好、无毒、密度低、耐热、耐化学品、易于加工成型等优点。
但是在聚丙烯的一些实际应用中,经常遇到改善聚丙烯的光学透明性、提高制品的力学性能(刚性和韧性)和耐热性能、缩短加工成型周期等要求。
这些问题涉及到聚合物的结晶速度、结晶形态、以及聚合物结晶结构与力学性能、光学性能、耐热性能之间的关系等高分子物理的基本理论和知识。
本实验采取在聚丙烯中加入成核剂的方法,通过成核剂的异相成核作用,加快聚丙烯的结晶速度,改善结晶形态,进而提高聚丙烯的力学性能、光学性能和耐热性能。
通过该实验,进一步理解聚合物的结晶形态与聚合物宏观物理性能的关系。
一、二、实验目的1.综合运用高分子物理的基本知识分析和理解成核剂与结晶速度和结晶形态的关系,结晶形态与力学性能、热性能、光学性能之间的关系;2.熟悉并掌握聚合物结晶形态观察、结晶速度测定、力学性能测定、耐热性能的测定方法;3.掌握常用高分子科学手册的查阅,正确、规范地书写高分子物理实验报告。
实验原理聚丙烯的聚集态结构由晶区和非晶区两部分组成,而晶区则往往是由称为球晶的多晶聚集体所组成,球晶的尺寸一般在0.5~100μm之间。
由于晶区和非晶区的密度和折光率不同,而且晶区的尺寸通常大于可见光的波长(400~780nm),所以光线通过聚丙烯时在两相的界面上发生折射和反射,导致聚丙烯制品呈现半透明性。
另外,由于结晶部分的存在,结晶聚合物较相应结构的非晶聚合物有更好的机械强度和耐热性。
近年来,聚丙烯透明化成为新产品开发的一个亮点,聚丙烯透明化产品在包装容器、注射器、家庭用品等领域的用量急剧增加。
加入结晶成核剂是聚丙烯透明化的主要改性技术。
使用成核剂改进聚丙烯透明性的关键是减少球晶或晶片的尺寸,让它小于可见光的波长。
在结晶聚合物中添加结晶成核剂,通过其异相成核作用,一方面可以提高结晶速度,缩短成型周期;另一方面可以增加聚合物的结晶度,从而提高聚丙烯的刚性和耐热性;最重要的是,加入成核剂大大增加了晶核密度,导致球晶尺寸明显降低,聚合物的透明性得到改善。
课题:聚丙烯的结构和性能参考文献:1.纤维化学与物理(蔡再生主编,中国纺织出版社)2.中国纺机网聚丙烯纤维一.聚丙烯纤维的及纺丝聚丙烯的生产过程包括四个主要工序,及丙烯的制备、催化剂的制备、丙烯聚合、聚丙烯的提纯和精处理。
二.聚丙烯纤维形态结构和聚集态结构分子式:聚丙烯纤维由熔体纺丝发制得,一般情况下,纤维截面呈圆形,纵向光滑无条纹。
聚丙烯的机构是由配位聚合得到的头-尾相接的线形结构,其分子中含有甲基,按甲基排列位置分为等规聚丙烯、无规聚丙烯和间规聚丙烯,甲基排列在分子主链的同一侧称等规聚丙烯,即是制备聚丙烯纤维的原料。
从等规聚丙烯的分子结构来看,其具有较高的立体规整性,因此比较容易结晶。
等规聚丙烯的结晶是一种有规则的螺旋状链,这种三维的结晶,不仅是单个链的规则结构,而且在链轴的直角方向也具有规则的链堆砌。
等规聚丙烯的结晶形态为球晶结构,最佳结晶温度为125-135℃,温度过高,不易形成晶核,结晶缓慢:温度过低,分子链扩散困难,结晶难以进行。
聚丙烯初生纤维的结晶度约为33%-40%,经拉伸后,结晶度上升到37%-48%,再经过热处理,结晶度可达65%-75%。
等规聚丙烯结晶变体较多,但纺丝拉伸后的晶体主要是α变体。
等规聚丙烯纤维的聚集态结构属于折叠链和伸直链晶体共存的体三.聚丙烯纤维的物理化学性能1..密度:聚丙烯纤维的密度为0.90-0.92g/cm3,在所有化学纤维中是最轻的,它比聚酰胺纤维轻20%比聚酯纤维轻30%,比粘胶纤维轻40%。
因此,聚丙烯纤维质轻,覆盖性好。
2.吸湿性:聚丙烯纤维是大分子上不含极性基因,纤维的微结构紧密,造成其吸湿性是合成纤维中最差的,其吸湿率低于0.03%。
因此,用于衣着时多于吸湿性高的混纺。
高吸湿性聚丙烯纤维,其主要技术特征是,在纤维级聚丙烯中添加一定比例的由聚乙二醇作为改性剂与聚丙稀粉末经高速混合、熔融挤出、造粒制成改性母料,在纺丝时,在纤维级聚丙烯切粒中添加一定比例的改性母料,混合均匀,采用正常的聚丙烯纤维的生产方法制成的纤维。
聚丙烯的结晶形态与性能实验结果分析聚丙烯作为一种重要的聚合物材料,在工业生产和日常生活中得到了广泛的应用。
其性能与结晶形态密切相关,通过实验对聚丙烯的结晶形态与性能进行分析,有助于深入理解聚丙烯的特性及其在不同领域中的应用。
实验方法在实验中,我们选择了不同结晶条件下制备的聚丙烯样品进行测试。
首先,利用适当的方法将聚丙烯加热到熔点以上,并在一定温度和时间条件下进行结晶处理,得到具有不同结晶形态的样品。
然后,通过X射线衍射(XRD)对样品进行分析,确定其结晶类型和结晶度。
同时,通过热分析技术(如热重分析和差热分析)研究样品的热性能,包括熔点、熔融焓等参数。
结晶形态分析通过实验测定和分析,我们发现在不同结晶条件下制备的聚丙烯样品,其结晶形态和性能存在显著差异。
在高结晶度条件下,聚丙烯呈现出更加有序的结晶形态,XRD结果显示出明显的结晶峰,热性能表现出更高的熔点和熔融焓值。
而在低结晶度条件下,聚丙烯的结晶形态则呈现出较为杂乱的状态,XRD图谱上结晶峰较为模糊,热性能表现较差。
此外,随着结晶温度和时间的增加,聚丙烯样品的结晶度和热性能均呈现出提高的趋势。
这表明结晶条件对于聚丙烯的结晶形态和性能具有重要影响,合理的结晶处理可以改善聚丙烯的性能表现。
性能分析聚丙烯的结晶形态对其性能具有重要影响。
高结晶度的聚丙烯具有较高的结晶区域,分子链有序排列,因而具有较高的硬度和强度。
而低结晶度的聚丙烯结晶区域较小,分子链排列较为松散,表现出较低的硬度和强度。
此外,聚丙烯的结晶形态还会影响其热性能,高结晶度的聚丙烯在高温下保持较好的稳定性,抗热变形能力较强。
而低结晶度的聚丙烯则在高温下容易软化变形。
因此,在不同需求场合下,可以选择适合的结晶条件来调控聚丙烯的性能,以满足不同的应用需求。
结论通过对聚丙烯的结晶形态与性能进行实验分析,我们深入理解了结晶条件对聚丙烯性能的重要性。
合理的结晶处理可以改善聚丙烯的力学性能和热性能,提高其在工业生产中的应用性。